3D Patient-Specific Virtual Models for Presurgical Planning in Patients with Recto-Sigmoid Endometriosis Nodules: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Preoperative Evaluation
2.3. MRI Acquisition
2.4. 3D Modelling
2.5. Surgical Technique
2.6. Ethical Statement
3. Results
3.1. Study Population and 3D Virtual Models
3.2. Surgeons’ Judgements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mignemi, G.; Facchini, C.; Raimondo, D.; Montanari, G.; Ferrini, G.; Seracchioli, R. A Case Report of Nasal Endometriosis in a Patient Affected by Behcet’s Disease. J. Minim. Invasive Gynecol. 2012, 19, 514–516. [Google Scholar] [CrossRef]
- Raimondo, D.; Borghese, G.; Mabrouk, M.; Arena, A.; Ambrosio, M.; Del Forno, S.; Degli Esposti, E.; Casadio, P.; Mattioli, G.; Mastronardi, M.; et al. Use of Indocyanine Green for Intraoperative Perfusion Assessment in Women with Ureteral Endometriosis: A Preliminary Study. J. Minim. Invasive Gynecol. 2021, 28, 42–49. [Google Scholar] [CrossRef]
- Seracchioli, R.; Poggioli, G.; Pierangeli, F.; Manuzzi, L.; Gualerzi, B.; Savelli, L.; Remorgida, V.; Mabrouk, M.; Venturoli, S. Surgical outcome and long-term follow up after laparoscopic rectosigmoid resection in women with deep infiltrating endometriosis. BJOG Int. J. Obstet. Gynaecol. 2007, 114, 889–895. [Google Scholar] [CrossRef]
- Raimondo, D.; Mattioli, G.; Casadio, P.; Borghese, G.; Ambrosio, M.; Arena, A.; Paradisi, R.; Del Forno, S.; Coppola, F.; Valerio, D.; et al. Frequency and clinical impact of Dolichocolon in women submitted to surgery for rectosigmoid endometriosis. J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101697. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, E.; Zannoni, L.; Raimondo, D.; Ferrini, G.; Mabrouk, M.; Benfenati, A.; Villa, G.; Bertoldo, V.; Seracchioli, R. Urodynamic evaluation and anorectal manometry pre- and post-operative bowel shaving surgical procedure for posterior deep infiltrating endometriosis: A Pilot Study. J. Minim. Invasive Gynecol. 2014, 21, 1080–1085. [Google Scholar] [CrossRef]
- Abrão, M.S.; Petraglia, F.; Falcone, T.; Keckstein, J.; Osuga, Y.; Chapron, C. Deep endometriosis infiltrating the recto-sigmoid: Critical factors to consider before management. Hum. Reprod. Updat. 2015, 21, 329–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tejo-Otero, A.; Buj-Corral, I.; Fenollosa-Artés, F. 3D Printing in Medicine for Preoperative Surgical Planning: A Review. Ann. Biomed. Eng. 2020, 48, 536–555. [Google Scholar] [CrossRef]
- Gardin, C.; Ferroni, L.; Latremouille, C.; Chachques, J.C.; Mitrecic, D.; Zavan, B. Recent Applications of Three Dimensional Printing in Cardiovascular Medicine. Cells 2020, 9, 742. [Google Scholar] [CrossRef] [Green Version]
- Marti, P.; Lampus, F.; Benevento, D.; Setacci, C. Trends in use of 3D printing in vascular surgery: A survey. Int. Angiol. 2019, 38, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Chen, G.; Coles-Black, J.; Chuen, J.; Hardidge, A. Three-dimensional printing in orthopaedic preoperative planning improves intraoperative metrics: A systematic review. ANZ J. Surg. 2019, 90, 243–250. [Google Scholar] [CrossRef]
