Diagnosing Coronary Artery Disease on the Basis of Hard Ensemble Voting Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. Dataset Standardization
2.3. Data Resampling
2.4. Feature Selection
2.5. Machine Learning
2.5.1. Random Forest
2.5.2. AdaBoost
2.5.3. Extra Tree
2.5.4. Gradient Boost Classifier (GBC)
2.5.5. Voting Classifier
2.6. Evaluation Metrics
2.7. Hyperparameters of ML Models
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hengjinda, P.; Iong, J.; Chen, Z.; Hengjinda, P. Early Prediction of Coronary Artery Disease (CAD) by Machine Learning Method—A Comparative Study. J. Artif. Intell. Capsul. Netw. 2021, 3, 17–33. [Google Scholar] [CrossRef]
- Cardiovascular Diseases. Available online: https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1 (accessed on 27 August 2022).
- Muhammad, L.J.; Al-Shourbaji, I.; Haruna, A.A.; Mohammed, I.A.; Ahmad, A.; Jibrin, M.B. Machine Learning Predictive Models for Coronary Artery Disease. SN Comput. Sci. 2021, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Paul, B.K.; Ahmed, K.; Bui, F.M.; Quinn, J.M.W.; Moni, M.A. Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison. Comput. Biol. Med. 2021, 136, 104672. [Google Scholar] [CrossRef]
- Wang, S.; Summers, R.M. Machine learning and radiology. Med. Image Anal. 2012, 16, 933–951. [Google Scholar] [CrossRef] [Green Version]
- Yoo, I.; Alafaireet, P.; Marinov, M.; Pena-Hernandez, K.; Gopidi, R.; Chang, J.F.; Hua, L. Data Mining in Healthcare and Biomedicine: A Survey of the Literature. J. Med. Syst. 2012, 36, 2431–2448. [Google Scholar] [CrossRef]
- Panesar, A. Machine Learning and AI for Healthcare; Apress: Berkeley, CA, USA, 2021. [Google Scholar] [CrossRef]
- Arabasadi, Z.; Alizadehsani, R.; Roshanzamir, M.; Moosaei, H.; Yarifard, A.A. Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm. Comput. Methods Programs Biomed. 2017, 141, 19–26. [Google Scholar] [CrossRef]
- Abdar, M.; Acharya, U.R.; Sarrafzadegan, N.; Makarenkov, V. NE-nu-SVC: A New Nested Ensemble Clinical Decision Support System for Effective Diagnosis of Coronary Artery Disease. IEEE Access 2019, 7, 167605–167620. [Google Scholar] [CrossRef]
- Nasarian, E.; Abdar, M.; Fahami, M.A.; Alizadehsani, R.; Hussain, S.; Basiri, M.E.; Zomorodi-Moghadam, M.; Zhou, X.; Pławiak, P.; Acharya, U.R.; et al. Association between work-related features and coronary artery disease: A heterogeneous hybrid feature selection integrated with balancing approach. Pattern Recognit. Lett. 2020, 133, 33–40. [Google Scholar] [CrossRef]
- Dwivedi, A.K. Performance evaluation of different machine learning techniques for prediction of heart disease. Neural Comput. Appl. 2016, 29, 685–693. [Google Scholar] [CrossRef]
- Naushad, S.M.; Hussain, T.; Indumathi, B.; Samreen, K.; Alrokayan, S.A.; Kutala, V.K. Machine learning algorithm-based risk prediction model of coronary artery disease. Mol. Biol. Rep. 2018, 45, 901–910. [Google Scholar] [CrossRef]
- Cüvitoǧlu, A.; Işik, Z. Classification of CAD dataset by using principal component analysis and machine learning approaches. In Proceedings of the 2018 5th International Conference on Electrical and Electronics Engineering ICEEE 2018, Istanbul, Turkey, 3–5 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 340–343. [Google Scholar] [CrossRef]
- Ayatollahi, H.; Gholamhosseini, L.; Salehi, M. Predicting coronary artery disease: A comparison between two data mining algorithms. BMC Public Health 2019, 19, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdar, M.; Książek, W.; Acharya, U.R.; Tan, R.-S.; Makarenkov, V.; Pławiak, P. A new machine learning technique for an accurate diagnosis of coronary artery disease. Comput Methods Programs Biomed. 2019, 179, 104992. [Google Scholar] [CrossRef]
- Akella, A.; Akella, S. Machine learning algorithms for predicting coronary artery disease: Efforts toward an open source solution. Futur. Sci. OA 2021, 7, FSO698. [Google Scholar] [CrossRef]
- Kutrani, H.; Eltalhi, S. Cardiac Catheterization Procedure Predicyion Using Machine Learning and Data Mining Techniques. 2019. Available online: https://www.semanticscholar.org/paper/Cardiac-Catheterization-Procedure-Prediction-Using-Kutrani-Eltalhi/763ac488da8a97c19170ecff36a2e8dbdffe64c6 (accessed on 27 August 2022).
- Tougui, I.; Jilbab, A.; El Mhamdi, J. Heart disease classification using data mining tools and machine learning techniques. Health Technol. 2020, 10, 1137–1144. [Google Scholar] [CrossRef]
- Long, C.; Chen, W.; Yang, R.; Yao, D. Ratio estimation of the population mean using auxiliary information under the optimal sampling design. Probab. Eng. Informational Sci. 2022, 36, 449–460. [Google Scholar] [CrossRef]
- UCI Machine Learning Repository: Z-Alizadeh Sani Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/Z-Alizadeh+Sani (accessed on 27 August 2022).
