Sepsis in Burns—Lessons Learnt from Developments in the Management of Septic Shock
Abstract
:1. Introduction
2. Definitions of Sepsis/Septic Shock and Mortality in General Patients
3. Characteristics of Septic Burn Patients
4. Sepsis Definitions in Burn Patients
5. Sepsis Marker and the (Burn-) SOFA Score
- (1)
- Grade organ dysfunction as a continuum;
- (2)
- Use parameters that can be assessed easily in every ICU (worldwide);
- (3)
- Prefer fast reacting parameters/organ systems due to the fast onset of septic shock in burn patients;
- (4)
- Reliably assess organ dysfunction in sedated as well as in non-sedated burn patients;
- (5)
- Show high sensitivity as a screening tool and show adequate specificity to indicate adequate treatment or further deterioration of the patient.
6. SSC Guidelines and the Treatment of Sepsis and Septic Shock
7. Sepsis Guidelines and Sepsis Screening on Burn ICU
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boehm, D.; Menke, H. History of fluid management—From “One size fits all” to an individualized fluid therapy in burn resuscitation. Medicina 2021, 57, 187. [Google Scholar] [CrossRef]
- Williams, F.N.; Herndon, D.N.; Hawkins, H.K.; Lee, J.O.; Cox, R.A.; Kulp, G.A.; Finnerty, C.C.; Chinkes, D.L.; Jeschke, M.G. The leading causes of death after burn injury in a single paediatric burn centre. Crit. Care 2009, 13, R183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, B.R.; Harish, D.; Singh, V.P.; Bangar, S. Septicaemia as a cause of death in burns: An autopsy study. Burns 2006, 32, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, M.G.; Pinto, R.; Kraft, R.; Nathens, A.B.; Finnerty, C.C.; Gamelli, R.L.; Gibran, N.S.; Klein, M.B.; Arnoldo, B.D.; Tompkins, R.D.; et al. Morbidity and survival probability in burn patients in modern burn care. Crit. Care Med. 2015, 43, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Fitzwater, J.; Purdue, G.F.; Hunt, J.L.; O’Keefe, G.E. The risk factors and time courses sepsis and organ dysfunction after burn trauma. J. Trauma 2003, 54, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Cumming, J.; Purdue, G.F.; Hunt, J.L.; O’Keefe, G.E. Objective estimates of the incidence and consequences of multiple organ dysfunction and sepsis after burn trauma. J. Trauma 2001, 50, 510–515. [Google Scholar] [CrossRef]
- Belba, M.K.; Petrela, E.Y.; Belba, A.G. Epidemiology and outcome analysis of sepsis and organ dysfunction/failure after burns. Burns 2017, 43, 1335–1347. [Google Scholar] [CrossRef]
- Miller, S.F.; Bessey, P.Q.; Schurr, M.J.; Browning, S.M.; Jeng, J.C.; Caruso, D.M.; Gomez, M.; Latenser, B.A.; Lentz, C.W.; Saffle, J.R.; et al. National Burn Repository 2005: A ten-year review. J. Burn. Care Res. 2006, 27, 411–436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zou, B.; Liou, Y.-C.; Huang, C. The pathogenesis and diagnosis of sepsis post burn injury. Burn. Trauma 2021, 9, 1–16. [Google Scholar] [CrossRef]
- Rech, M.A.; Mosier, M.J.; McConkey, K.; Zelisko, S.; Netzer, G.; Kovacs, E.J.; Afshar, M. Outcomes in burn-injured patients who develop sepsis. J. Burn. Care Res. 2019, 40, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCm consensus conference committee. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, M.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.-L.; Ramsay, G. SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef]
- Singer, M.; Deutschmann, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Shankar-Hari, M.; Phillips, G.S.; Levy, M.L.; Seymour, C.W.; Liu, V.X.; Deutschmann, C.S.; Angus, D.C.; Rubenfeld, G.D.; Singer, M. Developing a new definition and assessing new clinical criteria for septic shock. JAMA 2016, 315, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Peake, S.L.; Delaney, A.; Balley, M.; Bellomo, R. Potential impact of the 2016 consensus definitions of sepsis and septic shock on future sepsis research. Ann. Emerg. Med. 2017, 70, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Engel, C.; Brunkhorst, F.M.; Bone, H.G.; Brunkhorst, R.; Gerlach, H.; Grand, S.; Druendling, M.; Huh, G.; Jaschinski, U.; John, S. Epidemiology of sepsis in Germany. Results from a national prospective multicenter study. Int. Care Med. 2007, 33, 606–618. [Google Scholar] [CrossRef]