- Chen, M.Y.; Skewes, J.; Desselle, M.; Wong, C.; Woodruff, M.; Dasgupta, P.; Rukin, N.J. Current applications of three-dimensional printing in urology. BJU Int. 2020, 125, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, L.; Schiavina, R.; Barbaresi, U.; Angiolini, A.; Pultrone, C.V.; Manferrari, F.; Bortolani, B.; Cercenelli, L.; Borghesi, M.; Chessa, F.; et al. 3D Reconstruction and physical renal model to improve percutaneous punture during PNL. Int. Braz J Urol 2019, 45, 1281–1282. [Google Scholar] [CrossRef] [PubMed]
- Schiavina, R.; Bianchi, L.; Borghesi, M.; Chessa, F.; Cercenelli, L.; Marcelli, E.; Brunocilla, E. Three-dimensional digital reconstruction of renal model to guide preoperative planning of robot-assisted partial nephrectomy. Int. J. Urol. 2019, 26, 931–932. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; Barbaresi, U.; Cercenelli, L.; Bortolani, B.; Gaudiano, C.; Chessa, F.; Angiolini, A.; Lodi, S.; Porreca, A.; Bianchi, F.M.; et al. The Impact of 3D Digital Reconstruction on the Surgical Planning of Partial Nephrectomy: A Case-control Study. Still Time for a Novel Surgical Trend? Clin. Genitourin. Cancer 2020, 18, e669–e678. [Google Scholar] [CrossRef]
- Huang, M.F.; Alfi, D.; Alfi, J.; Huang, A.T. The Use of Patient-Specific Implants in Oral and Maxillofacial Surgery. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 593–600. [Google Scholar] [CrossRef]
- Badiali, G.; Marcelli, E.; Bortolani, B.; Marchetti, C.; Cercenelli, L. An average three-dimensional virtual human skull for a template-assisted maxillofacial surgery. Int. J. Artif. Organs 2019, 42, 566–574. [Google Scholar] [CrossRef]
- Tarsitano, A.; Ricotta, F.; Cercenelli, L.; Bortolani, B.; Battaglia, S.; Lucchi, E.; Marchetti, C.; Marcelli, E. Pretreatment tumor volume and tumor sphericity as prognostic factors in patients with oral cavity squamous cell carcinoma. J. Craniomaxillofac. Surg. 2019, 47, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Ricotta, F.; Maiolo, V.; Savastio, G.; Contedini, F.; Cipriani, R.; Bortolani, B.; Cercenelli, L.; Marcelli, E.; Marchetti, C.; et al. Computer-assisted surgery for reconstruction of complex mandibular defects using osteomyocutaneous microvascular fibular free flaps: Use of a skin paddle-outlining guide for soft-tissue reconstruction. A technical report. J. Craniomaxillofac. Surg. 2018, 47, 293–299. [Google Scholar] [CrossRef]
- Ricotta, F.; Cercenelli, L.; Battaglia, S.; Bortolani, B.; Savastio, G.; Marcelli, E.; Marchetti, C.; Tarsitano, A. Navigation-guided resection of maxillary tumors: Can a new volumetric virtual planning method improve outcomes in terms of control of resection margins? J. Craniomaxillofac. Surg. 2018, 46, 2240–2247. [Google Scholar] [CrossRef]
- Ajao, M.O.; Clark, N.V.; Kelil, T.; Cohen, S.L.; Einarsson, J.I. Case Report: Three-Dimensional Printed Model for Deep Infiltrating Endometriosis. J. Minim. Invasive Gynecol. 2017, 24, 1239–1242. [Google Scholar] [CrossRef]
- Gagnier, J.J.; Kienle, G.; Altman, D.G.; Moher, D.; Sox, H.; Riley, D.; Allaire, A.; The CARE Group. The CARE guidelines: Consensus-based clinical case reporting guideline development. BMJ Case Rep. 2013, 53, 1541–1547. [Google Scholar] [CrossRef]
