OSA Upper Airways Surgery: A Targeted Approach
Abstract
:1. Introduction
2. Materials and Methods
3. Medical History
4. Sleep Studies
- Pharyngeal collapsibility is higher when apnea events are predominant in comparison with hypopnea events (A/H ratio > 1), and clinical examination has excluded UA anatomical obstruction, such as palatine tonsil hypertrophy, base of the tongue hypertrophy, and so on [12].
- The analysis of flow limitation curves allows one to identify the potential site of pharyngeal collapse [24]
- AHI of non-supine position less than 50% of that of the supine position identify positional OSA (POSA) [25].
5. Clinical Examination
- the uvula and tonsils/pillar (Friedman Tongue Position: FTP I),
- most of the uvula but not the tonsils/pillar (FTP IIa),
- the entire soft palate to the uvular base (FTP IIb),
- some of the soft palate with the distal end absent (FTP III)
- only the hard palate (FTP IV).
- absence of tonsillar tissue (grade 0)
- within the pillars (grade 1)
- extended to the pillars (grade 2)
- extended past the pillars (grade 3)
- extended to the midline (grade 4).
6. UA Endoscopic Examination
- no lymphoid tissue (LTH0)
- scattered lymphoid tissue (LTH1)
- lymphoid tissue covering the entire tongue base, limited vertical thickness (LTH2)
- lymphoid tissue covering the entire tongue base, the significant vertical thickness of approximately 5–10 mm (LTH3)
- lymphoid tissue covering the entire tongue base, rising to or above the tip of the epiglottis, approximately 1 cm in height (LTH 4)
7. UA Imaging Examination
8. Oropharyngeal Surgery
9. Hypopharyngeal Surgery
10. Discussion
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Heinzer, R.; Vat, S.; Marques-Vidal, P.; Marti-Soler, H.; Andries, D.; Tobback, N.; Mooser, V.; Preisig, M.; Malhotra, A.; Waeber, G.; et al. Prevalence of sleep-disordered breathing in the general population: The Hypno Laus study. Lancet Respir. Med. 2015, 3, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.J.; Sundar, K.M. Evaluation and Management of Adults with Obstructive Sleep Apnea Syndrome. Lung 2021, 199, 87–101. [Google Scholar] [CrossRef]
- Osman, A.M.; Carter, S.G.; Carberry, J.C.; Eckert, D.J. Obstructive sleep apnea: Current perspectives. Nat. Sci. Sleep 2018, 10, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Lorenzi-Filho, G.; Almeida, F.R.; Strollo, P.J. Treating OSA: Current and emerging therapies beyond CPAP. Respirology 2017, 22, 1500–1507. [Google Scholar] [CrossRef] [Green Version]
- Tingting, X.; Danming, Y.; Xin, C. Non-surgical treatment of obstructive sleep apnea syndrome. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 335–346. [Google Scholar] [CrossRef]
- De Meyer, M.M.D.; Vanderveken, O.M.; De Weerdt, S.; Marks, L.A.M.; Cárcamo, B.A.; Chavez, A.M.; Matamoros, F.A.; Jacquet, W. Use of mandibular advancement devices for the treatment of primary snoring with or without obstructive sleep apnea (OSA): A systematic review. Sleep Med. Rev. 2020, 56, 101407. [Google Scholar] [CrossRef]
- Beyers, J.; Vanderveken, O.M.; Kastoer, C.; Boudewyns, A.; De Volder, I.; Van Gastel, A.; Verbraecken, J.A.; De Backer, W.A.; Braem, M.J.; Van de Heyning, P.H.; et al. Treatment of sleep-disordered breathing with positional therapy: Long-term results. Sleep Breath. 2019, 23, 1141–1149. [Google Scholar] [CrossRef]
- Weaver, E.M.; Kapur, V.K. Surgical Treatment of Obstructive Sleep Apnea in Adults. UpToDate J. Topic 97861 Version 20.0. 2020. Available online: https://www.uptodate.com/contents/surgical-treatment-of-obstructive-sleep-apnea-in-adults/contributors (accessed on 25 May 2021).
