Association between Serum Oxytocin, Bone Mineral Density and Body Composition in Chinese Adult Females
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of Lifestyle Factors
2.3. Measurement of BMD and Body Composition
2.4. Measurement of OT and Biochemical Markers
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Associations between Serum OT Level and BMD
3.3. Associations between Serum OT Level and Body Composition
3.4. Associations between Serum OT Level and Osteoporosis
3.5. Serum OT Is a Determinant of Variation in BMD in Premenopausal Adult Females
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMD | Bone mineral density |
CV | Coefficient of variation |
CI | Confidence interval |
DXA | Dual-energy X-ray absorptiometry |
E2 | Estradiol, FSH: Follicle-stimulating hormone |
FSHR | Follicle-stimulating hormone receptor |
L1–4 | Lumbar spine 1–4 |
OR | Odds ratio |
OT | Oxytocin |
OTR | Oxytocin receptor |
pQCT | Peripheral quantitative computed tomography |
References
- Dawson-Hughes, B.; National Osteoporosis Foundation Guide Committee. A revised clinician’s guide to the prevention and treatment of osteoporosis. J. Clin. Endocrinol. Metab. 2008, 93, 2463–2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilesanmi-Oyelere, B.L.; Coad, J.; Roy, N.C.; Kruger, M.C. Dietary Patterns, Body Composition, and Bone Health in New Zealand Postmenopausal Women. Front. Nutr. 2020, 7, 563689. [Google Scholar] [CrossRef]
- Heaney, R.P. Bone health. Am. J. Clin. Nutr. 2007, 85, 300S–303S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, E.; Marians, R.C.; Yu, W.; Wu, X.-B.; Ando, T.; Li, Y.; Iqbal, J.; Eldeiry, L.; Rajendren, G.; Blair, H.C.; et al. TSH is a negative regulator of skeletal remodeling. Cell 2003, 115, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Menagh, P.J.; Turner, R.T.; Jump, D.B.; Wong, C.P.; Lowry, M.B.; Yakar, S.; Rosen, C.J.; Iwaniec, U.T. Growth hormone regulates the balance between bone formation and bone marrow adiposity. J. Bone Miner. Res. 2010, 25, 757–768. [Google Scholar] [CrossRef]
- Winter, E.M.; Ireland, A.; Butterfield, N.C.; Haffner-Luntzer, M.; Horcajada, M.-N.; Veldhuis-Vlug, A.G.; Oei, L.; Colaianni, G.; Bonnet, N. Pregnancy and lactation, a challenge for the skeleton. Endocr. Connect. 2020, 9, R143–R157. [Google Scholar] [CrossRef]
- Colaianni, G.; Cuscito, C.; Colucci, S. FSH and TSH in the regulation of bone mass: The pituitary/immune/bone axis. Clin. Dev. Immunol. 2013, 2013, 382698. [Google Scholar] [CrossRef] [Green Version]
- Tamma, R.; Sun, L.; Cuscito, C.; Lu, P.; Corcelli, M.; Li, J.; Colaianni, G.; Moonga, S.S.; Di Benedetto, A.; Grano, M.; et al. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proc. Natl. Acad. Sci. USA 2013, 110, 18644–18649. [Google Scholar] [CrossRef] [Green Version]
- Colaianni, G.; Tamma, R.; Di Benedetto, A.; Yuen, T.; Sun, L.; Zaidi, M.; Zallone, A. The oxytocin-bone axis. J. Neuroendocr. 2014, 26, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Amri, E.Z.; Pisani, D.F. Control of bone and fat mass by oxytocin. Horm. Mol. Biol. Clin. Investig. 2016, 28, 95–104. [Google Scholar] [CrossRef]
