miRNA Expression Associated with HbF in Saudi Sickle Cell Anemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Samples
2.2. Magnetic Separation of CD71+ and CD235+ Cells
2.3. RNA Extraction and Quantification
2.4. miRNA Library Construction and Sequencing
2.5. Bioinformatic Analysis of the Raw Sequencing Data
2.6. Target Gene and Interaction Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piel, F.B.; Steinberg, M.H.; Rees, D.C. Sickle cell disease. N. Engl. J. Med. 2017, 376, 1561–1573. [Google Scholar] [CrossRef] [Green Version]
- Akinsheye, I.; Alsultan, A.; Solovieff, N.; Ngo, D.; Baldwin, C.T.; Sebastiani, P.; Chui, D.H.; Steinberg, M.H. Fetal hemoglobin in sickle cell anemia. Blood 2011, 118, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esrick, E.B.; Lehmann, L.E.; Biffi, A.; Achebe, M.; Brendel, C.; Ciuculescu, M.F.; Daley, H.; MacKinnon, B.; Morris, E.; Federico, A.; et al. Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease. N. Engl. J. Med. 2021, 384, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Cyrus, C. The Role of miRNAs as Therapeutic Tools in Sickle Cell Disease. Medicina 2021, 57, 1106. [Google Scholar] [CrossRef] [PubMed]
- Gabbianelli, M.; Testa, U.; Morsilli, O.; Pelosi, E.; Saulle, E.; Petrucci, E.; Castelli, G.; Giovinazzi, S.; Mariani, G.; Fiori, M.E.; et al. Mechanism of human Hb switching: A possible role of the kit receptor/miR 221–222 complex. Haematologica 2010, 95, 1253–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tayebi, B.; Abrishami, F.; Alizadeh, S.; Minayi, N.; Mohammadian, M.; Soleimani, M.; Dehghanifard, A.; Atwan, H.; Ajami, M.; Ajami, M. Modulation of microRNAs expression in hematopoietic stem cells treated with sodium butyrate in inducing fetal hemoglobin expression. Artif. Cells Nanomed. Biotechnol. 2017, 45, 146–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.T.; de Vasconcellos, J.F.; Yuan, J.; Byrnes, C.; Noh, S.J.; Meier, E.R.; Kim, K.S.; Rabel, A.; Kaushal, M.; Muljo, S.A.; et al. LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo. Blood 2013, 122, 1034–1041. [Google Scholar] [CrossRef] [Green Version]
- Lulli, V.; Romania, P.; Morsilli, O.; Cianciulli, P.; Gabbianelli, M.; Testa, U.; Giuliani, A.; Marziali, G. MicroRNA-486-3p regulates γ-globin expression in human erythroid cells by directly modulating BCL11A. PLoS ONE 2013, 8, e60436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparello, J.; Fabbri, E.; Bianchi, N.; Breveglieri, G.; Zuccato, C.; Borgatti, M.; Gambari, R.; Finotti, A. BCL11A mRNA Targeting by miR-210: A Possible Network Regulating γ-Globin Gene Expression. Int. J. Mol. Sci. 2017, 18, 2530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholampour, M.A.; Asadi, M.; Naderi, M.; Azarkeivan, A.; Soleimani, M.; Atashi, A. miR-30a regulates γ-globin expression in erythoid precursors of intermedia thalassemia through targeting BCL11A. Mol. Biol. Rep. 2020, 47, 3909–3918. [Google Scholar] [CrossRef] [PubMed]
