Micro-Ultrasound in the Diagnosis and Staging of Prostate and Bladder Cancer: A Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Potential Applications of MUS in PCa
3.2. Potential Applications of MUS in BCa
3.3. Strengths, Limitations, and Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haberkorn, U.; Eder, M.; Kopka, K.; Babich, J.W.; Eisenhut, M. New Strategies in Prostate Cancer: Prostate-Specific Membrane Antigen (PSMA) Ligands for Diagnosis and Therapy. Clin. Cancer Res. 2016, 22, 9–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panebianco, V.; Narumi, Y.; Altun, E.; Bochner, B.H.; Efstathiou, J.A.; Hafeez, S.; Huddart, R.; Kennish, S.; Lerner, S.; Montironi, R.; et al. Multiparametric Magnetic Resonance Imaging for Bladder Cancer: Development of VI-RADS (Vesical Imaging-Reporting And Data System). Eur. Urol. 2018, 74, 294–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottet, N.; Cornford, P.; van den Bergh, R.C.N.; Briers, E.; de Santis, M.; Gillessen, S.; Grummet, J.; Henry, A.M.; van der Kwast, T.H.; Lam, T.B.; et al. EAU Guidelines on Prostate Cancer. In Proceedings of the EAU Annual Congress Amsterdam, Amsterdam, The Netherlands, 1–4 June 2022; Eau Guidelines Office: Arnhem, The Netherlands, 2022. ISBN 978-94-92671-16-5. [Google Scholar]
- Schoentgen, N.; Califano, G.; Manfredi, C.; Romero-Otero, J.; Chun, F.K.H.; Ouzaid, I.; Hermieu, J.F.; Xylinas, E.; Verze, P. Is It Worth Starting Sexual Rehabilitation Before Radical Prostatectomy? Results From a Systematic Review of the Literature. Front. Surg. 2021, 8, 648345. [Google Scholar] [CrossRef] [PubMed]
- Massanova, M.; Robertson, S.; Barone, B.; Dutto, L.; Caputo, V.F.; Bhatt, J.R.; Ahmad, I.; Bada, M.; Obeidallah, A.; Crocetto, F. The Comparison of Imaging and Clinical Methods to Estimate Prostate Volume: A Single-Centre Retrospective Study. Urol. Int. 2021, 105, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, C.; Mart, C.; Mart, C.; Balmori, C.; Lled, E.; Quintana, L.M.; Curvo, R.; Bianco, F.J.; Ignacio, J. MpMRI-US Fusion-Guided Targeted Cryotherapy in Patients with Primary Localized Prostate Cancer: A Prospective Analysis of Oncological and Functional Outcomes. Cancers 2022, 14, 2988. [Google Scholar] [CrossRef]
- Smeenge, M.; Barentsz, J.; Cosgrove, D.; De La Rosette, J.; De Reijke, T.; Eggener, S.; Frauscher, F.; Kovacs, G.; Matin, S.F.; Mischi, M.; et al. Role of Transrectal Ultrasonography (TRUS) in Focal Therapy of Prostate Cancer: Report from a Consensus Panel. BJU Int. 2012, 110, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Rouvière, O.; Puech, P.; Renard-Penna, R.; Claudon, M.; Roy, C.; Mège-Lechevallier, F.; Decaussin-Petrucci, M.; Dubreuil-Chambardel, M.; Magaud, L.; Remontet, L.; et al. Use of Prostate Systematic and Targeted Biopsy on the Basis of Multiparametric MRI in Biopsy-Naive Patients (MRI-FIRST): A Prospective, Multicentre, Paired Diagnostic Study. Lancet Oncol. 2019, 20, 100–109. [Google Scholar] [CrossRef]
- Tulone, G.; Giannone, S.; Mannone, P.; Tognarelli, A.; Di Vico, T.; Giaimo, R.; Zucchi, A.; Rossanese, M.; Abrate, A.; Pavan, N.; et al. Comparison of Fluoroquinolones and Other Antibiotic Prophylaxis Regimens for Preventing Complications in Patients Undergoing Transrectal Prostate Biopsy. Antibiotics 2022, 11, 415. [Google Scholar] [CrossRef]
