Influence of Hyponatremia on Spinal Bone Quality and Fractures Due to Low-Energy Trauma
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Patient Collective for Study
2.2. Statistics
3. Results
3.1. Comparison between Patients with Low-Energy Trauma and the Control Group
3.2. Hyponatremia Is Increased in the Low-Energy Trauma Group of Patients, but No Gender Difference Was Observed
3.3. Distribution of Osteoporosis in Patients and Its Association with Hyponatremia
3.4. Correlation between Bone Mineral Density (BMD) and Sodium Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pacifici, R. Editorial: Cytokines, Estrogen, and Postmenopausal Osteoporosis—The Second Decade. Endocrinology 1998, 139, 2659–2661. [Google Scholar] [CrossRef] [PubMed]
- Osterkamp, R. Bevölkerungsentwicklung in Deutschland bis 2050. Der Chir. 2005, 76, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Duquet, N. Osteoporosis: Treatment and pharmaceutical care. J. Pharm. Belg. 2014, 2, 14–24. [Google Scholar]
- Ayus, J.C.; Krothapalli, R.K.; Arieff, A.I. Treatment of Symptomatic Hyponatremia and Its Relation to Brain Damage. N. Engl. J. Med. 1987, 317, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Ayus, J.C.; Wheeler, J.M.; Arieff, A.I. Postoperative Hyponatremic Encephalopathy in Menstruant Women. Ann. Intern. Med. 1992, 117, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Arieff, A.I.; Ayus, J.C.; Fraser, C.L. Hyponatraemia and death or permanent brain damage in healthy children. BMJ 1992, 304, 1218–1222. [Google Scholar] [CrossRef] [Green Version]
- Ström, O.; Borgström, F.; Kanis, J.A.; Compston, J.; Cooper, C.; McCloskey, E.V.; Jonsson, B.G. Osteoporosis: Burden, health care provision and opportunities in the EU. Arch. Osteoporos. 2011, 6, 59–155. [Google Scholar] [CrossRef] [PubMed]
- Cumming, K.; Hoyle, G.E.; Hutchison, J.D.; Soiza, R.L. Prevalence, Incidence and Etiology of Hyponatremia in Elderly Patients with Fragility Fractures. PLoS ONE 2014, 9, e88272. [Google Scholar] [CrossRef] [Green Version]
- Spasovski, G.; Vanholder, R.; Allolio, B.; Annane, D.; Ball, S.; Bichet, D.-G.; Decaux, G.; Fenske, W.; Hoorn, E.J.; Ichai, C.; et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intensiv. Care Med. 2014, 40, 320–331. [Google Scholar] [CrossRef]
- Renneboog, B.; Musch, W.; Vandemergel, X.; Manto, M.U.; Decaux, G. Mild Chronic Hyponatremia Is Associated with Falls, Unsteadiness, and Attention Deficits. Am. J. Med. 2006, 119, 71.e1–71.e8. [Google Scholar] [CrossRef] [PubMed]
- Verbalis, J.G.; Barsony, J.; Sugimura, Y.; Tian, Y.; Adams, D.J.; A Carter, E.; E Resnick, H. Hyponatremia-induced osteoporosis. J. Bone Miner. Res. 2009, 25, 554–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolouian, R.; Alhamad, T.; Farazmand, M.; Mulla, Z.D. The correlation of hip fracture and hyponatremia in the elderly. J. Nephrol. 2011, 25, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Kengne, F.G.; Andres, C.; Sattar, L.; Melot, C.; Decaux, G. Mild hyponatremia and risk of fracture in the ambulatory elderly. Qjm: Int. J. Med. 2008, 101, 583–588. [Google Scholar] [CrossRef]
- Ayus, J.C.; Arieff, A.I. Chronic Hyponatremic Encephalopathy in Postmenopausal Women. JAMA 1999, 281, 2299–2304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayus, J.C.; Fuentes, N.A.; Negri, A.L.; Moritz, M.L.; Giunta, D.H.; Kalantar-Zadeh, K.; Nigwekar, S.U.; Thadhani, R.I.; Go, A.S.; De Quiros, F.G.B. Mild prolonged chronic hyponatremia and risk of hip fracture in the elderly. Nephrol. Dial. Transplant. 2016, 31, 1662–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, J.E. Quantitative computed tomography. Eur. J. Radiol. 2009, 71, 415–424. [Google Scholar] [CrossRef]
- ACR QCT Spinal Bone Density Classification Values. Available online: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/qct.pdf (accessed on 10 September 2021).