- Nishimori, K.; Young, L.J.; Guo, Q.; Wang, Z.; Insel, T.R.; Matzuk, M.M. Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc. Natl. Acad. Sci. USA 1996, 93, 11699–11704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takayanagi, Y.; Yoshida, M.; Bielsky, I.F.; Ross, H.E.; Kawamata, M.; Onaka, T.; Yanagisawa, T.; Kimura, T.; Matzuk, M.M.; Young, L.J.; et al. Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc. Natl. Acad. Sci. USA 2005, 102, 16096–16101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copland, J.A.; Ives, K.L.; Simmons, D.J.; Soloff, M.S. Functional oxytocin receptors discovered in human osteoblasts. Endocrinology 1999, 140, 4371–4374. [Google Scholar] [CrossRef] [PubMed]
- Colucci, S.; Colaianni, G.; Mori, G.; Grano, M.; Zallone, A. Human osteoclasts express oxytocin receptor. Biochem. Biophys. Res. Commun. 2002, 297, 442–445. [Google Scholar] [CrossRef]
- Tamma, R.; Colaianni, G.; Zhu, L.-L.; DiBenedetto, A.; Greco, G.; Montemurro, G.; Patano, N.; Strippoli, M.; Vergari, R.; Mancini, L.; et al. Oxytocin is an anabolic bone hormone. Proc. Natl. Acad. Sci. USA 2009, 106, 7149–7154. [Google Scholar] [CrossRef] [Green Version]
- Colli, V.C.; Okamoto, R.; Spritzer, P.M.; Dornelles, R.C. Oxytocin promotes bone formation during the alveolar healing process in old acyclic female rats. Arch. Oral Biol. 2012, 57, 1290–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breuil, V.; Amri, E.-Z.; Panaia-Ferrari, P.; Testa, J.; Elabd, C.; Albert-Sabonnadière, C.; Roux, C.H.; Ailhaud, G.; Dani, C.; Carle, G.F.; et al. Oxytocin and bone remodelling: Relationships with neuropituitary hormones, bone status and body composition. Jt. Bone Spine 2011, 78, 611–615. [Google Scholar] [CrossRef]
- Breuil, V.; Panaia-Ferrari, P.; Fontas, E.; Roux, C.; Kolta, S.; Eastell, R.; Ben Yahia, H.; Faure, S.; Gossiel, F.; Benhamou, C.-L.; et al. Oxytocin, a new determinant of bone mineral density in post-menopausal women: Analysis of the OPUS cohort. J. Clin. Endocrinol. Metab. 2014, 99, E634–E641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, E.A.; Donoho, D.A.; Blum, J.I.; Meenaghan, E.M.; Misra, M.; Herzog, D.B.; Sluss, P.M.; Miller, K.K.; Klibanski, A. Decreased nocturnal oxytocin levels in anorexia nervosa are associated with low bone mineral density and fat mass. J. Clin. Psychiatry 2011, 72, 1546–1551. [Google Scholar]
- Maejima, Y.; Iwasaki, Y.; Yamahara, Y.; Kodaira, M.; Sedbazar, U.; Yada, T. Peripheral oxytocin treatment ameliorates obesity by reducing food intake and visceral fat mass. Aging 2011, 3, 1169–1177. [Google Scholar] [CrossRef]
- Thienel, M.; Fritsche, A.; Heinrichs, M.; Peter, A.; Ewers, M.; Lehnert, H.; Born, J.; Hallschmid, M. Oxytocin’s inhibitory effect on food intake is stronger in obese than normal-weight men. Int. J. Obes. 2016, 40, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, C.; Chen, Q.; Chen, X.; Xu, Z.; Wu, J.; Cai, D. Treatment of obesity and diabetes using oxytocin or analogs in patients and mouse models. PLoS ONE 2013, 8, e61477. [Google Scholar] [CrossRef] [Green Version]