- Corfield, J.; Perera, M.; Bolton, D.; Lawrentschuk, N. 68Ga-Prostate Specific Membrane Antigen (PSMA) Positron Emission Tomography (PET) for Primary Staging of High-Risk Prostate Cancer: A Systematic Review. World J. Urol. 2018, 36, 519–527. [Google Scholar] [CrossRef]
- Manfredi, C.; Fernández-Pascual, E.; Arcaniolo, D.; Emberton, M.; Sanchez-Salas, R.; Artigas Guix, C.; Bianco, F.; Cathcart, P.; Murphy, D.G.; Couñago, F.; et al. The Role of Prostate-Specific Membrane Antigen Positron Emission Tomography/Magnetic Resonance Imaging in Primary and Recurrent Prostate Cancer: A Systematic Review of the Literature. Eur. Urol. Focus 2021, 8, 942–957. [Google Scholar] [CrossRef]
- Smith, J.A.; Scardino, P.T.; Resnick, M.I.; Hernandez, A.D.; Rose, S.C.; Egger, M.J. Transrectal Ultrasound versus Digital Rectal Examination for the Staging of Carcinoma of the Prostate: Results of a Prospective, Multi-Institutional Trial. J. Urol. 1997, 157, 902–906. [Google Scholar] [CrossRef]
- Hou, D.Y.; Wang, M.D.; Hu, X.J.; Wang, Z.J.; Zhang, N.Y.; Lv, G.T.; Wang, J.Q.; Wu, X.H.; Wang, L.; Wang, H.; et al. An Activated Excretion-Retarded Tumor Imaging Strategy towards Metabolic Organs. Bioact. Mater. 2022, 14, 110–119. [Google Scholar] [CrossRef] [PubMed]
- An, H.W.; Hou, D.; Zheng, R.; Wang, M.D.; Zeng, X.Z.; Xiao, W.Y.; Yan, T.-D.; Wang, J.Q.; Zhao, C.H.; Cheng, L.M.; et al. A Near-Infrared Peptide Probe with Tumor-Specific Excretion-Retarded Effect for Image-Guided Surgery of Renal Cell Carcinoma. ACS Nano 2020, 14, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Illiano, E.; Trama, F.; Ruffo, A.; Romeo, G.; Riccardo, F.; Crocetto, F.; Iacono, F.; Costantini, E. Testicular Shear Wave Elastography in Oligo-Astheno-Teratozoospermic Individuals: A Prospective Case–Control Study. Int. Urol. Nephrol. 2021, 53, 1773–1783. [Google Scholar] [CrossRef]
- Abouelkheir, R.T.; Abdelhamid, A.; El-Ghar, M.A.; El-Diasty, T. Imaging of Bladder Cancer: Standard Applications and Future Trends. Medicina 2021, 57, 220. [Google Scholar] [CrossRef]
- Di Meo, N.A.; Loizzo, D.; Pandolfo, S.D.; Autorino, R.; Ferro, M.; Porta, C.; Stella, A.; Bizzoca, C.; Vincenti, L.; Crocetto, F.; et al. Metabolomic Approaches for Detection and Identification of Biomarkers and Altered Pathways in Bladder Cancer. Int. J. Mol. Sci. 2022, 23, 4173. [Google Scholar] [CrossRef]
- Trinh, T.W.; Glazer, D.I.; Sadow, C.A.; Sahni, V.A.; Geller, N.L.; Silverman, S.G. Bladder Cancer Diagnosis with CT Urography: Test Characteristics and Reasons for False-Positive and False-Negative Results. Abdom. Radiol. 2018, 43, 663–671. [Google Scholar] [CrossRef]
- Kundra, V.; Silverman, P.M. Imaging in the Diagnosis, Staging, and Follow-up of Cancer of the Urinary Bladder. Am. J. Roentgenol. 2003, 180, 1045–1054. [Google Scholar] [CrossRef]
- Correas, J.M.; Halpern, E.J.; Barr, R.G.; Ghai, S.; Walz, J.; Bodard, S.; Dariane, C.; de la Rosette, J. Advanced Ultrasound in the Diagnosis of Prostate Cancer. World J. Urol. 2021, 39, 661–676. [Google Scholar] [CrossRef]