- Woodson, B.T.; Strohl, K.P.; Soose, R.J.; Gillespie, M.B.; Maurer, J.T.; de Vries, N.; Padhya, T.A.; Badr, M.S.; Lin, H.S.; Vanderveken, O.M.; et al. Upper Airway Stimulation for Obstructive Sleep Apnea: 5-Year Outcomes. Otolaryngol. Neck Surg. 2018, 159, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Koka, V.; De Vito, A.; Roisman, G.; Petitjean, M.; Filograna, P.; Giulio, R.; Padovani, D.; Randerath, W. Orofacial Myofunctional Therapy in Obstructive Sleep Apnea Syndrome: A Pathophysiological Perspective. Medicina 2021, 57, 323. [Google Scholar] [CrossRef]
- Taranto-Montemurro, L.; Messineo, L.; Sands, S.A.; Azarbarzin, A.; Marques, M.; Edwards, B.A.; Eckert, D.J.; White, D.P.; Wellman, A. The Combination of Atomoxetine and Oxybutynin Greatly Reduces Obstructive Sleep Apnea Severity. A Randomized, Placebo-controlled, Double-Blind Crossover Trial. Am. J. Respir. Crit. Care Med. 2019, 199, 1267–1276. [Google Scholar] [CrossRef]
- Genta, P.R.; Schorr, F.; Edwards, B.A.; Wellman, A.; Lorenzi-Filho, G. Discriminating the severity of pharyngeal collapsibility in men using anthropometric and polysomnographic indices. J. Clin. Sleep Med. 2020, 16, 1531–1537. [Google Scholar] [CrossRef]
- Bosi, M.; De Vito, A.; Gobbi, R.; Poletti, V.; Vicini, C. The importance of obstructive sleep apnoea and hypopnea pathophysiology for customized therapy. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 1251–1261. [Google Scholar] [CrossRef]
- Chung, F.; Yegneswaran, B.; Liao, P.; Chung, S.A.; Vairavanathan, S.; Islam, S.; Khajehdehi, A.; Shapiro, C.M. STOP questionnaire: A tool to screen patients for obstructive sleep apnea. Anesthesiology 2008, 108, 812–821. [Google Scholar] [CrossRef] [Green Version]
- Pignatelli, G.F.; Khasawneh, L.; Sorrentino, A.; Pacella, A.; De Vito, A.; Neri, G. Stop-bang questionnaire: Practical approach to diagnosis of obstructive sleep apnea in ronchopathic subjects. AIMS Med. Sci. 2020, 7, 93–105. [Google Scholar]
- Eckert, D.J.; White, D.P.; Jordan, A.S.; Malhotra, A.; Wellman, A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am. J. Respir. Crit. Care Med. 2013, 188, 996–1004. [Google Scholar] [CrossRef] [Green Version]
- Landry, S.A.; Joosten, S.A.; Eckert, D.J.; Jordan, A.S.; Sands, S.A.; White, D.P.; Malhotra, A.; Wellman, A.; Hamilton, G.S.; Edwards, B.A. Therapeutic CPAP Level Predicts Upper Airway Collapsibility in Patients with Obstructive Sleep Apnea. Sleep 2017, 40, zsx056. [Google Scholar] [CrossRef]
- Bosi, M.; Parenti, S.I.; Fiordelli, A.; Poletti, V.; Alessandri-Bonetti, A. Upper airway collapsibility in patients with OSA treated with continuous positive airway pressure: A retrospective preliminary study. J. Clin. Sleep Med. 2020, 16, 1839–1846. [Google Scholar] [CrossRef]
- Edwards, B.A.; Eckert, D.J.; McSharry, D.G.; Sands, S.A.; Desai, A.; Kehlmann, G.; Bakker, J.P.; Genta, P.R.; Owens, R.L.; White, D.P.; et al. Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2014, 190, 1293–1300. [Google Scholar] [CrossRef]
- Bosi, M.; De Vito, A.; Kotecha, B.; Viglietta, L.; Braghiroli, A.; Steier, J.; Pengo, M.; Sorrenti, G.; Gobbi, R.; Vicini, C.; et al. Phenotyping the pathophysiology of obstructive sleep apnea using polygraphy/polysomnography: A review of the literature. Sleep Breath. 2018, 22, 579–592. [Google Scholar] [CrossRef] [Green Version]
