The Most Common Lesions Detected by Neuroimaging as Causes of Epilepsy
Abstract
:1. Introduction
2. The Most Common Imaging Abnormalities
2.1. Hippocampal Sclerosis
2.2. Malformations of Cortical Development
2.2.1. Focal Cortical Dysplasia
2.2.2. Polymicrogyria
2.2.3. Grey Matter Heterotopia
2.2.4. Periventricular Nodular Heterotopia
2.2.5. Hemimegalencephaly
2.3. Tuberous Sclerosis Complex
2.4. Low-Grade Gliomas
2.5. Dysembryoplastic Neuroepithelial Tumours
2.6. Vascular Malformations
2.6.1. Cerebral Cavernous Malformations
2.6.2. Arteriovenous Malformations
2.7. Hypothalamic Hamartoma
2.8. Rasmussen’s Encephalitis
3. Peri-Ictal Imaging Abnormalities
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stafstrom, C.E.; Carmant, L. Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb. Perspect. Med. 2015, 5, a022426. [Google Scholar] [CrossRef]
- Eadie, M.J. Shortcomings in the current treatment of epilepsy. Expert Rev. Neurother. 2012, 12, 1419–1427. [Google Scholar] [CrossRef]
- Ramli, N.; Rahmat, K.; Lim, K.; Tan, C. Neuroimaging in refractory epilepsy. Current practice and evolving trends. Eur. J. Radiol. 2015, 84, 1791–1800. [Google Scholar] [CrossRef]
- Vattipally, V.R.; Bronen, R.A. MR imaging of epilepsy: Strategies for successful interpretation. Neuroimaging Clin. N. Am. 2004, 14, 349–372. [Google Scholar] [CrossRef] [PubMed]
- Likeman, M. Imaging in epilepsy. Pract. Neurol. 2013, 13, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Di Gennaro, G.; D’Aniello, A.; De Risi, M.; Grillea, G.; Quarato, P.P.; Mascia, A.; Grammaldo, L.G.; Casciato, S.; Morace, R.; Esposito, V.; et al. Temporal pole abnormalities in temporal lobe epilepsy with hippocampal sclerosis: Clinical significance and seizure outcome after surgery. Seizure 2015, 32, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Kurita, T.; Sakurai, K.; Takeda, Y.; Horinouchi, T.; Kusumi, I. Very long-term outcome of non-surgically treated patients with temporal lobe epilepsy with hippocampal sclerosis: A retrospective study. PLoS ONE 2016, 11, e0159464. [Google Scholar] [CrossRef]
- Na, M.; Ge, H.; Shi, C.; Shen, H.; Wang, Y.; Pu, S.; Liu, L.; Wang, H.; Xie, C.; Zhu, M.; et al. Long-term seizure outcome for international consensus classification of hippocampal sclerosis: A survival analysis. Seizure 2015, 25, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsueda-Ono, T.; Ikeda, A.; Sawamoto, N.; Aso, T.; Hanakawa, T.; Kinoshita, M.; Matsumoto, R.; Mikuni, N.; Amano, S.; Fukuyama, H.; et al. Internal structural changes in the hippocampus observed on 3-Tesla MRI in patients with mesial temporal lobe epilepsy. Intern. Med. 2013, 52, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.C. Hippocampal sclerosis: Causes and prevention. Semin. Neurol. 2015, 35, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Miller-Delaney, S.F.; Bryan, K.; Das, S.; McKiernan, R.C.; Bray, I.M.; Reynolds, J.P.; Gwinn, R.; Stallings, R.L.; Henshall, D.C. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain 2014, 138, 616–631. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Ibañez, A.; Gasca-Salas, C.; Urrestarazu, E.; Viteri, C. Clinical phenotypes within non-surgical patients with mesial temporal lobe epilepsy caused by hippocampal sclerosis based on response to antiepileptic drugs. Seizure 2013, 22, 20–23. [Google Scholar] [CrossRef] [Green Version]