- Dvornyk, V.; Liu, X.-H.; Shen, H.; Lei, S.-F.; Zhao, L.-J.; Huang, Q.-R.; Qin, Y.-J.; Jiang, D.-K.; Long, J.-R.; Zhang, Y.-Y.; et al. Differentiation of Caucasians and Chinese at bone mass candidate genes: Implication for ethnic difference of bone mass. Ann. Hum. Genet. 2003, 67 Pt 3, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.F.; Chen, Y.; Xiong, D.H.; Li, L.M.; Deng, H.W. Ethnic difference in osteoporosis-related phenotypes and its potential underlying genetic determination. J. Musculoskelet. Neuronal Interact. 2006, 6, 36–46. [Google Scholar] [PubMed]
- Cheng, Q.; Tang, W.; Sheu, T.J.; Du, Y.; Gan, J.; Li, H.; Hong, W.; Zhu, X.; Xue, S.; Zhang, X. Circulating TGF-beta1 levels are negatively correlated with sclerostin levels in early postmenopausal women. Clin. Chim. Acta 2016, 455, 87–92. [Google Scholar] [CrossRef]
- Hong, W.; Cheng, Q.; Zhu, X.; Zhu, H.; Li, H.; Zhang, X.; Zheng, S.; Du, Y.; Tang, W.; Xue, S.; et al. Prevalence of Sarcopenia and Its Relationship with Sites of Fragility Fractures in Elderly Chinese Men and Women. PLoS ONE. 2015, 10, e0138102. [Google Scholar] [CrossRef] [Green Version]
- Kanis, J.A.; Melton, L.J., 3rd; Christiansen, C.; Johnston, C.C.; Khaltaev, N. The diagnosis of osteoporosis. J. Bone Miner. Res. 1994, 9, 1137–1141. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Schorr, M.; Marengi, D.A.; Pulumo, R.L.; Yu, E.; Eddy, K.T.; Klibanski, A.; Miller, K.K.; Lawson, E.A. Oxytocin and Its Relationship to Body Composition, Bone Mineral Density, and Hip Geometry across the Weight Spectrum. J. Clin. Endocrinol. Metab. 2017, 102, 2814–2824. [Google Scholar] [CrossRef] [Green Version]
- Johannesdottir, F.; Thrall, E.; Muller, J.; Keaveny, T.M.; Kopperdahl, D.L.; Bouxsein, M.L. Comparison of non-invasive assessments of strength of the proximal femur. Bone 2017, 105, 93–102. [Google Scholar] [CrossRef]
- Fernandes, F.; Stringhetta-Garcia, C.T.; Peres-Ueno, M.J.; Fernandes, F.; Nicola, A.C.; Castoldi, R.C.; Ozaki, G.; Louzada, M.J.Q.; Chaves-Neto, A.H.; Ervolino, E.; et al. Oxytocin and bone quality in the femoral neck of rats in periestropause. Sci. Rep. 2020, 10, 7937. [Google Scholar] [CrossRef] [PubMed]
- Zebaze, R.M.; Ghasem-Zadeh, A.; Bohte, A.; Iuliano-Burns, S.; Mirams, M.; Price, R.I.; Mackie, E.J.; Seeman, E. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: A cross-sectional study. Lancet 2010, 375, 1729–1736. [Google Scholar] [CrossRef]
- Sun, L.; Lizneva, D.; Ji, Y.; Colaianni, G.; Hadelia, E.; Gumerova, A.; Ievleva, K.; Kuo, T.-C.; Korkmaz, F.; Ryu, V.; et al. Oxytocin regulates body composition. Proc. Natl. Acad. Sci. USA 2019, 116, 26808–26815. [Google Scholar] [CrossRef]
- Colaianni, G.; Sun, L.; Zaidi, M.; Zallone, A. Oxytocin and bone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R970–R977. [Google Scholar] [CrossRef]
- Colaianni, G.; Sun, L.; Di Benedetto, A.; Tamma, R.; Zhu, L.-L.; Cao, J.; Grano, M.; Yuen, T.; Colucci, S.; Cuscito, C.; et al. Bone marrow oxytocin mediates the anabolic action of estrogen on the skeleton. J. Biol. Chem. 2012, 287, 29159–29167. [Google Scholar] [CrossRef] [Green Version]