- Epstein, L.J.; Kristo, D.; Strollo, P.J., Jr.; Friedman, N.; Malhotra, A.; Patil, S.P.; Ramar, K.; Rogers, R.; Schwab, R.J.; Weaver, E.M.; et al. Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. 2009, 5, 263–276. [Google Scholar]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM manual for the scoring of sleep and associated events. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [Green Version]
- Kapur, V.K.; Auckley, D.H.; Chowdhuri, S.; Kuhlmann, D.C.; Mehra, R.; Ramar, K.; Harrod, C.G. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 479–504. [Google Scholar] [CrossRef]
- Genta, P.R.; Sands, S.; Butler, J.P.; Loring, S.H.; Katz, E.S.; Demko, B.G.; Kezirian, E.J.; White, D.P.; Wellman, A. Airflow shape is associated with the pharyngeal structure causing OSA. Chest 2017, 152, 537–546. [Google Scholar] [CrossRef]
- Ravesloot, M.J.; Frank, M.H.; van Maanen, J.P.; Verhagen, E.A.; de Lange, J.; de Vries, N. Positional OSA part 2: Retrospective cohort analysis with a new classification system (APOC). Sleep Breath. 2016, 20, 881–888. [Google Scholar] [CrossRef] [Green Version]
- Bosi, M.; De Vito, A.; Vicini, C.; Poletti, V. The role of compact polysomnography/polygraphy in sleep breathing disorder patients’ management. Eur. Arch. Oto-Rhino-Laryngol. 2016, 274, 2013–2028. [Google Scholar] [CrossRef] [Green Version]
- Bosi, M.; De Vito, A.; Eckert, D.; Steier, J.; Kotecha, B.; Vicini, C.; Poletti, V. Qualitative Phenotyping of Obstructive Sleep Apnea and Its Clinical Usefulness for the Sleep Specialist. Int. J. Environ. Res. Public Health 2020, 17, 2058. [Google Scholar] [CrossRef] [Green Version]
- Peppard, P.E.; Young, T.; Barnet, J.H.; Palta, M.; Hagen, E.W.; Hla, K.M. Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 2013, 177, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Rundo, J.V. Obstructive sleep apnea basics. Clevel. Clin. J. Med. 2019, 86, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Friedman, M.; Ibrahim, H.; Joseph, N.J. Staging of obstructive sleep apnea/hypopnea syndrome: A guide to appropriate treatment. Laryngoscope 2004, 114, 454–459. [Google Scholar] [CrossRef] [Green Version]
- Kotecha, B. Updated Minimally Invasive Surgery for Sleep-Related Breathing Disorders. Adv. Oto-Rhino-Laryngol. 2017, 80, 90–98. [Google Scholar] [CrossRef]
- Friedman, M.; Salapatas, A.M.; Bonzelaar, L.B. Updated Friedman Staging System for Obstructive Sleep Apnea. Adv. Oto-Rhino-Laryngol. 2017, 80, 41–48. [Google Scholar] [CrossRef]
- Bosi, M.; De Vito, A.; Vicini, C.; Poletti, V. The predictive value of Muller’s maneuvre for CPAP titration in OSAHS patients. Eur. Arch. Oto-Rhino-Laryngol. 2013, 270, 2345–2351. [Google Scholar] [CrossRef]
- De Vito, A.; Llatas, M.C.; Ravesloot, M.J.; Kotecha, B.; De Vries, N.; Hamans, E.; Maurer, J.; Bosi, M.; Blumen, M.; Heiser, C.; et al. European position paper on drug-induced sleep endoscopy: 2017 Update. Clin. Otolaryngol. 2018, 43, 1541–1552. [Google Scholar] [CrossRef]
- Kotecha, B.; De Vito, A. Drug induced sleep endoscopy: Its role in evaluation of the upper airway obstruction and patient selection for surgical and non-surgical treatment. J. Thorac. Dis. 2018, 10, S40–S47. [Google Scholar] [CrossRef] [Green Version]
- De Vito, A.; Agnoletti, V.; Zani, G.; Corso, R.; D’Agostino, G.; Firinu, E.; Marchi, C.; Hsu, Y.-S.; Maitan, S.; Vicini, C. The importance of drug-induced sedation endoscopy (D.I.S.E.) techniques in surgical decision making: Conventional versus target controlled infusion techniques-a prospective randomized controlled study and a retrospective surgical outcomes analysis. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 2307–2317. [Google Scholar] [CrossRef]