- DeLeo, F.; Garbelli, R.; Milesi, G.; Gozzo, F.; Bramerio, M.; Villani, F.; Cardinale, F.; Tringali, G.; Spreafico, R.; Tassi, L. Short- and long-term surgical outcomes of temporal lobe epilepsy associated with hippocampal sclerosis: Relationships with neuropathology. Epilepsia 2016, 57, 306–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cendes, F.; Sakamoto, A.C.; Spreafico, R.; Bingaman, W.; Becker, A.J. Epilepsies associated with hippocampal sclerosis. Acta Neuropathol. 2014, 128, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, K.; Morioka, T.; Murakami, N.; Suzuki, S.O.; Hiwatashi, A.; Yoshiura, T.; Sasaki, T. Utility of 3-T FLAIR and 3D short tau inversion recovery MR imaging in the preoperative diagnosis of hippocampal sclerosis: Direct comparison with 1.5-T FLAIR MR imaging. Epilepsia 2010, 51, 1820–1828. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Sankaran, S. Detection of partial loss of hippocampal striation at 1.5 Tesla magnetic resonance imaging. Insights Imaging 2019, 10, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Stefanits, H.; Springer, E.; Pataraia, E.; Baumgartner, C.; Hainfellner, J.A.; Prayer, D.; Weisstanner, C.; Czech, T.; Trattnig, S. Seven-tesla MRI of hippocampal sclerosis: An in vivo feasibility study with histological correlations. Investig. Radiol. 2017, 52, 666–671. [Google Scholar] [CrossRef]
- Steve, T.A.; Gargula, J.; Misaghi, E.; Nowacki, T.A.; Schmitt, L.M.; Wheatley, B.M.; Gross, D.W. Hippocampal subfield measurement and ILAE hippocampal sclerosis subtype classification with in vivo 4.7 tesla MRI. Epilepsy Res. 2020, 161, 106279. [Google Scholar] [CrossRef] [PubMed]
- Morishita, Y.; Mugikura, S.; Mori, N.; Tamura, H.; Sato, S.; Akashi, T.; Jin, K.; Nakasato, N.; Takase, K. Atrophy of the ipsilateral mammillary body in unilateral hippocampal sclerosis shown by thin-slice-reconstructed volumetric analysis. Neuroradiology 2019, 61, 515–523. [Google Scholar] [CrossRef]
- Singh, P.; Kaur, R.; Saggar, K.; Singh, G.; Aggarwal, S. Amygdala volumetry in patients with temporal lobe epilepsy and normal magnetic resonance imaging. Pol. J. Radiol. 2016, 81, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, Y.; Masuda, H.; Shirozu, H.; Ito, Y.; Higashijima, T.; Kitaura, H.; Fujii, Y.; Kakita, A.; Fukuda, M. Features of amygdala in patients with mesial temporal lobe epilepsy and hippocampal sclerosis: An MRI volumetric and histopathological study. Epilepsy Res. 2017, 135, 50–55. [Google Scholar] [CrossRef]
- Han, Z.; Chen, Q. Curative effect and costs of surgical and gamma knife treatments on intractable epilepsy caused by temporal-hippocampal sclerosis. Genet. Mol. Res. 2015, 14, 8555–8562. [Google Scholar] [CrossRef]
- Lee, S.K. Treatment strategy for the patient with hippocampal sclerosis who failed to the first antiepileptic drug. J. Epilepsy Res. 2014, 4, 1–6. [Google Scholar] [CrossRef]
- Desikan, R.S.; Barkovich, A.J. Malformations of cortical development. Ann. Neurol. 2016, 80, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Renard, D.; Castelnovo, G.; Daubin, D.; Collombier, L.; Briere, C.; Labauge, P. Teaching NeuroImages: Brain MRI and FDG-PET in malformations of cortical development and hippocampal hypoplasia. Neurology 2011, 77, e47. [Google Scholar] [CrossRef] [Green Version]
- Englot, D.J. A modern epilepsy surgery treatment algorithm: Incorporating traditional and emerging technologies. Epilepsy Behav. 2018, 80, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Aronica, E.; Becker, A.J.; Spreafico, R. Malformations of cortical development. Brain Pathol. 2012, 22, 380–401. [Google Scholar] [CrossRef] [PubMed]