- Pavlovich, C.P.; Hyndman, M.E.; Eure, G.; Ghai, S.; Caumartin, Y.; Herget, E.; Young, J.D.; Wiseman, D.; Caughlin, C.; Gray, R.; et al. A Multi-institutional Randomized Controlled Trial Comparing First-generation Transrectal High-resolution Micro-ultrasound with Conventional Frequency Transrectal Ultrasound for Prostate Biopsy. BJUI Compass 2021, 2, 126–133. [Google Scholar] [CrossRef]
- Pavlovich, C.P.; Cornish, T.C.; Mullins, J.K.; Fradin, J.; Mettee, L.Z.; Connor, J.T.; Reese, A.C.; Askin, F.B.; Luck, R.; Epstein, J.I.; et al. High-Resolution Transrectal Ultrasound: Pilot Study of a Novel Technique for Imaging Clinically Localized Prostate Cancer. Urol. Oncol. Semin. Orig. Investig. 2014, 32, 34.e27–34.e32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghai, S.; Eure, G.; Fradet, V.; Hyndman, M.E.; McGrath, T.; Wodlinger, B.; Pavlovich, C.P. Assessing Cancer Risk on Novel 29 MHz Micro-Ultrasound Images of the Prostate: Creation of the Micro-Ultrasound Protocol for Prostate Risk Identification. J. Urol. 2016, 196, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, R.; Wu, Y.; Jing, J.; Chen, S.; Zhang, G.; Xu, B.; Liu, C.; Chen, M. Micro-Ultrasound Imaging for Accuracy of Diagnosis in Clinically Significant Prostate Cancer: A Meta-Analysis. Front. Oncol. 2019, 9, 1368. [Google Scholar] [CrossRef] [PubMed]
- Dariane, C.; Ploussard, G.; Barret, E.; Beauval, J.-B.; Brureau, L.; Créhange, G.; Fromont, G.; Gauthé, M.; Mathieu, R.; Renard-Penna, R.; et al. Micro-Ultrasound-Guided Biopsies versus Systematic Biopsies in the Detection of Prostate Cancer: A Systematic Review and Meta-Analysis. World J. Urol. 2022; in press. [Google Scholar] [CrossRef]
- Lughezzani, G.; Saita, A.; Lazzeri, M.; Paciotti, M.; Maffei, D.; Lista, G.; Hurle, R.; Buffi, N.M.; Guazzoni, G.; Casale, P. Comparison of the Diagnostic Accuracy of Micro-Ultrasound and Magnetic Resonance Imaging/Ultrasound Fusion Targeted Biopsies for the Diagnosis of Clinically Significant Prostate Cancer. Eur. Urol. Oncol. 2019, 2, 329–332. [Google Scholar] [CrossRef]
- Klotz, L.; Lughezzani, G.; Maffei, D.; Sánchez, A.; Pereira, J.G.; Staerman, F.; Cash, H.; Luger, F.; Lopez, L.; Sanchez-Salas, R.; et al. Comparison of Micro-Ultrasound and Multiparametric Magnetic Resonance Imaging for Prostate Cancer: A Multicenter, Prospective Analysis. Can. Urol. Assoc. J. 2020, 15, E11–E16. [Google Scholar] [CrossRef]
- Sountoulides, P.; Pyrgidis, N.; Polyzos, S.A.; Mykoniatis, I.; Asouhidou, E.; Papatsoris, A.; Dellis, A.; Anastasiadis, A.; Lusuardi, L.; Hatzichristou, D. Micro-Ultrasound-Guided vs Multiparametric Magnetic Resonance Imaging-Targeted Biopsy in the Detection of Prostate Cancer: A Systematic Review and Meta-Analysis. J. Urol. 2021, 205, 1254–1262. [Google Scholar] [CrossRef]
- You, C.; Li, X.; Du, Y.; Peng, L.; Wang, H.; Zhang, X.; Wang, A. The Microultrasound-Guided Prostate Biopsy in Detection of Prostate Cancer: A Systematic Review and Meta-Analysis. J. Endourol. 2022, 36, 394–402. [Google Scholar] [CrossRef]
- Claros, O.R.; Tourinho-Barbosa, R.R.; Fregeville, A.; Gallardo, A.C.; Muttin, F.; Carneiro, A.; Stabile, A.; Moschini, M.; Macek, P.; Cathala, N.; et al. Comparison of Initial Experience with Transrectal Magnetic Resonance Imaging Cognitive Guided Micro-Ultrasound Biopsies versus Established Transperineal Robotic Ultrasound Magnetic Resonance Imaging Fusion Biopsies for Prostate Cancer. J. Urol. 2020, 203, 918–925. [Google Scholar] [CrossRef]