- Savelli, L.; Testa, A.C.; Mabrouk, M.; Zannoni, L.; Ludovisi, M.; Seracchioli, R.; Scambia, G.; DE Iaco, P. A prospective blinded comparison of the accuracy of transvaginal sonography and frozen section in the assessment of myometrial invasion in endometrial cancer. Gynecol. Oncol. 2012, 124, 549–552. [Google Scholar] [CrossRef]
- Coppola, F.; Paradisi, R.; Zanardi, S.; Papadopoulos, D.; Gramenzi, A.; Valerio, D.; Pierotti, L.; Zannoni, L.; Seracchioli, R.; Golfieri, R. Computed Tomography–Colonography With Intravenous Contrast Medium and Urographic Phase for the Evaluation of Pelvic Deep Infiltrating Endometriosis of Intestinal and Urinary Tract. J. Comput. Assist. Tomogr. 2019, 43, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Hawker, G.A.; Mian, S.; Kendzerska, T.; French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011, 63, S240–S252. [Google Scholar] [CrossRef]
- Canis, M.; Donnez, J.G.; Guzick, D.S.; Halme, J.K.; Rock, J.A.; Schenken, R.S.; Vernon, M.W. Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil. Steril. 1997, 67, 817–821. [Google Scholar] [CrossRef]
- Seracchioli, R.; Raimondo, D.; Arena, A.; Zanello, M.; Mabrouk, M. Clinical use of endovenous indocyanine green during rectosigmoid segmental resection for endometriosis. Fertil. Steril. 2018, 109, 1135. [Google Scholar] [CrossRef]
- Mabrouk, M.; Raimondo, D.; Arena, A.; Iodice, R.; Altieri, M.; Sutherland, N.; Salucci, P.; Moro, E.; Seracchioli, R. Parametrial Endometriosis: The Occult Condition that Makes the Hard Harder. J. Minim. Invasive Gynecol. 2019, 26, 871–876. [Google Scholar] [CrossRef]
- Remorgida, V.; Ferrero, S.; Fulcheri, E.; Ragni, N.; Martin, D.C. Bowel Endometriosis: Presentation, Diagnosis, and Treatment. Obstet. Gynecol. Surv. 2007, 62, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Mabrouk, M.; Borghese, G.; Degli Esposti, E.; Raimondo, D.; Remorgida, V.; Arena, A.; Zupi, E.; Mattioli, G.; Ambrosio, M.; Seracchioli, R. Acute abdominal pain in non-pregnant endometriotic patients: Not just dysmenorrhoea. A systematic review. J. Obstet. Gynaecol. 2021, 41, 7–20. [Google Scholar] [CrossRef]
- Ruffo, G.; Scopelliti, F.; Scioscia, M.; Ceccaroni, M.; Mainardi, P.; Minelli, L. Laparoscopic colorectal resection for deep infiltrating endometriosis: Analysis of 436 cases. Surg. Endosc. 2009, 24, 63–67. [Google Scholar] [CrossRef]
- Chapron, C.; Santulli, P.; De Ziegler, D.; Noel, J.-C.; Anaf, V.; Streuli, I.; Foulot, H.; Souza, C.; Borghese, B. Ovarian endometrioma: Severe pelvic pain is associated with deeply infiltrating endometriosis. Hum. Reprod. 2012, 27, 702–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daraï, E.; Dubernard, G.; Coutant, C.; Frey, C.; Rouzier, R.; Ballester, M. Randomized Trial of Laparoscopically Assisted Versus Open Colorectal Resection for Endometriosis. Ann. Surg. 2010, 251, 1018–1023. [Google Scholar] [CrossRef]
- Zilberman, S.; Ballester, M.; Touboul, C.; Chéreau, E.; Sèbe, P.; Bazot, M.; Daraï, E. Partial Colpectomy is a Risk Factor for Urologic Complications of Colorectal Resection for Endometriosis. J. Minim. Invasive Gynecol. 2013, 20, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Bazot, M.; Daraï, E. Diagnosis of deep endometriosis: Clinical examination, ultrasonography, magnetic resonance imaging, and other techniques. Fertil. Steril. 2017, 108, 886–894. [Google Scholar] [CrossRef] [Green Version]