- Maestrini, S.; Mele, C.; Mai, S.; Vietti, R.; Di Blasio, A.; Castello, L.M.; Surico, D.; Aimaretti, G.; Scacchi, M.; Marzullo, P. Plasma Oxytocin Concentration in Pre- and Postmenopausal Women: Its Relationship with Obesity, Body Composition and Metabolic Variables. Obes. Facts. 2018, 11, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Randolph, J.F.; Zheng, H.; Sowers, M.R.; Crandall, C.; Crawford, S.; Gold, E.B.; Vuga, M. Change in follicle-stimulating hormone and estradiol across the menopausal transition: Effect of age at the final menstrual period. J. Clin. Endocrinol. Metab. 2011, 96, 746–754. [Google Scholar] [CrossRef]
- Iqbal, J.; Sun, L.; Kumar, T.R.; Blair, H.C.; Zaidi, M. Follicle-stimulating hormone stimulates TNF production from immune cells to enhance osteoblast and osteoclast formation. Proc. Natl. Acad. Sci. USA 2006, 103, 14925–14930. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.L.; Blair, H.; Cao, J.; Yuen, T.; Latif, R.; Guo, L.; Tourkova, I.L.; Li, J.; Davies, T.F.; Sun, L.; et al. Blocking antibody to the beta-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proc. Natl. Acad. Sci. USA 2012, 109, 14574–14579. [Google Scholar] [CrossRef] [Green Version]
- Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: Structure, function, and regulation. Physiol. Rev. 2001, 81, 629–683. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, M.; Broderick, T.L.; Gutkowska, J. Oxytocin and cardioprotection in diabetes and obesity. BMC Endocr. Disord. 2016, 16, 34. [Google Scholar] [CrossRef] [PubMed]
- Elabd, C.; Basillais, A.; Beaupied, H.; Breuil, V.; Wagner, N.; Scheideler, M.; Zaragosi, L.-E.; Massiéra, F.; Lemichez, E.; Trajanoski, Z.; et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells 2008, 26, 2399–2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beranger, G.E.; Pisani, D.F.; Castel, J.; Djedaini, M.; Battaglia, S.; Amiaud, J.; Boukhechba, F.; Ailhaud, G.; Michiels, J.-F.; Heymann, D.; et al. Oxytocin reverses ovariectomy-induced osteopenia and body fat gain. Endocrinology 2014, 155, 1340–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aulinas, A.; Guarda, F.J.; Yu, E.W.; Haines, M.S.; Asanza, E.; Silva, L.; Tritos, N.A.; Verbalis, J.; Miller, K.K.; Lawson, E.A. Lower Oxytocin Levels Are Associated with Lower Bone Mineral Density and Less Favorable Hip Geometry in Hypopituitary Men. Neuroendocrinology 2021, 111, 87–98. [Google Scholar] [CrossRef]
- Lenz, B.; Weinland, C.; Bach, P.; Kiefer, F.; Grinevich, V.; Zoicas, I.; Kornhuber, J.; Mühle, C. Oxytocin blood concentrations in alcohol use disorder: A cross-sectional, longitudinal, and sex-separated study. Eur. Neuropsychopharmacol. 2021, 51, 55–67. [Google Scholar] [CrossRef]
Total (n = 149) | Menopause Status | |||
---|---|---|---|---|
Premenopausal Women (n = 74) | Postmenopausal Women (n = 75) | p Values | ||
Age (years) | 51.17 ± 18.39 | 33.55 ± 8.75 | 67.89 ± 8.63 | <0.001 |
BMI (kg/m2) | 22.947 ± 2.684 | 22.797 ± 2.490 | 22.978 ± 2.897 | 0.754 |
Lifestyle (%, n) | ||||
Physical activity | 34.22 (51/149) | 33.78 (25/74) | 34.67 (26/75) | 0.923 |
Alcohol consumption | 1.34 (2/149) | 1.35 (1/74) | 1.33 (1/75) | 1.000 |
