Glutathione Reductase Is Associated with the Clinical Outcome of Septic Shock in the Patients Treated Using Continuous Veno-Venous Haemofiltration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Laboratory Methods
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
3.1. Patient Characteristics
3.2. Blood Chemistry Parameters
3.3. Multivariable Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Rimmelé, T.; Kellum, J.A. Clinical review: Blood purification for sepsis. Crit. Care 2011, 15, 205. [Google Scholar] [CrossRef] [Green Version]
- Schefold, J.C.; Hasper, D.; Jörres, A. Organ crosstalk in critically ill patients: Hemofiltration and immunomodulation in sepsis. Blood Purif. 2009, 28, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Servansky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Putzu, A.; Fang, M.X.; Boscolo Berto, M.; Belletti, A.; Cabrini, L.; Cassina, T.; Landoni, G. Blood purification with continuous veno-venous hemofiltration in patients with sepsis or ARDS: A systematic review and meta-analysis. Minerva Anestesiol. 2017, 83, 867–877. [Google Scholar] [CrossRef]
- Yin, F.; Zhang, F.; Liu, S.; Ning, B. The therapeutic effect of high-volume hemofiltration on sepsis: A systematic review and meta-analysis. Ann. Transl. Med. 2020, 8, 488. [Google Scholar] [CrossRef]
- Zha, J.; Li, C.; Cheng, G.; Huang, L.; Bai, Z.; Fang, C. The efficacy of renal replacement therapy strategies for septic-acute kidney injury: A PRISMA-compliant network meta-analysis. Medicine 2019, 98, e15257. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, D.; Carrick, M.M.; Mains, C.W.; Rael, L.T.; Slone, D.; Brody, E.N. Sepsis, oxidative stress, and hypoxia: Are there clues to better treatment? Redox Rep. 2015, 20, 193–197. [Google Scholar] [CrossRef]
- Biolo, G.; Antonione, R.; De Cicco, M. Glutathione metabolism in sepsis. Crit. Care Med. 2007, 35 (Suppl. 9), S591–S595. [Google Scholar] [CrossRef]
- Ritter, C.; Andrades, M.; Frota Júnior, M.L.; Bonatto, F.; Pinho, R.A.; Polydoro, M.; Klamt, F.; Pinheiro, C.T.S.; Menna-Barreto, S.S.; Moreira, J.C.; et al. Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Med. 2003, 29, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Spiller, F.; Oliveira Formiga, R.; Fernandes da Silva Coimbra, J.; Alves-Filho, J.C.; Cunha, T.M.; Cunha, F.Q. Targeting nitric oxide as a key modulator of sepsis, arthritis and pain. Nitric Oxide 2019, 89, 32–40. [Google Scholar] [CrossRef]
- Yang, B.; Fritsche, K.L.; Beversdorf, D.Q.; Zezong, G.; Lee, J.C.; Folk, W.R.; Greenlief, C.M.; Sun, G.Y. Yin-yang mechanisms regulating lipid peroxidation of docosahexaenoic acid and arachidonic acid in the central nervous system. Front. Neurol. 2019, 10, 642. [Google Scholar] [CrossRef]
- Esterbauer, H.; Schaur, R.J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol. Med. 1991, 11, 81–128. [Google Scholar] [CrossRef]
- Lorente, L.; Martín, M.M.; Pérez-Cejas, A.; Abreu-González, P.; López, R.O.; Ferreres, J.; Solé-Violán, J.; Labarta, L.; Díaz, C.; Palmero, S.; et al. Serum total antioxidant capacity during the first week of sepsis and mortality. J. Crit. Care 2018, 47, 139–144. [Google Scholar] [CrossRef]