- SepNET Critical Care Trial Group. Incidence of severe sepsis and septic shock in German intensive care units: The prospective, multicenter INSEP study. Int. Care Med. 2016, 42, 1980–1989. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, E.R.; Traber, D.L. The systemic inflammatory response syndrome. In Total Burn Care, 4th ed.; Herndon, D.N., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 249–263. [Google Scholar]
- Long, C.; Schaffel, N.; Geiger, C.; Schiller, W.R.; Blakemore, W.S. Metabolic response to injury and illness: Estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN J. Parenter. Enter. Nutr. 1979, 3, 452–456. [Google Scholar] [CrossRef]
- Klimpel, G.R.; Herndon, D.N.; Fons, M.; Albrecht, T.; Asuncion, M.T.; Chin, R.; Stein, M.D. Defective NK cell activity following thermal injury. Clin. Exp. Immunol. 1986, 33, 384–392. [Google Scholar]
- Murphey, E.D.; Sherwood, E.R. Bacterial clearance and mortality are not improved by a combination of IL-10 neutralisation and IFN-gamma administration in a murine model of post-CLP immunosuppression. Shock 2006, 26, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Mann, E.A.; Baun, M.M.; Meininger, J.C.; Wade, C.E. Comparison of mortality associated with sepsis in the burn, trauma and general intensive care unit patient: A systematic review of the literature. Shock 2012, 37, 4–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, G.R.; Vincent, J.L.; Laterne, P.F.; LaRosa, S.P.; Dahinaus, J.F.; Lopez-Rodriguez, A.; Steingrub, J.S.; Garber, G.E.; Helterband, J.D.; Ely, E.W.; et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 2001, 344, 699–709. [Google Scholar] [CrossRef] [Green Version]
- Finfer, S.; Bellomo, R.; Lipman, J.; French, C.; Dobb, G.; Myburgh, J. Adult population incidence of severe sepsis in Australian and New Zealand intensive care units. Int. Care Med. 2004, 30, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Bernard, G.R.; Beale, R.; Doig, C.; Putensen, C.; Dhainaut, J.F.; Artigas, A.; Fumagalli, R.; Macias, W.; Wright, T.; et al. Drotrecogin alfa (activated) treatment in severe sepsis from the global open-label trial ENHANCE: Further evidence for survival and safety and implications for early treatment. Crit. Care Med. 2005, 33, 2266–2277. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, D.G.; Saffle, J.R.; Holmes, J.H.; Gamelli, R.L.; Palmieri, T.L.; Horton, J.W.; Tompkins, R.G. American Burn Association consensus conference to define sepsis and infection in burns. J. Burn. Care Res. 2007, 28, 776–790. [Google Scholar] [CrossRef] [Green Version]
- Housinger, T.A.; Brinkerhoff, C.; Warden, G.D. The relationship between platelet count, sepsis and survival in paediatric burn patients. Arch. Surg. 1993, 128, 65–66. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.E.; Jeschke, M.G.; Rose, J.K.; Desai, M.H.; Herndon, D.N. Enteral feeding intolerance: An indicator of sepsis-associated mortality in burned children. Arch. Surg. 1997, 132, 1310–1313. [Google Scholar] [CrossRef] [PubMed]
- Rehou, S.; Mason, S.; Burnett, M.; Jeschke, M.G. Burned adults develop profound glucose intolerance. Crit. Care Med. 2016, 44, 1059–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.; Kym, D.; Hur, J.; Kim, Y.; Yang, H.-T.; Yim, H.; Cho, Y.S.; Chun, W. Comparative usefulness of Sepsis-3, Burn Sepsis and conventional sepsis criteria in patients with major burns. Crit. Care Med. 2018, 46, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Hogan, B.K.; Wolf, S.E.; Hospenthal, D.R.; D’Avignon, L.C.; Chung, K.K.; Yun, H.C.; Mann, E.A.; Murray, C.K. Correlation of American Burn Association sepsis criteria with the presence of bacteraemia in burned patients admitted to the intensiv e care unit. J. Burn. Care Res. 2012, 33, 371–378. [Google Scholar] [CrossRef]