Dairy intake | 27.52 (41/149) | 24.32 (18/74) | 30.67 (23/75) | 0.897 |
Smoking status | 0.67 (1/149) | 1.35 (1/74) | 0 (0/75) | 0.339 |
BMD (g/cm2) | ||||
L1–4 | 0.898 ± 0.163 | 1.013 ± 0.106 | 0.782 ± 0.124 | <0.001 |
Femoral neck | 0.714 ± 0.132 | 0.780 ± 0.114 | 0.649 ± 0.116 | <0.001 |
Total hip | 0.846 ± 0.135 | 0.898 ± 0.107 | 0.794 ± 0.139 | <0.001 |
Body composition | ||||
Total fat mass(kg) | 20.131 ± 4.694 | 19.881 ± 4.979 | 20.287 ± 4.402 | 0.612 |
Percentage of total fat mass(%) | 33.482 ± 4.498 | 32.407 ± 4.653 | 34.518 ± 4.141 | 0.006 |
Total lean mass(kg) | 37.692 ± 4.466 | 38.983 ± 4.566 | 36.290 ± 3.897 | <0.001 |
Percentage of total lean mass(%) | 65.412 ± 7.548 | 66.635 ± 9.333 | 64.136 ± 4.807 | 0.051 |
Waist-hip ratio | 1.013 ± 0.160 | 0.917 ± 0.125 | 1.107 ± 0.137 | <0.001 |
Hormone levels | ||||
E2 (pmol/L) | 78.00 (37, 195) | 174 (115, 325) | 37 (37,41) | <0.001a |
Oxytocin (pg/mL) | 563.32 (240.73, 1072.07) | 777.01 (288.48, 1145.44) | 364.05 (206.20, 729.08) | 0.008a |
BMD (g/cm2) | ||||||
---|---|---|---|---|---|---|
Oxytocin | L1–4 β (95% CI) | p Values | Femoral Neck β (95% CI) | p Values | Total Hip β (95% CI) | p Values |
Total Women a | ||||||
Tertile 1 | Reference | Reference | Reference | |||
Tertile 2 | −0.002 (−0.047, 0.044) | 0.948 | 0.025 (−0.020, 0.069) | 0.274 | 0.027 (−0.022, 0.076) | 0.277 |
Tertile 3 | 0.040 (−0.007, 0.088) | 0.094 | 0.087 (0.041, 0.134) | <0.001 | 0.083 (0.032, 0.133) | 0.002 |
Premenopausal women | ||||||
Tertile 1 | Reference | Reference | Reference | |||
Tertile 2 | −0.007 (−0.065, 0.051) | 0.820 | 0.057 (−0.006, 0.119) | 0.075 | 0.050 (−0.008, 0.108) | 0.091 |
Tertile 3 | 0.059 (−0.001, 0.119) | 0.054 | 0.087(0.023, 0.151) | 0.009 | 0.098(0.038, 0.158) | 0.002 |
Postmenopausal women | ||||||
Tertile 1 | Reference | Reference | Reference | |||
Tertile 2 | 0.022 (−0.051, 0.094) | 0.553 | 0.063 (−0.003, 0.129) | 0.063 | 0.057 (−0.023, 0.137) | 0.158 |
Tertile 3 | 0.034 (−0.039, 0.107) | 0.356 | 0.087 (0.021, 0.154) | 0.011 | 0.090 (0.009, 0.171) | 0.030 |
Body Composition | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Oxytocin | Total Fat Massβ (95% CI) | p Values | Total Lean Mass β (95% CI) | p Values | Percentage of Total Fat Mass β (95% CI) | p Values | Percentage of Total Lean Mass β (95% CI) | p Values | Waist-Hip Ratio β (95% CI) | p Values |
Total Women a | ||||||||||
Tertile 1 | Reference | Reference | Reference | Reference | Reference | |||||
Tertile 2 | −1.137 (−3.058, 0.784) | 0.244 | −0.821 (−2.527, 0.884) | 0.342 | −0.011 (−0.029, 0.007) | 0.245 | −0.009 (−0.040, 0.022) | 0.569 | −0.043 (−0.097, 0.010) | 0.112 |
Tertile 3 | 0.649 (−1.339, 2.638) | 0.520 | 1.730 (−0.035, 3.495) | 0.055 | −0.004 (−0.023, 0.015) | 0.658 | 0.009 (−0.024, 0.041) | 0.598 | −0.004 (−0.059, 0.52) | 0.900 |
Premenopausal women | ||||||||||
Tertile 1 | Reference | Reference | Reference | Reference | Reference | |||||
Tertile 2 | −0.490 (−3.354, 2.373) | 0.734 | −0.129 (−2.792, 2.533) | 0.923 | −0.005 (−0.032, 0.022) | 0.707 | −0.020 (−0.075, 0.034) | 0.460 | 0.002 (−0.070, 0.075) | 0.945 |