- Lorente, L.; Martín, M.M.; Almeida, T.; Abreu-González, P.; Ferreres, J.; Solé-Violán, J.; Labarta, L.; Jiménez, A. Association between serum total antioxidant capacity and mortality in severe septic patients. J. Crit. Care 2015, 30, 217.e7–217.e12. [Google Scholar] [CrossRef]
- Chuang, C.C.; Shiesh, S.C.; Chi, C.H.; Tu, Y.F.; Hor, L.I.; Shieh, C.C.; Chen, M.F. Serum total antioxidant capacity reflects severity of illness in patients with severe sepsis. Crit. Care 2006, 10, R36. [Google Scholar] [CrossRef] [Green Version]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kwon, W.Y.; Suh, G.J.; Kim, K.S.; Jung, Y.S.; Kim, S.H.; Lee, S.E. Plasma glutathione reductase activity and prognosis of septic shock. J. Surg. Res. 2016, 200, 298–307. [Google Scholar] [CrossRef]
- Yan, J.; Ralston, M.M.; Meng, X.; Bongiovanni, K.D.; Jones, A.L.; Benndorf, R.; Nelin, L.D.; Frazier, W.J.; Rogers, L.K.; Smith, C.V.; et al. Glutathione reductase is essential for host defense against bacterial infection. Free Radic Biol. Med. 2013, 61, 320–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karapetsa, M.; Pitsika, M.; Goutzourelas, N.; Stagos, D.; Tousia Becker, A.; Zakynthinos, E. Oxidative status in ICU patients with septic shock. Food Chem. Toxicol. 2013, 61, 106–111. [Google Scholar] [CrossRef]
- Malmezat, T.; Breuillé, D.; Capitan, P.; Mirand, P.P.; Obled, C. Glutathione turnover is increased during the acute phase of sepsis in rats. J. Nutr. 2000, 130, 1239–1246. [Google Scholar] [CrossRef] [Green Version]
- Hansson, L.; Seidegård, J.; Johansson, L.; Jeppsson, B. Influence of glutathione metabolising enzymes in rats with gram-negative sepsis. Eur. J. Surg. 2000, 166, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Costa, N.A.; Gut, A.L.; Pimentel, J.A.; Cozzolino, S.M.; Azevedo, P.S.; Fernandes, A.A.; Polegato, B.F.; Tanni, S.E.; Gaiolla, R.D.; Zornoff, L.A.M.; et al. Erythrocyte selenium concentration predicts intensive care unit and hospital mortality in patients with septic shock: A prospective observational study. Crit. Care 2014, 18, R92. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, S.Y.; Kung, C.T.; Su, C.M.; Lai, Y.R.; Huang, C.C.; Tsai, N.W.; Wang, H.C.; Cheng, B.C.; Su, Y.J.; Lin, W.C.; et al. Impact of oxidative stress on treatment outcomes in adult patients with sepsis: A prospective study. Medicine 2020, 99, e20872. [Google Scholar] [CrossRef]
- Ogilvie, A.C.; Groeneveld, A.B.; Straub, J.P.; Thijs, L.G. Plasma lipid peroxides and antioxidants in human septic shock. Intensive Care Med. 1991, 17, 40–44. [Google Scholar] [CrossRef]
- Carbonell, L.F.; Nadal, J.A.; Llanos, M.C.; Hernández, I.; Nava, E.; Díaz, J. Depletion of liver glutathione potentiates the oxidative stress and decreases nitric oxide synthesis in a rat endotoxin shock model. Crit. Care Med. 2000, 28, 2002–2006. [Google Scholar] [CrossRef]
- Tsai, K.; Hsu, T.; Kong, C.; Lin, K.; Lu, F. Is the endogenous peroxyl-radical scavenging capacity of plasma protective in systemic inflammatory disorders in humans? Free Radic Biol. Med. 2000, 28, 926–933. [Google Scholar] [CrossRef]