- Kini, L.G.; Gee, J.C.; Litt, B. Computational analysis in epilepsy neuroimaging: A survey of features and methods. NeuroImage Clin. 2016, 11, 515–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cendes, F.; Theodore, W.H.; Brinkmann, B.H.; Sulc, V.; Cascino, G.D. Neuroimaging of epilepsy. Handb. Clin. Neurol. 2016, 136, 985–1014. [Google Scholar] [CrossRef] [Green Version]
- Guerrini, R.; Duchowny, M.; Jayakar, P.; Krsek, P.; Kahane, P.; Tassi, L.; Melani, F.; Polster, T.; Andre, V.M.; Cepeda, C.; et al. Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia 2015, 56, 1669–1686. [Google Scholar] [CrossRef]
- Téllez-Zenteno, J.F.; Ronquillo, L.H.; Moien-Afshari, F.; Wiebe, S. Surgical outcomes in lesional and non-lesional epilepsy: A systematic review and meta-analysis. Epilepsy Res. 2010, 89, 310–318. [Google Scholar] [CrossRef]
- Wilenius, J.; Medvedovsky, M.; Gaily, E.; Metsähonkala, L.; Mäkelä, J.P.; Paetau, A.; Valanne, L.; Paetau, R. Interictal MEG reveals focal cortical dysplasias: Special focus on patients with no visible MRI lesions. Epilepsy Res. 2013, 105, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Alhilani, M.; Tamilia, E.; Ricci, L.; Ricci, L.; Grant, P.E.; Madsen, J.R.; Pearl, P.L.; Papadelis, C. Ictal and interictal source imaging on intracranial EEG predicts epilepsy surgery outcome in children with focal cortical dysplasia. Clin. Neurophysiol. 2020, 131, 734–743. [Google Scholar] [CrossRef]
- Wang, D.D.; Knox, R.; Rolston, J.D.; Englot, D.J.; Barkovich, A.J.; Tihan, T.; Auguste, K.I.; Knowlton, R.C.; Cornes, S.B.; Chang, E.F. Surgical management of medically refractory epilepsy in patients with polymicrogyria. Epilepsia 2016, 57, 151–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stutterd, C.A.; Dobyns, W.B.; Jansen, A.; Mirzaa, G.; Leventer, R.J. Polymicrogyria overview. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Donkol, R.H.; Moghazy, K.M.; Abolenin, A. Assessment of gray matter heterotopia by magnetic resonance imaging. World J. Radiol. 2012, 4, 90–96. [Google Scholar] [CrossRef]
- Raza, H.K.; Chen, H.; Chansysouphanthong, T.; Zhang, Z.; Hua, F.; Ye, X.; Zhang, W.; Dong, L.; Zhang, S.; Wang, X.; et al. The clinical and imaging features of gray matter heterotopia: A clinical analysis on 15 patients. Neurol. Sci. 2018, 40, 489–494. [Google Scholar] [CrossRef]
- Ihle-Hansen, H.; Lohne, S.M.H.; Dahl-Hansen, E. Periventricular nodular heterotopia (Tidsskr Nor Laegeforen). J. Nor. Med. Assoc. 2019, 139. (In Norwegian) [Google Scholar] [CrossRef]
- Cossu, M.; Mirandola, L.; Tassi, L. RF-ablation in periventricular heterotopia-related epilepsy. Epilepsy Res. 2018, 142, 121–125. [Google Scholar] [CrossRef]
- DeLeo, F.; Hong, S.-J.; Fadaie-Cand, F.; Caldairou, B.; Krystal, S.; Bernasconi, N.; Bernasconi, A. Whole-brain multimodal MRI phenotyping of periventricular nodular heterotopia. Neurology 2020, 95, e2418–e2426. [Google Scholar] [CrossRef]
- Liu, W.; Hu, X.; An, D.; Zhou, D.; Gong, Q. Resting-state functional connectivity alterations in periventricular nodular heterotopia related epilepsy. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Popescu, C.E.; Mai, R.; Sara, R.; Lizio, D.; Zanni, D.; Rossetti, C.; Caobelli, F. The Role of FDG-PET in patients with epilepsy related to periventricular nodular heterotopias: Diagnostic features and long-term outcome. J. Neuroimaging 2019, 29, 512–520. [Google Scholar] [CrossRef]