- Sandhu, H.S.; Gilles, E.; DeVita, M.V.; Panagopoulos, G.; Michelis, M.F. Hyponatremia associated with large-bone fracture in elderly patients. Int. Urol. Nephrol. 2009, 41, 733–737. [Google Scholar] [CrossRef]
- Kwak, M.K.; Choi, D.; Lee, J.H.; Kim, H.J.; Park, H.K.; Suh, K.I.; Yoo, M.H.; Byun, D.W. Relationship between Decrease in Serum Sodium Level and Bone Mineral Density in Osteoporotic Fracture Patients. J. Bone Metab. 2015, 22, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Nigwekar, S.U.; Negri, A.L.; Bajpai, D.; Allegretti, A.; Kalim, S.; Seethapathy, H.; Bhan, I.; Murthy, K.; Ayus, J.C. Chronic prolonged hyponatremia and risk of hip fracture in elderly patients with chronic kidney disease. Bone 2019, 127, 556–562. [Google Scholar] [CrossRef]
- Aicale, R.; Tarantino, D.; Maffulli, N. Prevalence of Hyponatremia in Elderly Patients with Hip Fractures: A Two-Year Study. Med. Princ. Pract. 2017, 26, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Soiza, R.L.; Talbot, H.S. Management of hyponatraemia in older people: Old threats and new opportunities. Ther. Adv. Drug Saf. 2010, 2, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkins, R.C. Age and gender as risk factors for hyponatremia and hypernatremia. Clin. Chim. Acta 2003, 337, 169–172. [Google Scholar] [CrossRef]
- Barsony, J.; Manigrasso, M.B.; Xu, Q.; Tam, H.; Verbalis, J.G. Chronic hyponatremia exacerbates multiple manifestations of senescence in male rats. AGE 2012, 35, 271–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, T.J.; Begg, E.J.; Winter, A.C.; Sainsbury, R. Incidence and risk factors for hyponatraemia following treatment with fluoxetine or paroxetine in elderly people. Br. J. Clin. Pharmacol. 1999, 47, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Correia, L.; Ferreira, R.; Correia, I.; Lebre, A.; Carda, J.P.; Monteiro, R.; Simão, A.; Carvalho, A.; Costa, J.M.N. Severe hyponatremia in older patients at admission in an internal medicine department. Arch. Gerontol. Geriatr. 2014, 59, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Paul, L.P.S.; Martin, J.; Buon, M.; Gaillard, C.; Fedrizzi, S.; Mosquet, B.; Coquerel, A. Nouvel effet indésirable fréquent des inhibiteurs de la pompe à protons chez le sujet âgé: L’hyponatrémie modérée. Therapies 2014, 69, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Izzedine, H.; Fardet, L.; Launay-Vacher, V.; Dorent, R.; Petitclerc, T.; Deray, G. Angiotensin-converting enzyme inhibitor-induced syndrome of inappropriate secretion of antidiuretic hormone: Case report and review of the literature. Clin. Pharmacol. Ther. 2002, 71, 503–507. [Google Scholar] [CrossRef]
- Hoffmann, D.B.; Popescu, C.; Komrakova, M.; Welte, L.; Saul, D.; Lehmann, W.; Hawellek, T.; Beil, F.T.; Dakna, M.; Sehmisch, S. Chronic hyponatremia in patients with proximal femoral fractures after low energy trauma: A retrospective study in a level-1 trauma center. Bone Rep. 2019, 12, 100234. [Google Scholar] [CrossRef]