- Bazot, M.; Daraï, E. Role of transvaginal sonography and magnetic resonance imaging in the diagnosis of uterine adenomyosis. Fertil. Steril. 2018, 109, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Nisenblat, V.; Bossuyt, P.M.M.; Farquhar, C.; Johnson, N.; Hull, M.L. Imaging modalities for the non-invasive diagnosis of endometriosis. Cochrane Database Syst. Rev. 2016, 2, CD009591. [Google Scholar] [CrossRef] [PubMed]
- Busard, M.P.H.; Van Der Houwen, L.E.E.; Bleeker, M.C.G.; Bos, I.C.P.V.D.; Cuesta, M.A.; Van Kuijk, C.; Mijatovic, V.; Hompes, P.G.A.; Van Waesberghe, J.H.T.M. Deep infiltrating endometriosis of the bowel: MR imaging as a method to predict muscular invasion. Abdom. Imaging 2011, 37, 549–557. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, L.; Marconi, S.; Negrello, E.; Mauri, V.; Peri, A.; Gallo, V.; Auricchio, F.; Pietrabissa, A. The clinical use of 3D printing in surgery. Updat. Surg. 2018, 70, 381–388. [Google Scholar] [CrossRef]
- Kiraly, L. Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery. Transl. Pediatr. 2018, 7, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Girard, N. Evidence appraisal of Malik HH, Darwood ARJ, Shaunak S, Kulatilake P, El-Hilly AA, Mulki O, Baskaradas A. Three-dimensional printing in surgery: A review of current surgical applications. AORN J. 2016, 104, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cheung, T.F.; Fan, V.C.; Sin, K.M.; Wong, C.W.Y.; Leung, G.K.K. Applications of Three-Dimensional Printing in Surgery. Surg. Innov. 2017, 24, 82–88. [Google Scholar] [CrossRef]
- Goudie, C.; Shanahan, J.; Gill, A.; Murphy, D.; Dubrowski, A. Investigating the Efficacy of Anatomical Silicone Models Developed from a 3D Printed Mold for Perineal Repair Suturing Simulation. Cureus 2018, 10, e3181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudie, C.; Gill, A.; Shanahan, J.; Furey, A.; Dubrowski, A. Development of an Anatomical Silicone Model for Simulation-based Medical Training of Obstetric Anal Sphincter Injury Repair in Bangladesh. Cureus 2019, 11, e3991. [Google Scholar] [CrossRef] [Green Version]
- Bartellas, M.; Ryan, S.; Doucet, G.; Murphy, D.; Turner, J. Three-Dimensional Printing of a Hemorrhagic Cervical Cancer Model for Postgraduate Gynecological Training. Cureus 2017, 9, e950. [Google Scholar] [CrossRef] [Green Version]
- Ceccaldi, P.-F.; Pirtea, P.; Lemarteleur, V.; Poulain, M.; De Ziegler, D.; Ayoubi, J.-M. Simulation and professional development: Added value of 3D modelization in reproductive endocrinology and infertility and assisted reproductive technologies teamwork. Gynecol. Endocrinol. 2019, 35, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.M.; Handa, V.L.; Macura, K.J.; DeLeon, V.B. Three-dimensional shape differences in the bony pelvis of women with pelvic floor disorders. Int. Urogynecol. J. 2013, 24, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.; Yu, Y.; Li, Y.; Chenc, L.; Peng, C.; Liu, P.; Chen, C.; Chen, R.; Zhong, M.; Wang, Y. Three-dimensional magnetic resonance pelvimetry: A new technique for evaluating the female pelvis in pregnancy. Eur. J. Radiol. 2018, 102, 208–212. [Google Scholar] [CrossRef]