- Chong, K.B.; De Vito, A.; Vicini, C. Drug-Induced Sleep Endoscopy in Treatment Options Selection. Sleep Med. Clin. 2019, 14, 33–40. [Google Scholar] [CrossRef]
- Woodson, B.T. A method to describe the pharyngeal airway. Laryngoscope 2015, 125, 1233–1238. [Google Scholar] [CrossRef]
- Olszewska, E.; Woodson, B.T. Palatal anatomy for sleep apnea surgery. Laryngoscope 2019, 4, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Vanderveken, O.M.; Maurer, J.T.; Hohenhorst, W.; Hamans, E.; Lin, H.S.; Vroegop, A.V.; Anders, C.; de Vries, N.; Van de Heyning, P.H. Evaluation of drug-induced sleep endoscopy as a patient selection tool for implanted upper airway stimulation for obstructive sleep apnea. J. Clin. Sleep Med. 2013, 9, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Strauss, R.A.; Burgoyne, C.C. Diagnostic imaging and sleep medicine. Dent. Clin. N. Am. 2008, 52, 891–915. [Google Scholar] [CrossRef]
- Gungor, A.Y.; Turkkahraman, H.; Yilmaz, H.H.; Yariktas, M. Cephalometric comparison of obstructive sleep apnea patients and healthy controls. Eur. J. Dent. 2013, 7, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Valarelli, L.P.; Corradi, A.M.B.; Grechi, T.H.; Eckeli, A.L.; Aragon, D.C.; Küpper, D.S.; Almeida, L.A.; Sander, H.H.; de Felício, C.M.; Trawitzki, L.V.V.; et al. Cephalometric, muscular and swallowing changes in patients with OSAS. J. Oral Rehabil. 2018, 45, 692–701. [Google Scholar] [CrossRef]
- Choi, J.H.; Cho, S.H.; Kim, S.N.; Suh, J.D.; Cho, J.H. Predicting outcomes after uvulopalatopharyngoplasty for adult obstructive sleep apnea: A meta-analysis. Otolaryngol. Head Neck Surg. 2016, 155, 904–913. [Google Scholar] [CrossRef]
- Vos, W.; De Backer, J.; Devolder, A.; Vanderveken, O.; Verhulst, S.; Salgado, R.; Germonpre, P.; Partoens, B.; Wuyts, F.; Parizel, P.; et al. Correlation between severity of sleep apnea and upper airway morphology based on advanced anatomical and functional imaging. J. Biomech. 2007, 40, 2207–2213. [Google Scholar] [CrossRef]
- De Vito, A.; Piercarlo, F.; Oscar, B.; Giulia, T. Imaging. In TransOral Robotic Surgery for Obstructive Sleep Apnea: A Practical Guide to Surgical Approach and Patient Management; Springer: Berlin/Heidelberg, Germany, 2016; Chapter 5; pp. 33–40. ISBN 978-3-319-34038-8. [Google Scholar]
- Stuck, B.A.; Ravesloot, M.J.; Eschenhagen, T.; de Vet, H.; Sommer, J.U. Uvulopalatopharyngoplasty with or without tonsillectomy in the treatment of adult obstructive sleep apnea—A systematic review. Sleep Med. 2018, 50, 152–165. [Google Scholar] [CrossRef]
- Puccia, R.; Woodson, B.T. Palatopharyngoplasty and Palatal Anatomy and Phenotypes for Treatment of Sleep Apnea in the Twenty-first Century. Otolaryngol. Clin. N. Am. 2020, 53, 421–429. [Google Scholar] [CrossRef]
- Pang, K.P.; Vicini, C.; Montevecchi, F.; Piccin, O.; Chandra, S.; Yang, H.C.; Agrawal, V.; Chung, J.C.K.; Chan, Y.H.; Pang, S.B.; et al. Long-term Complications of Palate Surgery: A Multicenter Study of 217 Patients. Laryngoscope 2019, 130, 2281–2284. [Google Scholar] [CrossRef]
- Iannella, G.; Vallicelli, B.; Magliulo, G.; Cammaroto, G.; Meccariello, G.; De Vito, A.; Greco, A.; Pelucchi, S.; Sgarzani, R.; Corso, R.M.; et al. Long-Term Subjective Outcomes of Barbed Reposition Pharyngoplasty for Obstructive Sleep Apnea Syndrome Treatment. Int. J. Environ. Res. Public Health 2020, 17, 1542. [Google Scholar] [CrossRef] [Green Version]