- Grabher, C.; Payne, E.M.; Johnston, A.B.; Bolli, N.; Lechman, E.; Dick, J.E.; Kanki, J.P.; Look, A.T. Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. Leukemia 2011, 25, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, V.G.; Menne, T.F.; Šćepanović, D.; Vergilio, J.-A.; Ji, P.; Kim, J.; Thiru, P.; Orkin, S.H.; Lander, E.S.; Lodish, H.F. MicroRNA-15a and-16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc. Natl. Acad. Sci. USA 2011, 108, 1519–1524. [Google Scholar] [CrossRef] [Green Version]
- Habara, A.H.; Shaikho, E.M.; Steinberg, M.H. Fetal hemoglobin in sickle cell anemia: The Arab-Indian haplotype and new therapeutic agents. Am. J. Hematol. 2017, 92, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Alnafie, A.N.; Alateeq, S.A.; Al-Muhanna, F.A.; Alsulaiman, A.M.; Alfarhan, M.; Buali, W.; Vatte, C.B.; Cyrus, C.; Keating, B.; Al-Ali, A.K.; et al. Exome sequencing in high and low fetal haemoglobin Arab-Indian haplotype sickle cell disease. Br. J. Haematol. 2021, 194, e61–e64. [Google Scholar] [CrossRef] [PubMed]
- Al-Ali, A.K.; Alsulaiman, A.; Alzahrani, A.J.; Obeid, O.T.; Vatte, C.B.; Cyrus, C.; Alnafie, A.N.; Alali, R.A.; Alfarhan, M.; Mozeleski, B.; et al. Prevalence and diversity of haplotypes of sickle cell disease in the Eastern Province of Saudi Arabia. Hemoglobin 2020, 44, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, M.H. Fetal Hemoglobin in Sickle Hemoglobinopathies: High HbF Genotypes and Phenotypes. J. Clin. Med. 2020, 9, 3782. [Google Scholar] [CrossRef] [PubMed]
- Benesova, S.; Kubista, M.; Valihrach, L. Small RNA-Sequencing: Approaches and Considerations for miRNA Analysis. Diagnostics 2021, 11, 964. [Google Scholar] [CrossRef]
- Lexogen User Guide. Available online: https://www.lexogen.com/wp-content/uploads/2020/02/052UG128V0110_Small-RNA-Seq-Library-Preparation-Kit_2020-01-22.pdf (accessed on 1 May 2021).
- Vathipadiekal, V.; Farrell, J.J.; Wang, S.; Edward, H.L.; Shappell, H.; Al-Rubaish, A.M.; Al-Muhanna, F.; Naserullah, Z.; Alsuliman, A.; Qutub, H.O.; et al. A candidate transacting modulator of fetal hemoglobin gene expression in the Arab-Indian haplotype of sickle cell anemia. Am. J. Hematol. 2016, 91, 1118–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE. 2018, 13, e0206239. [Google Scholar] [CrossRef]
- Chen, S.Y.; Wang, Y.; Telen, M.J.; Chi, J.T. The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS ONE. 2008, 3, e2360. [Google Scholar] [CrossRef]
- Jain, S.; Kapetanaki, M.G.; Raghavachari, N.; Woodhouse, K.; Yu, G.; Barge, S.; Coronnello, C.; Benos, P.; Kato, G.; Kaminski, N.; et al. Expression of regulatory platelet microRNAs in patients with sickle cell disease. PLoS ONE. 2013, 8, e60932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mnika, K.; Mazandu, G.K.; Jonas, M.; Pule, G.D.; Chimusa, E.R.; Hanchard, N.A.; Wonkam, A. Hydroxyurea-induced miRNA expression in sickle cell disease patients in Africa. Front. Genet. 2019, 10, 509. [Google Scholar] [CrossRef] [Green Version]