- Avolio, P.P.; Lughezzani, G.; Paciotti, M.; Maffei, D.; Uleri, A.; Frego, N.; Hurle, R.; Lazzeri, M.; Saita, A.; Guazzoni, G.; et al. The Use of 29 MHz Transrectal Micro-Ultrasound to Stratify the Prostate Cancer Risk in Patients with PI-RADS III Lesions at Multiparametric MRI: A Single Institutional Analysis. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 832.e1–832.e7. [Google Scholar] [CrossRef]
- Fasulo, V.; Buffi, N.M.; Regis, F.; Paciotti, M.; Persico, F.; Maffei, D.; Uleri, A.; Saita, A.; Casale, P.; Hurle, R.; et al. Use of High-Resolution Micro-Ultrasound to Predict Extraprostatic Extension of Prostate Cancer Prior to Surgery: A Prospective Single-Institutional Study. World J. Urol. 2022, 40, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Laurence Klotz, C.M. Can High Resolution Micro-Ultrasound Replace MRI in the Diagnosis of Prostate Cancer? Eur. Urol. Focus 2020, 6, 419–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhu, S.; Cui, X.; Xu, W.; Kong, C.; Zhang, Z.; Qian, W. Identifying Non-Muscle-Invasive and Muscle-Invasive Bladder Cancer Based on Blood Serum Surface-Enhanced Raman Spectroscopy. Biomed. Opt. Express 2019, 10, 3533–3544. [Google Scholar] [CrossRef] [PubMed]
- Cumberbatch, M.G.K.; Foerster, B.; Catto, J.W.F.; Kamat, A.M.; Kassouf, W.; Jubber, I.; Shariat, S.F.; Sylvester, R.J.; Gontero, P. Repeat Transurethral Resection in Non–Muscle-Invasive Bladder Cancer: A Systematic Review [Figure Presented]. Eur. Urol. 2018, 73, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Bricio, T.G.M.; Gouvea, G.L.; Barros, R.V.; Chahud, F.; Elias, J.; Reis, R.B.; Muglia, V.F. What Is the Impact of Dynamic Contrast-Enhancement Sequence in the Vesical Imaging, Reporting and Data System (VI-RADS)? A Subgroup Analysis. Cancer Imaging 2022, 22, 20. [Google Scholar] [CrossRef]
- Sim, K.C.; Sung, D.J. Role of Magnetic Resonance Imaging in Tumor Staging and Follow-up for Bladder Cancer. Transl. Androl. Urol. 2020, 9, 2890–2907. [Google Scholar] [CrossRef]
- Saita, A.; Lughezzani, G.; Buffi, N.M.; Hurle, R.; Nava, L.; Colombo, P.; Diana, P.; Fasulo, V.; Paciotti, M.; Elefante, G.M.; et al. Assessing the Feasibility and Accuracy of High-Resolution Microultrasound Imaging for Bladder Cancer Detection and Staging. Eur. Urol. 2020, 77, 727–732. [Google Scholar] [CrossRef]
First Author and Publication Year | Objectives | Main Findings |
---|---|---|
C. P. Pavlovich et al., 2014 [22] | Proposal of MUS for diagnosis of PCa | MUS had higher sensitivity (65.2% vs. 37.7%) and specificity (71.6% vs. 65.4%) than conventional US in the diagnosis of PCa. |
S. Ghai et al., 2016 [23] | Proposal of PRI-MUS | 10.1% increase (95% CI 9.3–10.8) in the probability of csPCa. |
M. Zhang et al., 2019 [24] | Assessment of the accuracy of MUS-guided prostate biopsy in the diagnosis of csPCa (meta-analysis) | MUS pooled sensitivity, specificity, DOR, and an area under the SROC of 0.91, 0.49, 10, and 0.82, respectively. MUS has a superior ability to diagnose csPCa. |