- Cammaroto, G.; Stringa, L.M.; Iannella, G.; Meccariello, G.; Zhang, H.; Bahgat, A.Y.; Calvo-Henriquez, C.; Chiesa-Estomba, C.; Lechien, J.R.; Barillari, M.R.; et al. Manipulation of Lateral Pharyngeal Wall Muscles in Sleep Surgery: A Review of the Literature. Int. J. Environ. Res. Public Health 2020, 17, 5315. [Google Scholar] [CrossRef]
- Cahali, M.B. Lateral pharyngoplasty: A new treatment for obstructive sleep apnea hypopnea syndrome. Laryngoscope 2010, 113, 1961–1968. [Google Scholar] [CrossRef]
- Pang, K.P.; Woodson, B.T. Expansion sphincter pharyngoplasty: A new technique for the treatment of obstructive sleep apnea. Otolaryngol. Neck Surg. 2007, 137, 110–114. [Google Scholar] [CrossRef]
- Pang, K.P.; Pang, E.B.; Win, M.T.; Pang, K.A.; Woodson, B.T. Expansion sphincter pharyngoplasty for the treatment of OSA: A systemic review and meta-analysis. Eur. Arch. Oto-Rhino-Laryngol. 2015, 273, 2329–2333. [Google Scholar] [CrossRef]
- Vicini, C.; Hendawy, E.; Campanini, A.; Eesa, M.; Bahgat, A.; AlGhamdi, S.; Meccariello, G.; DeVito, A.; Montevecchi, F.; Mantovani, M. Barbed reposition pharyngoplasty (BRP) for OSAHS: A feasibility, safety, efficacy and teachability pilot study. “We are on the giant’s shoulders”. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 3065–3070. [Google Scholar] [CrossRef]
- Montevecchi, F.; Meccariello, G.; Firinu, E.; Arigliani, M.; De Benedetto, M.; Palumbo, A.; Bahgat, Y.; Bahgat, A.; Saldana, R.L.; Marzetti, A.; et al. Prospective multicentre study on barbed reposition pharyngoplasty standing alone or as a part of multilevel surgery for sleep apnoea. Clin. Otolaryngol. 2017, 43, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Madkikar, N.; Pandey, S.; Ghaisas, V. Multilevel Single Stage: Barbed Reposition Pharyngoplasty and Nasal Surgery in Treatment of OSA-Our Experience. Indian J. Otolaryngol. Head Neck Surg. 2019, 71, 309–314. [Google Scholar] [CrossRef]
- Vicini, C.; Meccariello, G.; Montevecchi, F.; De Vito, A.; Frassineti, S.; Gobbi, R.; Pelucchi, S.; Iannella, G.; Magliulo, G.; Cammaroto, G. Effectiveness of barbed repositioning pharyngoplasty for the treatment of obstructive sleep apnea (OSA): A prospective randomized trial. Sleep Breath. 2019, 24, 687–694. [Google Scholar] [CrossRef]
- Rashwan, M.S.; Montevecchi, F.; Cammaroto, G.; El Deen, M.B.; Iskander, N.; El Hennawi, D.; El Tabbakh, M.; Meccariello, G.; Gobbi, R.; Stomeo, F.; et al. Evolution of soft palate surgery techniques for obstructive sleep apnea patients: A comparative study for single-level palatal surgeries. Clin. Otolaryngol. 2018, 43, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Vicini, C.; Montevecchi, F. Transoral Robotic Surgery for Obstructive Sleep Apnea: Past, Present, and Future. Sleep Med. Clin. 2019, 14, 67–72. [Google Scholar] [CrossRef]
- Meccariello, G.; Cammaroto, G.; Montevecchi, F.; Hoff, P.T.; Spector, M.E.; Negm, H.; Shams, M.; Bellini, C.; Zeccardo, E.; Vicini, C. Transoral robotic surgery for the management of obstructive sleep apnea: A systematic review and meta-analysis. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 647–653. [Google Scholar] [CrossRef]