- Song, Y.; Miao, S.; Li, Y.; Fu, H. Ulinastatin attenuates liver injury and inflammation in a cecal ligation and puncture induced sepsis mouse model. J. Cell Biochem. 2019, 120, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Leem, J.; Hong, H.L. Protective Effects of SPA0355, a Thiourea Analogue, Against Lipopolysaccharide-Induced Acute Kidney Injury in Mice. Antioxidants 2020, 9, 585. [Google Scholar] [CrossRef]
- Costa, N.A.; Cunha, N.B.; Gut, A.L.; Azevedo, P.S.; Polegato, B.F.; Zornoff, L.A.M.; de Pavia, S.A.R.; Reis, B.Z.; Fernandes, A.A.H.; Rogero, M.M.; et al. Erythrocyte SOD1 activity, but not SOD1 polymorphisms, is associated with ICU mortality in patients with septic shock. Free Radic Biol. Med. 2018, 124, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Warner, A.; Bencosme, A.; Healy, D.; Verme, C. Prognostic role of antioxidant enzymes in sepsis: Preliminary assessment. Clin. Chem. 1995, 41, 867–871. [Google Scholar] [CrossRef]
- Yu, M.H.; Chen, M.H.; Han, F.; Li, Q.; Sun, R.H.; Tu, Y.X. Prognostic value of the biomarkers serum amyloid A and nitric oxide in patients with sepsis. Int. Immunopharmacol. 2018, 62, 287–292. [Google Scholar] [CrossRef]
- Winkler, M.S.; Kluge, S.; Holzmann, M.; Moritz, E.; Robbe, L.; Bauer, A.; Zahrte, C.; Priefler, M.; Schwedhelm, E.; Boger, R.H.; et al. Markers of nitric oxide are associated with sepsis severity: An observational study. Crit. Care 2017, 21, 189. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Survivors (n = 36) | Non-Survivors (n = 29) | OR | 95% CI | p-Value |
---|---|---|---|---|---|
Age, years | 63 (50–77) | 67 (58–76) | 1.012 | 0.978–1.047 | 0.497 |
Male gender, n (%) | 24 (66.7%) | 15 (51.7%) | 0.536 | 0.196–1.464 | 0.224 |
Comorbidities, n (%) | |||||
Cardiovascular disease | 20 (55.6%) | 18 (62.1%) | 1.309 | 0.483–3.549 | 0.597 |
Diabetes mellitus | 13 (36.1%) | 9 (31.0%) | 0.796 | 0.281–2.252 | 0.667 |
Neoplasia | 3 (8.3%) | 6 (20.7%) | 2.870 | 0.650–12.664 | 0.164 |
Site of infection, n (%) | |||||
Respiratory | 7 (19.4%) | 14 (48.3%) | 2.000 | 0.108–36.954 | 0.641 |
Urogenital | 9 (25.0%) | 7 (24.1%) | 0.778 | 0.041–14.750 | 0.867 |
Biliary | 3 (8.3%) | 0 (0.0%) | - | - | - |
Soft tissue | 5 (13.9%) | 2 (6.9%) | 0.400 | 0.016–10.017 | 0.577 |
Intraabdominal | 11 (30.6%) | 5 (17.2%) | 0.455 | 0.023–8.829 | 0.602 |
Other | 1 (2.8%) | 1 (3.4%) | 1.000 | - | - |
SOFA score | 10 (9–12) | 12 (12–16) | 1.584 | 1.216–2.062 | 0.001 |
APACHE II score | 19.5 (16–25) | 27.0 (25–31) | 1.184 | 1.075–1.305 | 0.001 |
Management, n (%) | |||||
Surgical intervention | 18 (50.0%) | 6 (20.7%) | 0.261 | 0.086–0.792 | 0.018 |
Mechanical lung ventilation | 22 (61.1%) | 24 (82.8%) | 3.055 | 0.945–9.877 | 0.062 |
Corticosteroids | 24 (66.7%) | 26 (89.7%) | 4.333 | 1.089–17.250 | 0.037 |
Parameters | Survivors (n = 36) | Non-Survivors (n = 29) | OR | 95% CI | p-Value |
---|---|---|---|---|---|
Lactate, mmol/L | 2.8 (2.1–3.9) | 4.7 (3.5–9.4) | 1.184 | 1.011–1.385 | 0.036 |