Tertile 3 | 1.613 (−1.310, 4.536) | 0.275 | 0.692 (−2.025, 3.410) | 0.613 | 0.016 (−0.011, 0.043) | 0.252 | −0.015 (0.071, 0.041) | 0.586 | 0.037 (−0.037, 0.111) | 0.324 |
Postmenopausal women | ||||||||||
Tertile 1 | Reference | Reference | Reference | Reference | Reference | |||||
Tertile 2 | −0.762 (−3.413, 1.888) | 0.568 | −0.523 (−2.875, 1.829) | 0.659 | 0.006 (−0.031, 0.019) | 0.626 | −0.012 (−0.041, 0.016) | 0.395 | −0.056 (−0.138, 0.026) | 0.179 |
Tertile 3 | −1.183 (−3.860, 1.495) | 0.381 | 0.286 (−2.090, 2.662) | 0.811 | −0.017 (−0.042, 0.008) | 0.170 | 0.013 (−0.016, 0.042) | 0.375 | −0.024 (−0.107, 0.059) | 0.568 |
Osteoporosis | ||||||||
---|---|---|---|---|---|---|---|---|
Oxytocin | L1–4 OR (95% CI) | p Values | Femoral Neck OR (95% CI) | p values | Total Hip OR (95% CI) | p Values | Overall OR (95% CI) | p Values |
Postmenopausal women | ||||||||
Tertile 1 | Reference | Reference | Reference | Reference | ||||
Tertile 2 | 0.450 (0.136, 1.488) | 0.191 | 0.232 (0.052, 1.037) | 0.056 | 0.457 (0.095, 2.202) | 0.329 | 0.338 (0.098, 1.171) | 0.087 |
Tertile 3 | 0.400 (0.118, 1.352) | 0.140 | 0.155 (0.028, 0.845) | 0.031 | 0.674 (0.154, 2.940) | 0.752 | 0.257 (0.073, 0.910) | 0.035 |
Dependent Variables | Independent Variables | Variables in Final Model | Standardized β | p Values | p Values for Model |
---|---|---|---|---|---|
Premenopausal women | |||||
L1–4 BMD | Age, E2, Total lean mass, Total fat mass, Oxytocin | Total lean mass | 0.275 | 0.022 | 0.022 |
Femoral neck BMD | Total lean mass | 0.388 | 0.001 | <0.001 | |
Oxytocin | 0.279 | 0.012 | |||
Total hip BMD | Total lean mass | 0.340 | 0.003 | <0.001 | |
Oxytocin | 0.288 | 0.011 | |||
Postmenopausal women | |||||
L1–4 BMD | Age, E2, Total lean mass, Total fat mass, Oxytocin | Total lean mass | 0.371 | 0.004 | 0.004 |
Femoral neck BMD | Age | −0.445 | <0.001 | <0.001 | |
Total hip BMD | Age | −0.451 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.-J.; Shi, H.-L.; Wu, X.-Q.; Du, Y.-P.; Li, H.-L.; Tang, W.-J.; Chen, M.-M.; Zhang, X.-M.; Shen, L.; Cheng, Q. Association between Serum Oxytocin, Bone Mineral Density and Body Composition in Chinese Adult Females. Medicina 2022, 58, 1625. https://doi.org/10.3390/medicina58111625
Yu W-J, Shi H-L, Wu X-Q, Du Y-P, Li H-L, Tang W-J, Chen M-M, Zhang X-M, Shen L, Cheng Q. Association between Serum Oxytocin, Bone Mineral Density and Body Composition in Chinese Adult Females. Medicina. 2022; 58(11):1625. https://doi.org/10.3390/medicina58111625
Chicago/Turabian StyleYu, Wei-Jia, Hong-Li Shi, Xiao-Qing Wu, Yan-Ping Du, Hui-Lin Li, Wen-Jing Tang, Min-Min Chen, Xue-Mei Zhang, Liu Shen, and Qun Cheng. 2022. "Association between Serum Oxytocin, Bone Mineral Density and Body Composition in Chinese Adult Females" Medicina 58, no. 11: 1625. https://doi.org/10.3390/medicina58111625
APA StyleYu, W. -J., Shi, H. -L., Wu, X. -Q., Du, Y. -P., Li, H. -L., Tang, W. -J., Chen, M. -M., Zhang, X. -M., Shen, L., & Cheng, Q. (2022). Association between Serum Oxytocin, Bone Mineral Density and Body Composition in Chinese Adult Females. Medicina, 58(11), 1625. https://doi.org/10.3390/medicina58111625