- Ikeda, K.M.; Mirsattari, S.M. Evolution of epilepsy in hemimegalencephaly from infancy to adulthood: Case report and review of the literature. Epilepsy Behav. Case Rep. 2017, 7, 45–48. [Google Scholar] [CrossRef]
- Chand, P.; Raghib, M.F.; Salat, M.S.; Arain, F.M. Hemimegalencephaly with intractable epilepsy: A case report. J. Pak. Med. Assoc. 2017, 67, 1444–1446. [Google Scholar]
- Parrini, E.; Conti, V.; Dobyns, W.B.; Guerrini, R. Genetic basis of brain malformations. Mol. Syndromol. 2016, 7, 220–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reghunath, A.; Ghasi, R.G. A journey through formation and malformations of the neo-cortex. Childs Nerv. Syst. 2019, 36, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Portocarrero, L.K.L.; Quental, K.N.; Samorano, L.P.; De Oliveira, Z.N.P.; Rivitti-Machado, M.C.D.M. Tuberous sclerosis complex: Review based on new diagnostic criteria. An. Bras. Dermatol. 2018, 93, 323–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, S.H.; Sharma, T. Tuberous sclerosis. Adv. Exp. Med. Biol. 2018, 1085, 205–207. [Google Scholar] [PubMed]
- Overwater, I.E.; Swenker, R.; Van Der Ende, E.L.; Hanemaayer, K.B.; Hoogeveen-Westerveld, M.; Van Eeghen, A.M.; Lequin, M.H.; van den Ouweland, A.M.; Moll, H.A.; Nellist, M.; et al. Genotype and brain pathology phenotype in children with tuberous sclerosis complex. Eur. J. Hum. Genet. 2016, 24, 1688–1695. [Google Scholar] [CrossRef] [Green Version]
- Russo, C.; Nastro, A.; Cicala, D.; De Liso, M.; Covelli, E.M.; Cinalli, G. Neuroimaging in tuberous sclerosis complex. Childs Nerv. Syst. 2020, 36, 2497–2509. [Google Scholar] [CrossRef] [PubMed]
- Morshed, R.A.; Young, J.S.; Hervey-Jumper, S.L.; Berger, M.S. The management of low-grade gliomas in adults. J. Neurosurg. Sci. 2019, 63, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Pallud, J.; McKhann, G.M. Diffuse low-grade glioma-related epilepsy. Neurosurg. Clin. N. Am. 2019, 30, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Karlberg, A.; Berntsen, E.M.; Johansen, H.; Skjulsvik, A.J.; Reinertsen, I.; Dai, H.Y.; Xiao, Y.; Rivaz, H.; Borghammer, P.; Solheim, O.; et al. 18F-FACBC PET/MRI in diagnostic assessment and neurosurgery of gliomas. Clin. Nucl. Med. 2019, 44, 550–559. [Google Scholar] [CrossRef] [Green Version]
- Suh, C.H.; Park, J.E.; Jung, S.C.; Choi, C.G.; Kim, S.J.; Kim, H.S. Amide proton transfer-weighted MRI in distinguishing high- and low-grade gliomas: A systematic review and meta-analysis. Neuroradiology 2019, 61, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Luzzi, S.; Elia, A.; Del Maestro, M.; Elbabaa, S.K.; Carnevale, S.; Guerrini, F.; Caulo, M.; Morbini, P.; Galzio, R. Dysembryoplastic neuroepithelial tumors: What you need to know. World Neurosurg. 2019, 127, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Cetin, O.E.; Isler, C.; Uzan, M.; Ozkara, C. Epilepsy-related brain tumors. Seizure 2017, 44, 93–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sontowska, I.; Matyja, E.; Malejczyk, J.; Grajkowska, W. Dysembryoplastic neuroepithelial tumour: Insight into the pathology and pathogenesis. Folia Neuropathol. 2017, 1, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isler, C.; Cetin, O.E.; Ugurlar, D.; Ozkara, C.; Comunoglu, N.; Kizilkilic, O.; Oz, B.; Kayadibi, Y.; Tanriverdi, T.; Uzan, M. Dysembryoplastic neuroepithelial tumours: Clinical, radiological, pathological features and outcome. Br. J. Neurosurg. 2018, 32, 436–441. [Google Scholar] [CrossRef]