- Piskounova, E.; Polytarchou, C.; Thornton, J.E.; LaPierre, R.J.; Pothoulakis, C.; Hagan, J.P.; Iliopoulos, D.; Gregory, R.I. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 2011, 147, 1066–1079. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.; Bartel, D.P. MicroRNA Clustering Assists Processing of Suboptimal MicroRNA Hairpins through the Action of the ERH Protein. Mol. Cell 2020, 78, 289–302.e6. [Google Scholar] [CrossRef]
- Li, B.; Zhu, X.; Ward, C.M.; Starlard-Davenport, A.; Takezaki, M.; Berry, A.; Ward, A.; Wilder, C.; Neunert, C.; Kutlar, A.; et al. MIR-144-mediated NRF2 gene silencing inhibits fetal hemoglobin expression in sickle cell disease. Exp. Hematol. 2019, 70, 85–96.e5. [Google Scholar] [CrossRef] [PubMed]
- Wongborisuth, C.; Chumchuen, S.; Sripichai, O.; Anurathaphan, U.; Sathirapongsasuti, N.; Songdej, D.; Tangprasittipap, A.; Hongeng, S. Down-regulation of the transcriptional repressor ZNF802 (JAZF1) reactivates fetal hemoglobin in β0-thalassemia/HbE. Sci. Rep. 2022, 12, 4952. [Google Scholar] [CrossRef] [PubMed]
- Vinjamur, D.S.; Yao, Q.; Cole, M.A.; McGuckin, C.; Ren, C.; Zeng, J.; Hossain, M.; Luk, K.; Wolfe, S.A.; Pinello, L.; et al. ZNF410 represses fetal globin by singular control of CHD4. Nat. Genet. 2021, 53, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Shaikho, E.M.; Perez, J.; Wilson, C.A.; Liu, L.Y.; White, M.R.; Farrell, J.J.; Chui, D.H.K.; Sebastiani, P.; Steinberg, M.H. BCL2L1 is associated with γ-globin gene expression. Blood Adv. 2019, 3, 2995–3001. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Shang, X.; Chen, D.; Pang, D.; Zhao, C.; Xu, X. MicroRNA-2355-5p regulates γ-globin expression in human erythroid cells by inhibiting KLF6. Br. J. Haematol. 2021, 193, 401–405. [Google Scholar] [CrossRef]
- Fishilevich, S.; Nudel, R.; Rappaport, N.; Hadar, R.; Plaschkes, I.; Stein, T.I.; Rosen, N.; Kohn, A.; Twik, M.; Safran, M.; et al. GeneHancer: Genome-wide integration of enhancers and target genes in GeneCards. Database 2017, 2017, bax028. [Google Scholar] [CrossRef]
- Rahim, F.; Allahmoradi, H.; Salari, F.; Shahjahani, M.; Fard, A.D.; Hosseini, S.A.; Mousakhani, H. Evaluation of Signaling Pathways Involved in γ-Globin Gene Induction Using Fetal Hemoglobin Inducer Drugs. Int. J. Hematol. Oncol. Stem Cell Res. 2013, 7, 41–46. [Google Scholar] [PubMed]
- Nakao, T.; Geddis, A.E.; Fox, N.E.; Kaushansky, K. PI3K/Akt/FOXO3a pathway contributes to thrombopoietin-induced proliferation of primary megakaryocytes in vitro and in vivo via modulation of p27Kip1. Cell Cycle 2008, 7, 257–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadri, Z.; Chretien, L.; Rooke, H.M.; Orkin, S.H.; Romeo, P.-H.; Mayeux, P.; Leboulch, P.; Chretien, S. Phosphatidylinositol 3-kinase/Akt induced by erythropoietin renders the erythroid differentiation factor GATA-1 competent for TIMP-1 gene transactivation. Mol. Cell Biol. 2005, 25, 7412–7422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiefer, C.M.; Hou, C.; Little, J.A.; Dean, A. Epigenetics of beta-globin gene regulation. Mutat. Res. 2008, 647, 68–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangerman, J.; Lee, M.S.; Yao, X.; Oteng, E.; Hsiao, C.H.; Li, W.; Zein, S.; Ofori-Acquah, S.F.; Pace, B.S. Mechanism for fetal hemoglobin induction by histone deacetylase inhibitors involves gamma-globin activation by CREB1 and ATF-2. Blood 2006, 108, 3590–3599. [Google Scholar] [CrossRef] [PubMed]