- Rubod, C.; Lecomte-Grosbras, P.; Brieu, M.; Giraudet, G.; Betrouni, N.; Cosson, M. 3D simulation of pelvic system numerical simulation for a better understanding of the contribution of the uterine ligaments. Int. Urogynecol. J. 2013, 24, 2093–2098. [Google Scholar] [CrossRef]
- Han, Y.; Liu, P.; Chen, C.; Duan, H.; Li, W.; Song, W.; Xu, Y.; Chen, R.; Tang, L. Digital anatomic study of the ureter relative to bifurcation of the common iliac artery in females. Minim. Invasive Ther. Allied Technol. 2019, 2019, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Z.; Chen, C.; Liu, P.; Duan, H.; Chen, L.; Wang, J.; Tan, H.; Li, P.; Zhao, C.; et al. Distribution of iliac veins posterior to the common iliac artery bifurcation related to pelvic lymphadenectomy: A digital in vivo anatomical study of 442 Chinese females. Gynecol. Oncol. 2016, 141, 538–542. [Google Scholar] [CrossRef]
- Duan, H.; Liu, P.; Chen, C.; Chen, L.; Li, P.; Li, W.; Gong, S.; Xv, Y.; Chen, R.; Tang, L. Reconstruction of three-dimensional vascular models for lymphadenectomy before surgery. Minim. Invasive Ther. Allied Technol. 2019, 29, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Mackey, A.; Ng, J.I.; Core, J.; Nguyen, L.; Cross, D.; Lim, P.; Woodfield, C.; Pugliese, R.; Ku, B. Three-Dimensional–Printed Uterine Model for Surgical Planning of a Cesarean Delivery Complicated by Multiple Myomas. Obstet. Gynecol. 2019, 133, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Sayed Aluwee, S.A.Z.B.; Zhou, X.; Kato, H.; Makino, H.; Muramatsu, C.; Hara, T.; Matsuo, M.; Fujita, H. Evaluation of pre-surgical models for uterine surgery by use of three-dimensional printing and mold casting. Radiol. Phys. Technol. 2017, 19, 222–285. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.-H.; Kim, D.-Y.; Kim, N.; Rhim, C.C.; Kim, J.-H.; Nam, J.-H. Incorporating a 3-dimensional printer into the management of early-stage cervical cancer. J. Surg. Oncol. 2016, 114, 150–152. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Deng, S.; Zhu, L.; Lu, J.-J.; Wang, Y.; Lang, J.-H. Preoperative Evaluation for Complex Female Genital Tract Malformation Using Three-dimensional Printing Technology. Chin. Med. J. 2017, 130, 2388–2390. [Google Scholar] [CrossRef]
- Scardapane, A.; Lorusso, F.; Francavilla, M.; Bettocchi, S.; Fascilla, F.D.; Angelelli, G.; Scioscia, M. Magnetic Resonance Colonography May Predict the Need for Bowel Resection in Colorectal Endometriosis. BioMed Res. Int. 2017, 2017, 5981217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Baseline Characteristics | |
Age, mean ± SD a, years | 35 ± 3 |
BMI, mean ± SD a, kg/m² | 22.3 ± 2.4 |
Parity ≥ 1, n b (%) | 0/7 (0.0%) |
Seek pregnancy, n (%) | 2/7 (28.6%) |
Preoperative estrogen progestin combination therapy, n (%) | 2/7 (28.6%) |
Preoperative progestin therapy, n (%) | 4/7 (57.1%) |
Previous surgery for endometriosis, n (%) | 3/7 (42.9%) |
Preoperative symptoms | |
Dysmenorrhea n (%) | 6/7 (85.7%) |
Chronic Pelvic Pain n (%) | 3/7 (42.9%) |
Periovulatory pain n (%) | 2/7 (28.6%) |