Creatinine, mcmol/L | 203 (148–348) | 271 (169–480) | 1.003 | 1.000–1.005 | 0.047 |
eGFR (MDRD) | 25.6 (15.9–44.4) | 16.6 (9.45–32.3) | 0.985 | 0.964–1.007 | 0.172 |
C-reactive protein, mg/L | 269 (138–356) | 268 (195–429) | 1.001 | 0.998–1.004 | 0.486 |
Procalcitonin, ng/mL | 25.8 (7.2–121.1) | 51.8 (18.3–132.8) | 0.999 | 0.995–1.003 | 0.702 |
Total antioxidant capacity, mmol/L | 1.84 (1.67–2.20) | 1.92 (1.67–2.61) | 2.124 | 0.914–4.936 | 0.080 |
Glutathione peroxidase, U/L | 8733 (7247–13,091) | 10709 (7770–12,561) | 1.000 | 1.000–1.000 | 0.445 |
Superoxide dismutase, U/gHb | 1764 (1700–1946) | 1810 (1640–2156) | 1.001 | 0.999–1.002 | 0.448 |
Nitric oxide, mcM | 31.0 (18.2–50.0) | 36.6 (21.1–77.2) | 1.014 | 0.996–1.033 | 0.119 |
Malondialdehyde, mcM | 6.16 (4.66–8.47) | 7.40 (4.17–13.40) | 1.016 | 0.964–1.072 | 0.567 |
4-Hydroxynonenal adducts, mcM | 1.16 (0.00–4.94) | 0.01 (0.00–1.84) | 0.862 | 0.730–1.018 | 0.079 |
Glutathione reductase, U/L | 60.5 (45.0–93.4) | 100.3 (71.8–149.8) | 1.027 | 1.010–1.044 | 0.002 |
Parameters | Univariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Management | ||||||
Surgical intervention | 0.261 | 0.086–0.792 | 0.018 | 0.485 | 0.126–1.871 | 0.293 |
Corticosteroids | 4.333 | 1.089–17.250 | 0.037 | 2.855 | 0.588–13.866 | 0.193 |
SOFA score | 1.584 | 1.216–2.062 | 0.001 | 1.371 | 1.032–1.820 | 0.029 |
APACHE II score | 1.184 | 1.075–1.305 | 0.001 | - | - | - |
Lactate, mmol/L | 1.184 | 1.011–1.385 | 0.036 | - | - | - |
Glutathione reductase, U/L | 1.027 | 1.010–1.044 | 0.002 | 1.020 | 1.002–1.038 | 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moisejevs, G.; Bormane, E.; Trumpika, D.; Baufale, R.; Busmane, I.; Voicehovska, J.; Grigane, A.; Suba, O.; Silova, A.; Skesters, A.; et al. Glutathione Reductase Is Associated with the Clinical Outcome of Septic Shock in the Patients Treated Using Continuous Veno-Venous Haemofiltration. Medicina 2021, 57, 689. https://doi.org/10.3390/medicina57070689
Moisejevs G, Bormane E, Trumpika D, Baufale R, Busmane I, Voicehovska J, Grigane A, Suba O, Silova A, Skesters A, et al. Glutathione Reductase Is Associated with the Clinical Outcome of Septic Shock in the Patients Treated Using Continuous Veno-Venous Haemofiltration. Medicina. 2021; 57(7):689. https://doi.org/10.3390/medicina57070689
Chicago/Turabian StyleMoisejevs, Georgijs, Eva Bormane, Dace Trumpika, Regina Baufale, Inara Busmane, Julija Voicehovska, Anda Grigane, Olegs Suba, Alise Silova, Andrejs Skesters, and et al. 2021. "Glutathione Reductase Is Associated with the Clinical Outcome of Septic Shock in the Patients Treated Using Continuous Veno-Venous Haemofiltration" Medicina 57, no. 7: 689. https://doi.org/10.3390/medicina57070689
APA StyleMoisejevs, G., Bormane, E., Trumpika, D., Baufale, R., Busmane, I., Voicehovska, J., Grigane, A., Suba, O., Silova, A., Skesters, A., Lejnieks, A., Gailite, L., & Brigis, G. (2021). Glutathione Reductase Is Associated with the Clinical Outcome of Septic Shock in the Patients Treated Using Continuous Veno-Venous Haemofiltration. Medicina, 57(7), 689. https://doi.org/10.3390/medicina57070689