- Mann-Salinas, E.A.; Bann, M.M.; Meininger, J.C.; Murray, C.K.; Aden, J.K.; Wolf, S.E.; Wade, C.E. Novel predictors of sepsis outperform the American Burn Association sepsis criteria in the burn intensive care unit patient. J. Burn. Care Res. 2013, 34, 31–43. [Google Scholar] [CrossRef]
- Hill, D.M.; Percy, M.D.; Velamuri, S.R.; Lanfranco, J.; Legro, R.I.; Sinclair, S.E.; Hickerson, W.L. Predictors for identifying burn sepsis and performance vs. existing criteria. J. Burn. Care Res. 2018, 39, 982–988. [Google Scholar] [CrossRef]
- Yan, J.; Hill, W.; Rehou, S.; Pinto, R.; Shahrokhi, S.; Jeschke, M.G. Sepsis criteria versus clinical diagnosis of sepsis in burn patients: A validation of current sepsis scores. Surgery 2018, 164, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Sakr, Y.; Sprung, C.L.; Ranieri, V.M.; Reinhart, K.; Gerlach, H.; Moreno, R.; Carlet, J.; Le Gall, J.R.; Payen, D.; et al. Sepsis in European intensive care units: Results of the SOAP study. Crit. Care Med. 2006, 34, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.J.M.; Peterson, J.M.; Wolf, S.E. Detection of infection and sepsis in burns. Surg. Inf. 2021, 22, 20–27. [Google Scholar] [CrossRef]
- Pierrakos, C.; Vincent, J.L. Sepsis biomarkers: A review. Crit. Care 2010, 14, R15. [Google Scholar] [CrossRef] [Green Version]
- Lavrentieva, A.; Kontakiotis, T.; Lazaridis, L.; Tsotsolis, N.; Koumis, J.; Kyriazis, G.; Bitzani, M. Inflammatory markers in patients with severe burn injury. What is the best indicator of sepsis? Burns 2007, 33, 189–194. [Google Scholar] [CrossRef]
- Cabral, L.; Afeixo, V.; Santos, F.; Almeide, L.; Paiva, J.A. Procalcitonin for the early diagnosis of sepsis in burn patients: A retrospective study. Burns 2017, 43, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Turxun, N.; Ning, F. Meta-analysis of the diagnostic value of procalcitonin in adult burn sepsis. Adv. Clin. Exp. Med. 2021, 30, 455–463. [Google Scholar] [CrossRef]
- Gille, J.; Jocovic, J.; Kremer, T.; Sablotzki, A. The predictive role of Interleukin-6 in burn patients with positive blood cultures. Int. J. Burn. Triauma 2021, 11, 123–130. [Google Scholar]
- Baue, A.E. Multiple, progressive or sequential system failure. A syndrome of the 1970s. Arch. Surg. 1975, 110, 779–781. [Google Scholar] [CrossRef] [PubMed]
- Fry, D.E.; Pearlstein, L.; Fulton, R.L.; Polk, H.C. Multiple system organ failure. The role of uncontrolled infection. Arch. Surg. 1980, 115, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; Mendonca, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Int. Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; deMendonca, A.; Cantraine, F.; Moreno, R.; Takala, J.; Suter, P.; Sprung, C.L.; Colardyn, F.; Blecher, S. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: Results of a multicenter, prospective stay. Crit. Care Med. 1998, 26, 1793–1800. [Google Scholar] [CrossRef] [PubMed]
- Lorente, J.A.; Vallejo, A.; Galeiras, R.; Tomicic, V.; Zamora, J.; Cerda, E.; de la Cal, M.; Esteban, A. Organ dysfunction as estimated by the sequential organ failure assessment score is related to outcome in critically ill burn patients. Shock 2009, 31, 125–131. [Google Scholar] [CrossRef]
- Aditianingsih, D.; Sinaga, Y.B.; Adiwongso, E.S.; Madjid, A.S. Respiratory and coagulation dysfunction on admission as independent predictors of in-hospital mortality in critically ill burn patients. Ann. Burn. Fire Dis. 2019, 32, 94–102. [Google Scholar]
- Saffle, J.R.; Sullivsn, J.J.; Tuohig, G.M.; Larson, C.M. Multiple organ failure in patients with thermal injury. Crit. Care Med. 1993, 1673–1683. [Google Scholar] [CrossRef]
- Boehm, D.; Schroeder, C.; Arras, D.; Siemers, F.; Corterier, C.C.; Lehnhardt, M.; Dadras, M.; Hartmann, B.; Kuepper, S.; Czaja, K.U.; et al. Fluid Management as a risk factor for intra-abdominal compartment syndrome (ACS) in burn patients: A total body surface area-independent multicenter trial (TIRIFIC study Part I). J. Burn. Care Res. 2019, 40, 500–506. [Google Scholar] [CrossRef]