G. Lughezzani et al., 2019 [26] | Evaluation of diagnostic accuracy of MUS-guided prostate biopsy and MRI/US fusion-guided biopsy in detecting csPCa | PCa was diagnosed in 56 patients (54%) and csPCA in 35 (34%). MUS sensitivity for csPCA detection was 94%, with 33/35 csPCA cases correctly identified. The negative predictive value was 90%, while the positive predictive value was 40% and the specificity was 28%. Of the 61 targeted zones concordant between MUS and mpMRI, 24 were csPCA. Discordant targeted lesions led to csPCA discovery by MUS in three cases and mpMRI in four cases. Both techniques missed one case for which csPCA was diagnosed by systematic biopsies only. |
L. Klotz et al., 2020 [27] | Comparison of mpMRI and MUS for the detection of PCa | MUS and mpMRI sensitivity was 94% vs. 90%, respectively (p = 0.03), and NPV was 85% vs. 77%, respectively. Specificities of MUS and MRI were both 22%, with similar PPV (44% vs. 43%). |
O. R. Claros et al., 2020 [30] | Comparison of the DR of MRI/MUS cognitive-guided biopsies and MRI/US fusion-guided biopsies | In targeted biopsies, MUS biopsy cases presented higher detection of csPCa than the robotic ultrasound magnetic resonance imaging fusion biopsy group (38% vs. 23%, p = 0.02). |
C. P. Pavlovich et al., 2021 [21] | Comparison of MUS vs. conventional US-guided prostate biopsy in the detection of csPCa | Detection of csPCa with MUS was not superior in the overall population (34.6% vs. 36.6%; p = 0.21). |
P. Sountoulides et al., 2021 [28] | Comparison of DR of MUS vs. mpMRI-guided prostate biopsy (meta-analysis) | The pooled DR for International Society of Urological Pathology Grade Group ≥2 prostate cancer was 1.05 (95% CI 0.93–1.19, I2 = 0%), 1.25 (95% CI 0.95–1.64, I2 = 0%) for Grade Group ≥3 and 0.94 (95% CI 0.73–1.22, I2 = 0%) for clinically insignificant (Grade Group 1) prostate cancer. The overall DR for PCa was 0.99 (95% CI 0.89–1.11, I2 = 0%). |
C. You et al., 2021 [29] | Comparison of DR of MUS vs. mpMRI-guided prostate biopsy (meta-analysis) | The meta-analysis showed that no significant difference was found between MUS and mpMRI-TB in the total detection of PCa (odds ratio (OR): 1.01, 95% confidence interval (CI): 0.85–1.21, p = 0.89), of grading groups (GGs) = 1 (OR: 0.92, 95% CI: 0.68–1.25, p = 0.59), of GGs ≥2 (OR:1.01, 95% CI: 0.83–1.22, p = 0.92), and of GGs ≥3 (OR: 1.31, 95% CI: 0.95–1.81, p = 0.10). |
P. P. Avolio et al., 2021 [31] | Evaluation of the ability of MUS to substratify the risk of csPCa in patients with PI-RADS 3 lesions on mpMRI | MUS showed a high sensitivity and negative predictive value (100%), while its specificity and positive predictive value were 33.7% and 27.2%, respectively. Among patients without lesions at MUS, 25 (83.3%) did not harbor PCa, while 5 (16.7%) patients were diagnosed with a Gleason score of 6 PCa, with no patients harboring csPCa. Using MUS, the csPCa detection would have remained at 100% while reducing the detection of insignificant PCa to a 23.8% extent (n = 5). |
C. Dariane et al., 2022 [25] | MUS-guided vs. systematic prostate biopsy in PCa diagnosis (meta-analysis) | Overall, PCa was detected in 56–71% of men, with 31.3–49% having csPCa and 17–25.4% having non-csPCa. Regarding csPCa, MUS-guided biopsies identified 196 and SB 169 cases (DR: 1.18, 95% CI 0.83–1.68, I2 = 69%), favoring MUS-guided biopsies; regarding non-csPCa, MUS-guided biopsies identified 62 and SB 115 cases (DR: 0.55, 95% CI 0.41–0.73, I2 = 0%), also favoring MUS-guided biopsies by decreasing unnecessary diagnosis. |