Control | HbS Homozygote | Low HbF | High HbF | Control vs. SCA | Low HbF vs. High HbF | |
---|---|---|---|---|---|---|
(N = 28) | (N = 31) | |||||
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p Value | p Value | |
Age (Y) | 33.43 ± 13.2 | 22.45 ± 16.36 | 17.34 ± 16.05 | 27.25 ± 15.64 | 0.01 | 0.092 |
HbF (%) | 0.83 ± 0.32 | 14.98 ± 9.34 | 6.35 ± 3.57 | 21.31 ± 6.73 | <0.0001 | <0.0001 |
HbA2 (%) | 3.54 ± 1.03 | 3.03 ± 0.5 | 2.91 ± 0.6 | 3.2 ± 0.29 | 0.12 | 0.193 |
RBC (103/mm3) | 5.79 ± 0.92 | 4.13 ± 0.74 | 3.9 ± 0.61 | 4.44 ± 0.83 | <0.0001 | 0.097 |
Hb (g/dL) | 12.04 ± 1.58 | 10.65 ± 1.6 | 10.92 ± 1.42 | 10.3 ± 1.82 | 0.09 | 0.366 |
Hematocrit (%) | 40.18 ± 5.98 | 31.49 ± 5.24 | 31.97 ± 4.08 | 30.91 ± 6.56 | <0.0001 | 0.648 |
MCV (fL) | 69.92 ± 8.72 | 78.17 ± 10.67 | 82.86 ± 10.14 | 72.55 ± 8.7 | 0.12 | 0.019 |
MCH (pg) | 21.06 ± 2.97 | 26.42 ± 3.95 | 28.01 ± 3.43 | 24.51 ± 3.83 | 0.01 | 0.035 |
MCHC (g/dL) | 30.04 ± 1.34 | 33.68 ± 1.56 | 33.9 ± 1.22 | 33.42 ± 1.93 | <0.0001 | 0.485 |
Platelets (103/mm3) | 393.2 ± 72.9 | 271.7 ± 112.5 | 229.33 ± 75.03 | 322.6 ± 131.82 | 0.03 | 0.05 |
Cohort | Dysregulated miRNA | Target Genes | Targeted Pathways |
---|---|---|---|
Low HbF vs. High HbF upregulated | miR-184 | BIN3, LRRC8A | Arrhythmogenic right ventricular cardiomyopathy (ARVC) Adherens junction Adrenergic signaling in cardiomyocytes Oocyte meiosis Signaling pathways regulating pluripotency of stem cells Thyroid hormone synthesis Glioma Choline metabolism in cancer Pancreatic cancer Hippo signaling pathway GnRH signaling pathway Oxytocin signaling pathway cGMP-PKG signaling pathway Mucin type O-Glycan biosynthesis Glycosphingolipid biosynthesis-ganglio series Acute myeloid leukemia Axon guidance Inflammatory mediator regulation of TRP channels Insulin secretion Salivary secretion Fatty acid elongation |
miR-3125 | BCL7A, BTF3L4, CCND2, GNL1, HDGFL3, HIF3A, HSP90AA1, IGF1R, LUC7L2, PDGFB, RPS6KA3, RPS6KA3, SFT2D2, SMG1, TRIM67, USB1 | ||
miR-3169 | TMCC1, TTL | ||
miR-3668 | BTBD3 | ||
miR-3976 | BCL7A, KLHL8 | ||
miR-4261 | NFAT5 | ||
miR-4327 | FNDC3B, TMEM41B, TP53INP1 | ||
miR-4654 | ABI2, DCAF8, PMP22, PTP4A1, YWHAZ | ||
miR-4754 | ARMCX6 | ||
miR-5787 | C10orf67, CBX6, CELF1, GTF3C1, IBA57, ILK, MAPK8IP3, MEMO1, MLX, NCKAP5L, PAK4, PNMA8B, PTGIS, RAP1GAP2, RGS6, SEC22C, SEPTIN14, TULP1 | ||
miR-6081 | ABL2, ASPH, BCL2L1, HEYL, HIF3A, HMGA1, NAB2, PLEKHA6, RPS28, UBE2D3 | ||
miR-662 | MCFD2 | ||
miR-7703 | CD226, CLOCK, FHL2, FNBP1L, GATA6, KCNN3, KIAA1958, LRPAP1, MRO, SLC12A5, SLC30A4, TEF, TFDP2, TSPAN31 | ||