- Senan, E.M.; Abunadi, I.; Jadhav, M.E.; Fati, S.M. Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms. Comput. Math. Methods Med. 2021, 2021, 8500314. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, Y.; Yao, Z.; Wang, X.; Lei, Z. Improvement of the Performance of Models for Predicting Coronary Artery Disease Based on XGBoost Algorithm and Feature Processing Technology. Electronics 2022, 11, 315. [Google Scholar] [CrossRef]
- Xu, X.; Chen, W.; Sun, Y. Over-sampling algorithm for imbalanced data classification. J. Syst. Eng. Electron. 2019, 30, 1182–1191. [Google Scholar] [CrossRef]
- Qasim, H.M.; Ata, O.; Ansari, M.A.; Alomary, M.N.; Alghamdi, S.; Almehmadi, M. Hybrid Feature Selection Framework for the Parkinson Imbalanced Dataset Prediction Problem. Medicina 2021, 57, 1217. [Google Scholar] [CrossRef]
- Chauhan, N.K.; Singh, K. Performance Assessment of Machine Learning Classifiers Using Selective Feature Approaches for Cervical Cancer Detection. Wirel. Pers. Commun. 2022, 124, 2335–2366. [Google Scholar] [CrossRef]
- Mohammedqasem, R.; Mohammedqasim, H.; Ata, O. Real-time data of COVID-19 detection with IoT sensor tracking using artificial neural network. Comput. Electr. Eng. 2022, 100, 107971. [Google Scholar] [CrossRef]
- Rani, P.; Kumar, R.; Jain, A. Coronary artery disease diagnosis using extra tree-support vector machine: ET-SVMRBF. Int. J. Comput. Appl. Technol. 2021, 66, 209. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Ramzan, M.F.; Ali, S.; Baseer, S.; Samad, A.; Husnain, M. Voting Classification-Based Diabetes Mellitus Prediction Using Hypertuned Machine-Learning Techniques. Mob. Inf. Syst. 2022, 2022, 6521532. [Google Scholar] [CrossRef]
- Shahid, A.H.; Singh, M. A Novel Approach for Coronary Artery Disease Diagnosis using Hybrid Particle Swarm Optimization based Emotional Neural Network. Biocybern. Biomed. Eng. 2020, 40, 1568–1585. [Google Scholar] [CrossRef]
- Yuvalı, M.; Yaman, B.; Tosun, Ö. Classification Comparison of Machine Learning Algorithms Using Two Independent CAD Datasets. Mathematics 2022, 10, 311. [Google Scholar] [CrossRef]
Classifier | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
RF | 96% | 96% | 96% | 96% |
AdaBoost | 95% | 95% | 95% | 95% |
Gradient-boosting | 97% | 97% | 97% | 97% |
Extra trees | 96% | 96% | 96% | 96% |
Ensemble voting | 97.5% | 97.6% | 97.5% | 97.3% |
Classifier | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
RF | 94.8% 0.07 | 98% 0.05 | 93% 0.08 | 96% |
AdaBoost | 95.5% 0.09 | 96% 0.09 | 95.4% 0.10 | 96% 0.09 |
Gradient-boosting | 96% 0.08 | 97% 0.09 | 97% | 96% 0.07 |
Extra trees | 95.3% 0.05 | 98% 0.05 | 94% 0.07 | 96% 0.04 |
Ensemble voting | 96% 0.06 | 99% 0.05 | 95% 0.08 | 97% 0.05 |
Classifier | Hyperparameters |
---|---|
RF | Criterion = gini, number of estimators = 100, max_depth = 10 |
AdaBoost | Estimators = 150, learning-rate = 0.1 |
Gradient-boosting | Estimators = 110, learning-rate = 0.3 |
Extra trees | Criterion = gini, number of estimators = 100, max_depth = 10 |
Classifier | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
RF | ||||
AdaBoost | ||||
Gradient-boosting | ||||
Extra trees | ||||
Ensemble voting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammedqasim, H.; Mohammedqasem, R.; Ata, O.; Alyasin, E.I. Diagnosing Coronary Artery Disease on the Basis of Hard Ensemble Voting Optimization. Medicina 2022, 58, 1745. https://doi.org/10.3390/medicina58121745
Mohammedqasim H, Mohammedqasem R, Ata O, Alyasin EI. Diagnosing Coronary Artery Disease on the Basis of Hard Ensemble Voting Optimization. Medicina. 2022; 58(12):1745. https://doi.org/10.3390/medicina58121745
Chicago/Turabian StyleMohammedqasim, Hayder, Roa’a Mohammedqasem, Oguz Ata, and Eman Ibrahim Alyasin. 2022. "Diagnosing Coronary Artery Disease on the Basis of Hard Ensemble Voting Optimization" Medicina 58, no. 12: 1745. https://doi.org/10.3390/medicina58121745
APA StyleMohammedqasim, H., Mohammedqasem, R., Ata, O., & Alyasin, E. I. (2022). Diagnosing Coronary Artery Disease on the Basis of Hard Ensemble Voting Optimization. Medicina, 58(12), 1745. https://doi.org/10.3390/medicina58121745