- Xu, M.Y. Poststroke seizure: Optimising its management. Stroke Vasc. Neurol. 2019, 4, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Nagae, L.M.; Lall, N.; Dahmoush, H.; Nyberg, E.; Mirsky, D.; Drees, C.; Honce, J.M. Diagnostic, treatment, and surgical imaging in epilepsy. Clin. Imaging 2016, 40, 624–636. [Google Scholar] [CrossRef]
- Raabe, A.; Schmitz, A.K.; Pernhorst, K.; Grote, A.; Von Der Brelie, C.; Urbach, H.; Friedman, A.; Becker, A.J.; Elger, C.E.; Niehusmann, P. Cliniconeuropathologic correlations show astroglial albumin storage as a common factor in epileptogenic vascular lesions. Epilepsia 2012, 53, 539–548. [Google Scholar] [CrossRef]
- Gross, B.A.; Lin, N.; Du, R.; Day, A.L. The natural history of intracranial cavernous malformations. Neurosurg. Focus 2011, 30, E24. [Google Scholar] [CrossRef]
- Urbach, H. MRI in Epilepsy; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Engel, J., Jr. Seizures and Epilepsy; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Friedman, E. Epilepsy imaging in adults: Getting it right. Am. J. Roentgenol. 2014, 203, 1093–1103. [Google Scholar] [CrossRef]
- Zheng, W.; Nichol, H.; Liu, S.; Cheng, Y.-C.N.; Haacke, E.M. Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging. NeuroImage 2013, 78, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Garcin, B.; Houdart, E.; Porcher, R.; Manchon, E.; Saint-Maurice, J.P.; Bresson, D.; Stapf, C. Epileptic seizures at initial presentation in patients with brain arteriovenous malformation. Neurology 2012, 78, 626–631. [Google Scholar] [CrossRef]
- Ellenbogen, R.G.; Sekhar, L.N.; Kitchen, N. Principles of Neurological Surgery E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Shankar, J.; Menezes, R.; Pohlmann-Eden, B.; Wallace, C.; Terbrugge, K.; Krings, T. Angioarchitecture of brain AVM determines the presentation with seizures: Proposed scoring system. Am. J. Neuroradiol. 2012, 34, 1028–1034. [Google Scholar] [CrossRef] [Green Version]
- Hadizadeh, D.R.; Kukuk, G.M.; Steck, D.T.; Gieseke, J.; Urbach, H.; Tschampa, H.J.; Greschus, S.; Kovacs, A.; Möhlenbruch, M.; Bostroem, A.; et al. Noninvasive evaluation of cerebral arteriovenous malformations by 4D-MRA for preoperative planning and postoperative follow-up in 56 patients: Comparison with DSA and intraoperative findings. Am. J. Neuroradiol. 2012, 33, 1095–1101. [Google Scholar] [CrossRef] [Green Version]
- Kerrigan, J.F.; Parsons, A.; Tsang, C.; Simeone, K.; Coons, S.; Wu, J. Hypothalamic hamartoma: Neuropathology and epileptogenesis. Epilepsia 2017, 58, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Carballo Cuello, C.M.; De Jesus, O. Hypothalamic Hamartoma; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Azhar, Y.; Molla, M. Aggression in Hypothalamic Hamartoma; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Requena, M.; Sarria-Estrada, S.; Santamarina, E.; Quintana, M.; Sueiras, M.; Rovira, A.; Toledo, M. Peri-ictal magnetic resonance imaging in status epilepticus: Temporal relationship and prognostic value in 60 patients. Seizure 2019, 71, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.; Mullins, G.; Delanty, N.; Bede, P.; Doherty, C.P. The spectrum of peri-ictal MRI changes; four illustrative cases. Seizure 2017, 50, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.A.; Bede, P.; Doherty, C.P. An exploration of the spectrum of peri-ictal MRI change; a comprehensive literature review. Seizure 2017, 50, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Dulay, M.F.; Schefft, B.K.; Fargo, J.D.; Privitera, M.D.; Yeh, H.