- Arora, A.; Chaidas, K.; Garas, G.; Amlani, A.; Darzi, A.; Kotecha, B.; Tolley, N.S. Outcome of TORS to tongue base and epiglottis in patients with OSA intolerant of conventional treatment. Sleep Breath. 2015, 20, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Chabolle, F.; Wagner, I.; Blumen, M.B.; Séquert, C.; Fleury, B.; De Dieuleveult, T. Tongue base reduction with hyoepiglottoplasty: A treatment for severe obstructive sleep apnoea. Laryngoscope 1999, 109, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Suh, G.D. Evaluation of open midline glossectomy in the multilevel surgical management of obstructive sleep apnea syndrome. Otolaryngol. Neck Surg. 2013, 148, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Cammaroto, G.; Montevecchi, F.; D’Agostino, G.; Zeccardo, E.; Bellini, C.; Galletti, B.; Shams, M.; Negm, H.; Vicini, C. Tongue reduction for OSAHS: TORSs vs coblations, technologies vs techniques, apples vs oranges. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 637–645. [Google Scholar] [CrossRef]
- Liu, S.Y.-C.; Huon, L.-K.; Iwasaki, T.; Yoon, A.; Riley, R.; Powell, N.; Torre, C.; Capasso, R. Efficacy of maxillomandibular advancement examined with drug-induced sleep endoscopy and computational fluid dynamics airflow modeling. Otolaryngol. Neck Surg. 2016, 154, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.K.; Kim, K.B.; McQuilling, M.W.; Movahed, R. Fluid structure interaction simulations of the upper airway in obstructive sleep apnea patients before and after maxillomandibular advancement surgery. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 895–904. [Google Scholar] [CrossRef]
- Liu, S.Y.-C.; Huon, L.-K.; Powell, N.B.; Riley, R.; Cho, H.G.; Torre, C.; Capasso, R. Lateral pharyngeal wall tension after maxillomandibular advancement for obstructive sleep apnea is a marker for surgical success: Observations from drug-induced sleep endoscopy. J. Oral Maxillofac. Surg. 2015, 73, 1575–1582. [Google Scholar] [CrossRef]
- Strollo, P.J., Jr.; Soose, R.J.; Maurer, J.T.; de Vries, N.; Cornelius, J.; Froymovich, O.; Hanson, R.D.; Padhya, T.A.; Steward, D.L.; Gillespie, M.B.; et al. Upper-airway stimulation for obstructive sleep apnea. N. Engl. J. Med. 2014, 370, 139–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costantino, A.; Rinaldi, V.; Moffa, A.; Luccarelli, V.; Bressi, F.; Cassano, M.; Casale, M.; Baptista, P. Hypoglossal nerve stimulation long-term clinical outcomes: A systematic review and meta-analysis. Sleep Breath. 2019, 24, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.R.; Schubert, N.; Rothman, W.; Godley, F.; Marsh, B.; Eisele, D.; Nadeau, J.; Permutt, L.; Gleadhill, I.; Smith, P.L. Effect of uvulopalatopharyngoplasty on upper airway collapsibility in obstructive sleep apnea. Am. Rev. Respir. Dis. 1992, 145, 527–532. [Google Scholar] [CrossRef]
- Woodson, B.T. Changes in airway characteristics after transpalatal advancement pharyngoplasty compared to uvulopalatopharyngoplasty (UPPP). Sleep 1996, 19, S291–S293. [Google Scholar] [CrossRef] [Green Version]
- Woodson, B.T. Acute effects of palatopharyngoplasty on airway collapsibility. Otolaryngol. Neck Surg. 1999, 121, 82–86. [Google Scholar] [CrossRef]
- Li, Y.; Ye, J.; Han, D.; Zhao, D.; Cao, X.; Orr, J.; Jen, R.; Deacon-Diaz, N.; Sands, S.A.; Owens, R.; et al. The Effect of Upper Airway Surgery on Loop Gain in Obstructive Sleep Apnea. J. Clin. Sleep Med. 2019, 15, 907–913. [Google Scholar] [CrossRef]
- Joosten, S.A.; Leong, P.; Landry, S.; Sands, S.; Terrill, P.I.; Mann, D.; Turton, A.; Rangaswamy, J.; Andara, C.; Burgess, G.; et al. Loop Gain Predicts the Response to Upper Airway Surgery in Patients with Obstructive Sleep Apnea. Sleep 2017, 40. [Google Scholar] [CrossRef] [Green Version]