V. Fasulo et al., 2022 [32] | Evaluation of the accuracy of MUS in predicting EPE | The presence of visible extracapsular extension at MUS predicted EPE with a sensitivity of 72.1% and a specificity of 88%, an NPV of 80.5%, and a PPV of 83.0%, with an AUC of 80.4%. |
Pros | Cons |
---|---|
Non-invasive Absence of ionizing radiation No contrast agents Short duration * Practicable directly from the urologist (in addition to the radiologist) High spatial resolution Real-time visualization Cost-effective * Readily accessible Encouraging preliminary data ** | Limited evidence, especially for BCa ** Need for specific technology/devices and training: current limited availability Need for further standardization of technique and interpretation Operator dependent technique Impossibility of histological sampling (without other complementary procedures) Lithotomic position: prolonged positioning time, need for an adequate medical bed, contraindication in case of hip problems Endocavitary approach: reduced patient comfort, contraindication in case of anal or vaginal stricture Need for rectal (e.g., enema) or bladder (e.g., filling with saline) preparation Reduced wave penetration depth (6 cm) Specific limitations referred to PCa: possible US signal loss in the deeper anterior zone in case of large prostate, low specificity (high possibility of misdiagnosis) Specific limitations referred to BCa: limited bladder window in case of large prostate, suboptimal evaluation of lesions in the lateral bladder wall, possible difficulty in identifying flat lesions |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calace, F.P.; Napolitano, L.; Arcaniolo, D.; Stizzo, M.; Barone, B.; Crocetto, F.; Olivetta, M.; Amicuzi, U.; Cirillo, L.; Rubinacci, A.; et al. Micro-Ultrasound in the Diagnosis and Staging of Prostate and Bladder Cancer: A Comprehensive Review. Medicina 2022, 58, 1624. https://doi.org/10.3390/medicina58111624
Calace FP, Napolitano L, Arcaniolo D, Stizzo M, Barone B, Crocetto F, Olivetta M, Amicuzi U, Cirillo L, Rubinacci A, et al. Micro-Ultrasound in the Diagnosis and Staging of Prostate and Bladder Cancer: A Comprehensive Review. Medicina. 2022; 58(11):1624. https://doi.org/10.3390/medicina58111624
Chicago/Turabian StyleCalace, Francesco Paolo, Luigi Napolitano, Davide Arcaniolo, Marco Stizzo, Biagio Barone, Felice Crocetto, Michelangelo Olivetta, Ugo Amicuzi, Luigi Cirillo, Andrea Rubinacci, and et al. 2022. "Micro-Ultrasound in the Diagnosis and Staging of Prostate and Bladder Cancer: A Comprehensive Review" Medicina 58, no. 11: 1624. https://doi.org/10.3390/medicina58111624
APA StyleCalace, F. P., Napolitano, L., Arcaniolo, D., Stizzo, M., Barone, B., Crocetto, F., Olivetta, M., Amicuzi, U., Cirillo, L., Rubinacci, A., Lecce, A., Pandolfo, S. D., Langella, N. A., Persico, F., Trama, F., Quattrone, C., Bottone, F., Spirito, L., De Sio, M., & Manfredi, C. (2022). Micro-Ultrasound in the Diagnosis and Staging of Prostate and Bladder Cancer: A Comprehensive Review. Medicina, 58(11), 1624. https://doi.org/10.3390/medicina58111624