-S. Severity of depressive symptoms, hippocampal sclerosis, auditory memory, and side of seizure focus in temporal lobe epilepsy. Epilepsy Behav. 2004, 5, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, R.; Dobyns, W.B. Malformations of cortical development: Clinical features and genetic causes. Lancet Neurol. 2014, 13, 710–726. [Google Scholar] [CrossRef] [Green Version]
- Zyck, S.; Sampath, R. Arteriovenous Malformations; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
Imaging Examination | Application | Diseases |
---|---|---|
MRI | - detection of HS characterized by the loss of internal structures, decreased volume and increased signal in T2-weighted images - useful in the subclassificaction of HS which is crucial for further treatment decision making and has prognostic value - prediction of the approximate duration of seizure-free period after surgery - useful in predicting a clinical course of epilepsy | HS |
- imaging of thickening or pseudothickening of the grey matter | FCD | |
- visualization of cortical gyration with an aspect of cortical thickening and shallow sulci and irregularity of the grey-white matter interface | Polymicrogyria | |
- visualization of the overgrowth of one cerebral hemisphere to achieve better outcome after surgical treatment | Hemimegencephaly | |
- imaging of cortical hyperintense areas to evaluate the risk of PTE - detection of subtle atrophy using advanced volumetric analyses of submillimeter resolution images | PTE | |
- gold standard in tumour evaluation and follow-up | Tumour-related epilepsy | |
FDG-PET | - detection of FCD in MRI-negative cases to improve surgical outcome | FCD |
Electrocorticography | - determination of the lesion extension | FCD |
MEG | - localization of the epileptogenic zone | FCD |
UHF MRI | - analysis of different cortical layers based on the amount of iron, white matter fibres or vascular density | FCD |
CT | - imaging of frontal or temporal lesions to evaluate the risk of PTE | PTE |
- detection of the majority of tumours except some LGGs, calcifications and bone lesions | Tumour-related epilepsy | |
MRS | - visualization of biochemical aspects of brain changes - sensitive method to reveal the axonal injury in the corpus callosum of TBI patients | PTE |
- IDH mutation indicative of LGG - meningiomas: increased Cho and decreased Cr; evaluation of malignant potential | Tumour-related epilepsy | |
fMRI | - provision of data on altered and compensational brain activity due to injury | PTE |
(FLAIR) MRI | - more sensitive in detecting traumatic lesions and haematomas | PTE |
PET, SPECT | - useful in guiding long-term therapy by helping to establish patient prognosis | PTE |
DW-MRI | - differential diagnosis in ring-enhancing lesions | Tumour-related epilepsy |
19Met-PET | - differential diagnosis of nonrapidly progressing tumours e.g., DNETs and LGGs; normal uptake can be indicative of DNET - treatment planning of stereotactic radiotherapy | Tumour-related epilepsy |
MRI T2 GRE, SWI | - detection of haemorrhage, iron deposition and small vascular malformations in CCM | Vascular malformations |
MRI CSF flow | - diagnosis of CIM | Vascular malformations |
MRI T2 FLAIR | - detection of hemispheric atrophy in RE before it is visible on MRI | Vascular malformations |