Dyschezia n (%) | 3/7 (42.9%) |
Hematochezia n (%) | 1/7 (14.3%) |
Constipation n (%) | 3/7 (42.9%) |
Diarrhea n (%) | 2/7 (28.6%) |
Dyspareunia n (%) | 3/7 (42.9%) |
Dysuria n (%) | 0/7 (0.0%) |
MRI c findings | |
Uterine adenomyosis n (%) | 2/7 (28.6%) |
Endometrioma n (%) | 3/7 (42.9%) |
Bilateral endometrioma n (%) | 2/7 (28.6%) |
Intestinal endometriosis n (%) | 7/7 (100.0%) |
Recto-sigmoidal endometriosis n (%) | 7/7 (100.0%) |
Maximum diameter of posterior endometriosis nodule, mean ± SD, mm | 42.9 ± 17.7 |
Bowel stenosis n (%) | 5/7 (71.4%) |
Vagina endometriosis, n (%) | 2/7 (28.6%) |
Parametrium endometriosis, n (%) | 2/7 (28.6%) |
Endometriosis of the utero-sacral ligaments, n (%) | 5/7 (71.4%) |
Hydronephrosis n (%) | 0/7 (0.0%) |
Surgical data | |
Hysterectomy, n (%) | 0/7 (0.0%) |
Monolateral salpingectomy, n (%) | 1/7 (14.3%) |
Bilateral salpingectomy, n (%) | 0/7 (0.0%) |
Ovariectomy, n (%) | 0/7 (0.0%) |
Ovarian cystectomy, n (%) | 4/7 (57.1%) |
Monolateral, n (%) | 2/7 (28.6%) |
Bilateral, n (%) | 2/7 (28.6%) |
Bladder shaving, n (%) | 0/7 (0.0%) |
Cystectomy, n (%) | 0/7 (0.0%) |
Rectal shaving, n (%) | 3/7 (42.9%) |
Anterior discoid bowel resection, n (%) | 0/7 (0.0%) |
Segmental bowel resection, n (%) | 4/7 (57.1%) |
Low bowel resection, n (%) | 1/7 (14.2%) |
Distance anus, mean ± SD, cm | 6.8 ± 3.7 |
Appendectomy, n (%) | 0/7 (0.0%) |
Monolateral ureterolysis, n (%) | 3/7 (42.9%) |
Bilateral ureterolysis, n (%) | 1/7 (14.3%) |
Ureteral nodule removal, (%) | 0/7 (0.0%) |
Ureterectomy, n (%) | 0/7 (0.0%) |
Vaginal opening, n (%) | 3/7 (42.9%) |
Surgery duration, mean ± SD, min | 198 ± 51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borghese, G.; Coppola, F.; Raimondo, D.; Raffone, A.; Travaglino, A.; Bortolani, B.; Lo Monaco, S.; Cercenelli, L.; Maletta, M.; Cattabriga, A.; et al. 3D Patient-Specific Virtual Models for Presurgical Planning in Patients with Recto-Sigmoid Endometriosis Nodules: A Pilot Study. Medicina 2022, 58, 86. https://doi.org/10.3390/medicina58010086
Borghese G, Coppola F, Raimondo D, Raffone A, Travaglino A, Bortolani B, Lo Monaco S, Cercenelli L, Maletta M, Cattabriga A, et al. 3D Patient-Specific Virtual Models for Presurgical Planning in Patients with Recto-Sigmoid Endometriosis Nodules: A Pilot Study. Medicina. 2022; 58(1):86. https://doi.org/10.3390/medicina58010086
Chicago/Turabian StyleBorghese, Giulia, Francesca Coppola, Diego Raimondo, Antonio Raffone, Antonio Travaglino, Barbara Bortolani, Silvia Lo Monaco, Laura Cercenelli, Manuela Maletta, Arrigo Cattabriga, and et al. 2022. "3D Patient-Specific Virtual Models for Presurgical Planning in Patients with Recto-Sigmoid Endometriosis Nodules: A Pilot Study" Medicina 58, no. 1: 86. https://doi.org/10.3390/medicina58010086
APA StyleBorghese, G., Coppola, F., Raimondo, D., Raffone, A., Travaglino, A., Bortolani, B., Lo Monaco, S., Cercenelli, L., Maletta, M., Cattabriga, A., Casadio, P., Mollo, A., Golfieri, R., Paradisi, R., Marcelli, E., & Seracchioli, R. (2022). 3D Patient-Specific Virtual Models for Presurgical Planning in Patients with Recto-Sigmoid Endometriosis Nodules: A Pilot Study. Medicina, 58(1), 86. https://doi.org/10.3390/medicina58010086