- Jung, Y.-E.; Jun, T.-Y.; Kim, K.-S.; Bahk, W.-M. Hyponatremia associated with selective serotonin reuptake inhibitors, mirtazapine, and venlafaxine in Korean patients with major depressive disorder. Int. J. Clin. Pharmacol. Ther. 2011, 49, 437–443. [Google Scholar] [CrossRef]
- Fabian, T.J.; Amico, J.A.; Kroboth, P.D.; Mulsant, B.H.; Corey, S.E.; Begley, A.E.; Bensasi, S.G.; Weber, E.; Dew, M.A.; Iii, C.F.R.; et al. Paroxetine-Induced Hyponatremia in Older Adults. Arch. Intern. Med. 2004, 164, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Jacob, S.; Spinler, S.A. Hyponatremia associated with selective serotonin-reuptake inhibitors in older adults. Ann. Pharmacother. 2006, 40, 1618–1622. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.J. The Silent Epidemic of Thiazide-Induced Hyponatremia. J. Clin. Hypertens. 2008, 10, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J.A.; Rodgers, S.; Blakey, J.; Avery, A.; Hall, I. Thiazide diuretic prescription and electrolyte abnormalities in primary care. Br. J. Clin. Pharmacol. 2006, 61, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Description | Low-Energy Group (n = 144) | Control Group (n = 83) |
---|---|---|
Number of patients | 144 | 83 |
Age range [years] | 23–94 | 23–91 |
Age mean [years] ± SD | 69.15 ± 16.08 | 66.65 ± 15.60 |
Gender | ||
Female [n] | 73 | 40 |
Male [n] | 71 | 43 |
Bone Mineral Density Area | WHO-Category |
---|---|
>120 mg/cm3 | Normal |
80–120 mg/cm3 | Osteoporosis |
<80 mg/cm3 | Osteopenia |
Description | Low-Energy Group (n = 144) | Control Group (n = 83) | p-Value |
---|---|---|---|
Osteoporosis [mg/cm3] | 69 (♀: n = 43; ♂: n = 26) | 24 (♀: n = 13; ♂: n = 11) | 0.0327 (*) |
Osteopenia [mg/cm3] | 50 (♀: n = 22; ♂: n = 28) | 30 (♀: n = 13; ♂: n = 17) | 0.9077 (n.s.) |
Normal BMD [mg/cm3] | 25 (♀: n = 7; ♂: n = 18) | 29 (♀: n = 14; ♂: n = 15) | 0.7568 (n.s.) |
Hyponatremia | 28 | 0 | 0.0026 (**) |
< 65 female [n] | 0 | 0 | - |
< 65 male [n] | 1 | 0 | - |
≥ 65 female [n] | 18 | 0 | 0.8182 (n.s.) |
≥ 65 male [n] | 9 | 0 | 0.8182 (n.s.) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jäckle, K.; Klockner, F.; Hoffmann, D.B.; Roch, P.J.; Reinhold, M.; Lehmann, W.; Weiser, L. Influence of Hyponatremia on Spinal Bone Quality and Fractures Due to Low-Energy Trauma. Medicina 2021, 57, 1224. https://doi.org/10.3390/medicina57111224
Jäckle K, Klockner F, Hoffmann DB, Roch PJ, Reinhold M, Lehmann W, Weiser L. Influence of Hyponatremia on Spinal Bone Quality and Fractures Due to Low-Energy Trauma. Medicina. 2021; 57(11):1224. https://doi.org/10.3390/medicina57111224
Chicago/Turabian StyleJäckle, Katharina, Friederike Klockner, Daniel Bernd Hoffmann, Paul Jonathan Roch, Maximilian Reinhold, Wolfgang Lehmann, and Lukas Weiser. 2021. "Influence of Hyponatremia on Spinal Bone Quality and Fractures Due to Low-Energy Trauma" Medicina 57, no. 11: 1224. https://doi.org/10.3390/medicina57111224
APA StyleJäckle, K., Klockner, F., Hoffmann, D. B., Roch, P. J., Reinhold, M., Lehmann, W., & Weiser, L. (2021). Influence of Hyponatremia on Spinal Bone Quality and Fractures Due to Low-Energy Trauma. Medicina, 57(11), 1224. https://doi.org/10.3390/medicina57111224