miR-922 | CALU, CDK6, CMTM4, GABPA, GALNT1, GOLGA7, LRRFIP2, PAK2, PHC3, RNFT2, TMEM248, TRMT9B, UBE2H, ZBTB10, ZBTB44, ZNF154, ZNF706 | ||
Low HbF vs. High HbF downregulated | miR-3609 | AKR7A2, BCL2L11, BTF3L4, BZW1, CCDC71L, FOXJ3, KCNK10, KIAA0513, KIAA1191, MDM4, MYLIP, NFAT5, NIBAN1, NKIRAS1, POU2F1, PTPN4, RAB11FIP1, RAP1B, RUFY2, SREK1IP1, TNKS2, WNK3, ZNF655, ZNF789, ZNF394 | Drug metabolism-cytochrome P450 Transcriptional misregulation in cancer Ubiquitin mediated proteolysis Lysine degradation PI3K-Akt signaling pathway Mucin type O-Glycan biosynthesis Neurotrophin signaling pathway |
miR-483-5p | MAPK3 | ||
Control vs. High HbF upregulated | miR-382-3p | ATP13A3, CCNT1M, KLHL29, METAP1, SLC4A8 | Glycosaminoglycan biosynthesis - heparan sulfate/heparin Ubiquitin mediated proteolysis Gap junction Colorectal cancer Basal cell carcinoma Valine, leucine and isoleucine biosynthesis mTOR signaling pathway Tyrosine metabolism Long-term potentiation Endocytosis TGF-beta signaling pathway RNA degradation Osteoclast differentiation |
miR-451a | VAPA | ||
Control vs. High HbF downregulated | miR-184 | CRISPLD2, EPB41L5, FBXO28, SF1 | Lysine degradation Pentose phosphate pathway Caffeine metabolism Biosynthesis of unsaturated fatty acids Taurine and hypotaurine metabolism |
miR-542-3p | ASRGL1, EDEM3, GPATCH2L, GUCY1A2, HIPK3, MAP7, PLEKHM3, SAMD12, SLC30A6, VAPB, ZNF618 | ||
Control vs. Low HbF upregulated | miR-134-5p | ANGPTL4 | Estrogen signaling pathway Purine metabolism Rap1 signaling pathway Long-term potentiation Proteoglycans in cancer Glioma Thyroid cancer Acute myeloid leukemia Prolactin signaling pathway Non-small cell lung cancer |
miR-181c-5p | CPEB4, DDX3X, ETS1, KLF6, MECP2, MTX3, NAA50, OSBPL3, RCOR1, RPS6KA3, TRIM2 | ||
miR-370-3p | CYB561D1, LIN28A, NF1, NSUN4, PARVB, TGFBR2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cyrus, C.; Vatte, C.; Al-Nafie, A.; Chathoth, S.; Akhtar, M.S.; Darwish, M.; Almohazey, D.; AlDubayan, S.H.; Steinberg, M.H.; Al-Ali, A. miRNA Expression Associated with HbF in Saudi Sickle Cell Anemia. Medicina 2022, 58, 1470. https://doi.org/10.3390/medicina58101470
Cyrus C, Vatte C, Al-Nafie A, Chathoth S, Akhtar MS, Darwish M, Almohazey D, AlDubayan SH, Steinberg MH, Al-Ali A. miRNA Expression Associated with HbF in Saudi Sickle Cell Anemia. Medicina. 2022; 58(10):1470. https://doi.org/10.3390/medicina58101470
Chicago/Turabian StyleCyrus, Cyril, Chittibabu Vatte, Awatif Al-Nafie, Shahanas Chathoth, Mohammed S. Akhtar, Mohammed Darwish, Dana Almohazey, Saud H. AlDubayan, Martin H. Steinberg, and Amein Al-Ali. 2022. "miRNA Expression Associated with HbF in Saudi Sickle Cell Anemia" Medicina 58, no. 10: 1470. https://doi.org/10.3390/medicina58101470
APA StyleCyrus, C., Vatte, C., Al-Nafie, A., Chathoth, S., Akhtar, M. S., Darwish, M., Almohazey, D., AlDubayan, S. H., Steinberg, M. H., & Al-Ali, A. (2022). miRNA Expression Associated with HbF in Saudi Sickle Cell Anemia. Medicina, 58(10), 1470. https://doi.org/10.3390/medicina58101470