- Boehm, D.; Arras, D.; Schroeder, C.; Siemers, F.; Corterier, C.C.; Lehnhardt, M.; Dadras, M.; Hartmann, B.; Kuepper, S.; Czaja, K.U.; et al. Mechanical ventilation as a surrogate for diagnosing the onset of abdominal compartment syndrome (ACS) in severely burned patients (TIRIFIC study Part II). Burns 2020, 46, 1320–1327. [Google Scholar] [CrossRef]
- Rivers, E.; Nguyen, B.; Havstad, S.; Ressler, J.; Muzzin, A.; Knoblich, B.; Peterson, E.; Tomlanovich, M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 2011, 345, 1368–1377. [Google Scholar] [CrossRef] [Green Version]
- ProCESS Investigators. A randomized trial of protocol-based care for early septic shock. N. Engl. J. Med. 2014, 370, 1683–1693. [Google Scholar] [CrossRef] [Green Version]
- Mouncy, P.R.; Osborn, T.M.; Power, G.S.; Harrison, D.A.; Sadique, M.Z.; Grieve, R.D.; Jahan, R.; Harvey, S.E.; Bell, D.; Bion, J.F. Trial of early goal-directed resuscitation for septic shock (ProMISe). N. Engl. J. Med. 2015, 372, 1301–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ARISE Investigators and the ANZICS Clinical Trial Group. Goal-directed resuscitation for patients with early septic shock. N. Engl. J. Med. 2014, 371, 496–506. [Google Scholar]
- PRISM Investigators. Early, goal-directed therapy for septic shock—A patient-level meta-analysis. N. Engl. J. Med. 2017, 376, 2223–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coba, V.; Whitmill, M.; Mooney, R.; Horst, H.M.; Brand, M.-M.; Digiovine, B.; Mlynarek, M.; McLellan, B.; Boleski, G.; Yang, J.; et al. Resuscitation bundle compliance in severe sepsis and septic shock: Improves survival, is better late than never. J. Int. Care Med. 2011, 26, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, R.P.; Carlet, J.M.; Masur, H.; Gerlach, H.; Calandra, T.; Cohen, J.; Gea-Banacloche, J.; Keh, D.; Marshall, J.C.; Parker, M.M. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. J. Int. Care Med. 2004, 30, 536–555. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Levy, M.M.; Carlet, J.M.; Bion, J.; Parker, M.M.; Jaeschke, R.; Reinhart, K.; Angus, D.C.; Brun-Buisson, C.; Beale, R. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2008. J. Int. Care Med. 2008, 34, 17–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.; Sprung, C.L.; Douglas, I.S.; Jeschke, R. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012. J. Int. Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef]
- Jones, S.L.; Ashton, C.M.; Kiehne, L.; Gigliotti, E.; Bell-Gordon, C.; Disbar, M.; Masud, F.; Shirkey, B.A.; Wray, N.P. Reductions in sepsis mortality and costs after design and implementation of a nurse-based early recognition and response program. Jt. Comm. J. Qual. Patient Saf. 2015, 41, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Andonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. J. Int. Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M. Assessment of clinical criteria for sepsis: For the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef] [Green Version]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. J. Int. Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Vincent, J.L.; e Silva, A.Q.; Couto, L.; Taccone, F.S. The value of blood lactate kinetics in critically ill patients: A systematic review. Crit. Care 2016, 20, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ANDROMEDA-SHOCK Randomized Clinical Trial. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock. JAMA 2019, 321, 654–664. [Google Scholar] [CrossRef]