3D TOF MRA, TR MRA with contrast enhancement | - visualization of blood flow and angioarchitecture in AVMs | Vascular malformations |
Disease | Clinical Features |
---|---|
Hippocampal sclerosis | - seizures - depression - mood disturbances - poor auditory memory - learning disabilities |
Malformations of cortical development: Focal cortical dysplasia Polymicrogyria Grey matter heterotopia Periventricular nodular heterotopia Hemimegalencephaly | - seizures - feeding problems - global developmental delay - deficits in social interactions - stereotyped or involuntary movements - autonomic dysregulation - visual and hearing loss - abnormal head size (microcephaly, megalocephaly) |
Tuberous sclerosis complex | - seizures - intellectual disability - hypopigmented macules, cutaneous angiofibromas - renal manifestations: hematuria, loss of kidney function - pulmonary manifestations: cough, dyspnea, hemoptysis, pneumothorax - cardiac manifestations: cardiomegaly, murmurs, changes in the blood flow, arrhythmias, nonimmune hydrops - neurological manifestations: autism spectrum, mood disturbances, behavioral changes, aggressiveness, anxiety, depressive mood, sleep disorders, learning difficulties |
Low-grade gliomas | - seizures - behavioral changes - visual disturbance - speech difficulties - loss of muscle strength - symptoms associated with increased pressure in the skull: headache, nausea, vomiting and sleepiness |
Dysembryoplastic neuroepithelial tumours | - prolonged temporal seizures - headache - papilledema - focal deficits, in the form of focal weakness or numbness |
Vascular malformations: Cerebral cavernous malformations Arteriovenous malformations | - seizures - severe headache - vision loss - speaking difficulties - nausea and vomiting - loss of consciousness - weak muscles - intellectual disability |
Hypothalamic hamartoma | - seizures - psychiatric symptoms: externalizing behaviors (aggression, rage attacks), extensive reactivity to minor stimuli, anxiety oppositional defiant disorders, conduct disorders, phobias, post-traumatic stress disorder, avoidant disorder, major depression dysthymia - cognitive impairment, learning disabilities |
Rasmussen’s encephalitis | - seizures - progressive neurological and cognitive deterioration with unihemispheric brain atrophy - progressive hemiplegia - unilateral movement disorders, including hemi athetosis and hemidystonia |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamczyk, B.; Węgrzyn, K.; Wilczyński, T.; Maciarz, J.; Morawiec, N.; Adamczyk-Sowa, M. The Most Common Lesions Detected by Neuroimaging as Causes of Epilepsy. Medicina 2021, 57, 294. https://doi.org/10.3390/medicina57030294
Adamczyk B, Węgrzyn K, Wilczyński T, Maciarz J, Morawiec N, Adamczyk-Sowa M. The Most Common Lesions Detected by Neuroimaging as Causes of Epilepsy. Medicina. 2021; 57(3):294. https://doi.org/10.3390/medicina57030294
Chicago/Turabian StyleAdamczyk, Bożena, Karolina Węgrzyn, Tomasz Wilczyński, Justyna Maciarz, Natalia Morawiec, and Monika Adamczyk-Sowa. 2021. "The Most Common Lesions Detected by Neuroimaging as Causes of Epilepsy" Medicina 57, no. 3: 294. https://doi.org/10.3390/medicina57030294
APA StyleAdamczyk, B., Węgrzyn, K., Wilczyński, T., Maciarz, J., Morawiec, N., & Adamczyk-Sowa, M. (2021). The Most Common Lesions Detected by Neuroimaging as Causes of Epilepsy. Medicina, 57(3), 294. https://doi.org/10.3390/medicina57030294