- Iannella, G.; Maniaci, A.; Magliulo, G.; Cocuzza, S.; La Mantia, I.; Cammaroto, G.; Greco, A.; Vicini, C. Current challenges in the diagnosis and treatment of obstructive sleep apnea syndrome in the elderly. Pol. Arch. Intern. Med. 2020, 130, 649–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouveia, C.J.; Cramer, J.D.; Liu, S.Y.; Capasso, R. Sleep Surgery in the Elderly: Lessons from the National Surgical Quality Improvement Program. Otolaryngol. Head Neck Surg. 2017, 156, 757–764. [Google Scholar] [CrossRef] [PubMed]
Signs and Symptoms | Complications |
---|---|
|
|
1. Significant cardiorespiratory disease 2. History of stroke 3. Severe insomnia 4. Potential respiratory muscle weakness due to neuromuscular condition 5. Awake hypoventilation or high risk of sleep-related hypoventilation 6. Symptoms of other significant sleep disorder(s) 7. Chronic opioid medication use |
STAGE | FTP | TONSIL SIZE | BMI |
---|---|---|---|
I | I, IIa, IIb | 3 or 4 | <40 |
II | I, IIa, IIb III or IV | 0, 1, or 2 3 or 4 | <40 <40 |
III | III or IV | 0, 1, or 2 | <40 |
IV * | I–IV | 0–4 | >40 |
Ideal Candidates for UA Surgery | Unfavorable Candidates for UA Surgery | |
---|---|---|
CLINICAL FINDINGS | - Age < 65 years old - BMI < 35 | - Age > 65 years old - BMI > 35 - Systemic comorbidity with high anesthestic risk - Use of muscle relaxant drugs |
ANATOMICAL FINDINGS | - Mallampati score 1–3 - Friedman stage I and II - FTP III and IV (consider TORS) - Isolated circular collapse of the velopharyngeal region and obtuse alpha angle (DISE evaluation) - Primary epiglottis collapse (DISE evaluation) | - Mallampati score 4 - Friedman stage III and IV - Low hyoid position and a more verticalization of the base of the tongue - Lateral hypopharyngeal collapse (DISE evaluation) - Craniofacial anomalies/microretrognathia (consider mandibular advancement) MMA) |
POLYSOMNOGRAPHIC/CPAP FINDINGS | - A/H ratio < 1 - CPAP pressure values less than 8 cm cmH2O (low Pcrit) - Flow limitation analysis predicts potential site of pharyngeal collapse | - A/H ratio > 1 - CPAP pressure values greater than 8 cm cmH2O (high Pcrit) - Prolonged obstructive events and low oxygen nadirs (high AT) - High central or mixed apneas score (high LG) - Cheyne Stokes Breathing (high LG) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Vito, A.; Woodson, B.T.; Koka, V.; Cammaroto, G.; Iannella, G.; Bosi, M.; Pelucchi, S.; Filograna-Pignatelli, G.R.; El Chater, P.; Vicini, C. OSA Upper Airways Surgery: A Targeted Approach. Medicina 2021, 57, 690. https://doi.org/10.3390/medicina57070690
De Vito A, Woodson BT, Koka V, Cammaroto G, Iannella G, Bosi M, Pelucchi S, Filograna-Pignatelli GR, El Chater P, Vicini C. OSA Upper Airways Surgery: A Targeted Approach. Medicina. 2021; 57(7):690. https://doi.org/10.3390/medicina57070690
Chicago/Turabian StyleDe Vito, Andrea, B. Tucker Woodson, Venkata Koka, Giovanni Cammaroto, Giannicola Iannella, Marcello Bosi, Stefano Pelucchi, Giulio Romano Filograna-Pignatelli, Pierre El Chater, and Claudio Vicini. 2021. "OSA Upper Airways Surgery: A Targeted Approach" Medicina 57, no. 7: 690. https://doi.org/10.3390/medicina57070690
APA StyleDe Vito, A., Woodson, B. T., Koka, V., Cammaroto, G., Iannella, G., Bosi, M., Pelucchi, S., Filograna-Pignatelli, G. R., El Chater, P., & Vicini, C. (2021). OSA Upper Airways Surgery: A Targeted Approach. Medicina, 57(7), 690. https://doi.org/10.3390/medicina57070690