- Contenti, J.; Corraze, H.; Lemoel, F.; Levraut, J. Effectiveness of arterial, venous and capillary blood lactate as a sepsis as a sepsis triage tool in ED patients. Am. J. Emerg. Med. 2015, 33, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Ljungstrom, L.; Pernestig, A.K.; Jacobsson, G.; Andersson, R.; Usener, B.; Tilevik, D. Diagnostic accuracy of procalcitonin, neutrophil-lymphocyte count ratio, C-reactive protein and lactate in patients with suspected bacterial sepsis. PLoS ONE 2017, 12, e0181704. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.; McCartney, D.; Lasserson, D.; Van den Bruel, A.; Fisher, R.; Hayward, G. Point-of-care lactate testing for sepsis at presentation to health care: A systematic review of patient outcomes. Br. J. Gen. Pract. 2017, 67, e859–e870. [Google Scholar] [CrossRef]
- Ehrman, R.R.; Sullivan, A.N.; Favot, M.J.; Sherwin, R.L.; Reynolds, C.A.; Abidov, A.; Levy, P.D. Pathophysiology, echocardiographic evaluation, biomarker findings and prognostic implications of septic cardiomyopathy: A review of the literature. Crit. Care 2018, 22, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lamontagne, F.; Meade, M.O.; Herbert, P.C.; Asfar, P.; Lauzier, F.; Seely, A.J.E.; Day, A.G.; Mehta, S.; Muscedere, J.; Bashaw, S.M.; et al. Higher versus lower blood pressure targets for vasopressor therapy in shock: A multicenter pilot randomized controlled trial. J. Int. Care Med. 2016, 42, 542–550. [Google Scholar] [CrossRef]
- Lamontagne, F.; Richards-Belle, A.; Thomas, K.; Harrison, D.A.; Sadique, M.Z.; Grieve, R.D.; Camsooksai, J.; Darnell, R.; Gordon, A.C.; Henry, D.; et al. Effect of reduced exposure to vasopressors on 90-day mortality in older critically ill patients with vasodilatory hypotension: A randomized clinical trial. JAMA 2020, 323, 938–949. [Google Scholar] [CrossRef]
- Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med. 2017, 376, 2235–2244. [Google Scholar] [CrossRef]
- Liu, V.X.; Fielding-Singh, V.; Greene, J.D.; Baker, J.M.; Iwashyna, T.J.; Bhattacharya, J.; Escobar, G.J. The timing of early antibiotics and hospital mortality in sepsis. Am. J. Respir. Crit. Care Med. 2017, 196, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, L.T.; Grion, C.M.; Matsuo, T.; Anami, E.H.T.; Kauss, I.A.M.; Seko, L.; Bonametti, A.M. Impact of delayed admission to intensive care units on mortality of critically ill patients: A cohort study. Crit. Care 2011, 15, R28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeWaele, J.J.; Lipman, J.; Carlier, M.; Roberts, J.A. Subtleties in practical application of prolonged infusion of beta-lactam antibiotics. Int. J. Antimicrob. Agents 2015, 45, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Abdul-Aziz, M.H.; Davis, J.S.; Dulhunty, J.M.; Cotta, M.O.; Myburgh, J.; Bellomo, R.; Lipman, J. Continuous versus intermittent beta-lactam infusion in severe sepsis. A meta-analysis of individual patient dat from randomized trials. Am. J. Respir. Crit. Care Med. 2016, 194, 681–691. [Google Scholar] [CrossRef]
- Norbury, W.; Herndon, D.N.; Tanksley, J.; Jeschke, M.G.; Finnerty, C.C. Infection in burns. Surg. Infect. (Larchmt) 2016, 17, 250–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamolz, L.P.; Andel, H.; Schramm, W.; Meissel, G.; Herndon, D.N.; Frey, M. Lactate: Early predictor of morbidity and mortality in patients with severe burns. Burns 2005, 31, 986–990. [Google Scholar] [CrossRef]
- Herero, E.H.; Sanchez, M.; Cachafeiro, L.; Agrifoglio, A.; Galván, B.; Asensio, M.J.; Garcia de Lorenzo, A. Lactate in the burn patient. Crit. Care 2015, 19, 145. [Google Scholar] [CrossRef] [Green Version]
- Muthukumar, V.; Arumugam, P.K.; Narasimhan, A.; Kumar, S.; Sharma, U.; Sharma, S.; Kain, R. Blood lactate and lactate clearance: Refined biomarker and prognostic marker in burn resuscitation. Ann. Burn. Fire Dis. 2020, 33, 293–298. [Google Scholar]
Sepsis-1/1991 [11] | Sepsis = SIRS as a response to infection (SIRS = systemic inflammatory response syndrome) defined by ≥2 parameter: |
Parameter | >38 °C or <36 °C; heart rate > 90/min; respiratory rate > 20/min or PaCO2 < 32 mmHg; white blood cell count > 12,000/µL or <4000/µL or >10% immature forms |
Sepsis-2/2001 [12] | no change in definition, but additional parameters to detect sepsis and organ dysfunction: |
Parameter | significant edema/Positive fluid balance; hyperglycaemia in the absence of diabetes; C-reactive protein 2× above normal; procalcitonin 2× above normal; arterial hypotension; mixed venous saturation > 70%; arterial hypoxemia; acute oliguria, creating increase ≥ 0.5 mg/dL; coagulation abnormalities, thrombocytopenia; ileus; hyperbilirubinemia; hyperlactatemia, decreased capillary refill |
Sepsis-3/2016 [13] | “Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection.” |
Parameter | increase in SOFA-score ≥ 2 points |
Organ System/Parameter | 1 Point | 2 Points | 3 Points | 4 Points | |
---|---|---|---|---|---|
Respiratory/ PaO2/FiO2 [mmHg] | <400 | <300 | <200 with respiratory support | <100 with respiratory support | |
Cardiovascular/ Hypotension | MAP <70 mmHg | nor-/epinephrine ≤ 0.05 µg/kg/min | nor-/epinephrine ≤ 0.1 µg/kg/min | nor-/epinephrine ≥ 0.1 µg/kg/min or multiple vasopressors | |
Coagulation/ Platelets [×103/mm3] | <150 | <100 | <50 | <20 | |
Renal/ Creatinine or urine output | 1.2–1.9 mg/dL (110–170 µmol/L) | 2.0–3.4 mg/dL (171–299 µmol/L) | 3.5–4.9 mg/dL (300–440 µmol/L) or <500 mL/day | ≥5 mg/dL (>440 µmol/L) or <200 mL/day | |
Metabolism/ Hyperglycaemia (without history of diabetes mellitus) | plasma glucose > 200 mg/dL (untreated) | >25%/24 h increase of insulin/h i.v.drip | >50%/24 h increase of insulin/h i.v.drip | persistent plasma glucose > 200 mg/dL despite insulin bolus + continuous therapy | |
patient non-sedated | CNS/Glasgow Coma Scale (points) | 13–14 | 10–12 | 6–9 | <6 |
patient sedated | intestines/enteral feeding intolerance | distended abdomen | gastric residual volume of 100% of feeding rate | gastric residual volume of 200% of feeding rate or inability of gastric feeding > 24 h | inability of gastric feeding > 48 h |
Organ System | Main Issue | Clinical Signs | Additional Parameter |
---|---|---|---|
Respiratory | Hypoxia (impaired gas exchange) | tachypnoea, dyspnoea, desaturation, increasing O2-flow/FiO2 | decreasing PO2/FiO2-ratio, radiologic signs of pneumonia? |
Cardiovascular | Hypovolaemia | increasing tachycardia, decreasing systolic pressure, swinging arterial pressure curve | volumetric status: increasing respiratory variability (inferior vena cava), decreasing stroke volume/ventricular filling; decreasing systemic vascular resistance |
Body Temperature | Hypo-/Hyperthermia | <36.5 °C >39.0 °C | routine microbiologic screening: causative agents? |
≥2 criteria positive without other apparent cause = sepsis screening positive | |||
-> measure blood lactate | |||
≤2 mmol/L: increasing BurnSOFA score? -> consider sepsis and search for possible source and causative agents, -> check additional parameters and inflammatory biomarkers (PCT, IL-6) -> start sepsis treatment if additional parameters indicate sepsis | |||
≥2 mmol/L (increasing lactate level without other detectable cause): initiate sepsis bundle without further delay! -> start antimicrobial treatment within 45 min -> begin with antibiotic bolus to gain therapeutic levels -> discontinue antibiotics if non-septic causes show higher probability |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boehm, D.; Menke, H. Sepsis in Burns—Lessons Learnt from Developments in the Management of Septic Shock. Medicina 2022, 58, 26. https://doi.org/10.3390/medicina58010026
Boehm D, Menke H. Sepsis in Burns—Lessons Learnt from Developments in the Management of Septic Shock. Medicina. 2022; 58(1):26. https://doi.org/10.3390/medicina58010026
Chicago/Turabian StyleBoehm, Dorothee, and Henrik Menke. 2022. "Sepsis in Burns—Lessons Learnt from Developments in the Management of Septic Shock" Medicina 58, no. 1: 26. https://doi.org/10.3390/medicina58010026
APA StyleBoehm, D., & Menke, H. (2022). Sepsis in Burns—Lessons Learnt from Developments in the Management of Septic Shock. Medicina, 58(1), 26. https://doi.org/10.3390/medicina58010026