State-of-the-Art and Future Directions in Organ Regeneration with Mesenchymal Stem Cells and Derived Products during Dynamic Liver Preservation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Machine Perfusion of the Liver as a Dynamic Platform for Graft Reconditioning
Author | Study Type | MP | Donor | Endpoints | Outcomes |
---|---|---|---|---|---|
Guarrera et al., 2010 [23] | Clinical | HMP vs. SCS | DBD |
| ↓ EAD ↓ hospital-length of stay, ALT, creatinine, bilirubin |
Ravikumar et al., 2016 [24] | Clinical | NMP vs. SCS | DBD, DCD |
| ↓ Peak AST |
Van Rijn et al., 2017 [5] | Clinical | HOPE vs. SCS | DCD |
| ↓ ALT, GGT, ALP, bilirubin |
Nasralla et al., 2018 [9] | Clinical (RCT) | NMP vs. SCS | DBD, DCD |
| ↓ Peak AST ↓ Discard rate, PRS, EAD |
Ghinolfi et al., 2019 [11] | Clinical (RCT) | NMP vs. SCS | DBD |
| ↓ IRI-related features on tissue samples |
Schlegel et al., 2019 [4] | Clinical | HOPE-DCD vs. SCS-DCD vs. SCS-DBD | DBD, DCD |
| HOPE-DCD = SCS-DBD HOPE-DCD > SCS-DCD (↓ End-LT lactate, day 1 INR, hospital-length of stay, biliary complications, PNF, graft survival) |
Patrono et al., 2019 [2] | Clinical | HOPE vs. SCS | DBD |
| ↓ PRS, AKI, EAD, peak AST and ALT |
Jassem et al., 2019 [33] | Clinical | NMP vs. SCS | DBD |
| ↓ Peak AST, IFN-γ- and IL-17-producing T cells, necrosis, apoptosis, neutrophil infiltration |
Muller et al., 2019 [35] | Clinical | HOPE | ECD, DCD |
| FMN predicts early graft loss, EAD, L-GrAFT, hospital-length of stay, kidney function, overall complications |
Mergental et al., 2020 [21] | Clinical | NMP | Declined ECD |
| Utilization rate: 71% PNF: 0% Ischemic cholangiopathy: 18% |
Patrono et al., 2020 [36] | Clinical | HOPE | ECD |
| Perfusate parameters correlate with macrovesicular steatosis and EAD, not on graft survival |
Czigany et al., 2021 [7] | Clinical (RCT) | HOPE vs. SCS | DBD, ECD |
| ↓ Peak ALT ↓ CCI, ICU- and hospital-length of stay |
Van Rijn et al., 2021 [6] | Clinical (RCT) | HOPE vs. SCS | DCD |
| ↓ NAS at 6 months ↓ PRS, EAD |
Rayar et al., 2021 [38] | Clinical | HOPE vs. SCS | ECD |
| ↓ AST, ALT, lactate, creatinine, ICU- and hospital-length of stay Same cost |
Markmann et al., 2022 [10] | Clinical (RCT) | NMP vs. SCS | DBD, ECD, DCD |
| ↓ EAD ↓ Discard rate, biliary complications, IRI-related features on tissue samples |
Ravaioli et al., 2022 [8] | Clinical (RCT) | HOPE vs. SCS | ECD |
| ↓ EAD ↓ re-LT |
Hann et al., 2022 [34] | Clinical | NMP | Declined ECD |
| Utilization rate: 72% PNF: 0% Ischemic cholangiopathy: 7% |
Patrono et al., 2022 [3] | Clinical | HOPE vs. SCS | DBD, ECD |
| ↓ EAF ↓ CCI, Clavien Dindo complications, graft/patient survival |
Patrono et al., 2022 [37] | Clinical | HOPE | ECD, DCD |
| Microdialysate glucose and lactate correlate with L-GrAFT, cold ischemia time, macrovesicular steatosis, weight gain during D-HOPE, perfusate FMN |
3.2. Mesenchymal Stem Cells and MSC-Derived Products in Liver Disease
Author | Treatment | Model | Administration | Dose | Outcomes |
---|---|---|---|---|---|
Herrera et al., 2006 [53] | HLSC | Acetaminophen-induced ALF (mouse) | Systemic intravenous | 2 × 105 cells | ↑ Regeneration |
Herrera et al., 2010 [73] | HLSC-EV | 70% hepatectomy (rat) | Systemic intravenous | 30 µg EVs | ↓ ALT, AST, apoptosis ↑ albumin, proliferation |
Herrera et al., 2013 [56] | HLSC and HLSC-CM | GalN/LPS-induced ALF (mouse) | Systemic intravenous/intrahepatic/intraperitoneal | 2 × 106 cells (IV) 30 × 106 cells (IP) 0.5–0.2 × 106 cells (IH) Concentrated CM (IP) | ↑ Survival, regeneration ↓ AST, ALT, ammonium, apoptosis |
Stock et al., 2014 [45] | Hepatocyte-like cells derived from human MSC | Acetaminophen-induced ALF (mouse) | Intrasplenic | 1 × 106 hepatocyte-like cells | ↓ Inflammation, apoptosis ↑ Regeneration |
Haga et al., 2017 [69] | Human and mouse BM-MSC-EV | GalN /TNF-α-induced ALF (mouse) | Systemic intravenous/intraperitoneal | 2 × 1010 EVs | ↑ Survival ↓ ALT, AST, ALP (hMSC-EV), direct bilirubin (mMSC), inflammation, apoptosis |
Haga et al., 2017 [70] | Mouse BM-MSC-EV | Hepatic IRI (mouse) | Systemic intravenous | 2 × 1010 EVs | ↓ ALT, AST, ALP, necrosis, apoptosis, inflammation |
Qu et al., 2017 [47] | Human BM-MSC | Acute HBV infection (mouse) | Systemic intravenous | 1 × 106 cells | ↓ ALT, IL-1β, IL-6, TNF-α, CCL3 ↓ NK cells activity |
Chen et al., 2018 [61] | BM-MSC co-cultured with hepatocytes-CM | GalN/LPS-induced ALF (rat) | N/A | CM 3 times per day for 3 consecutive days | ↑ ALF recovery, survival ↓ ALT, AST, bilirubin, necrosis |
Hwang et al., 2019 [48] | Lipid-conjugated heparin-coated human ADSC | Acetaminophen-induced ALF (mouse) | Systemic intravenous | 4 × 105 cells | ↑ Biodistribution, regeneration ↓ AST, ALT, macrophage CYP2E1 |
Luo et al., 2019 [49] | Mouse BM-MSC | Chronic liver fibrosis (mouse) | Systemic intravenous | 5 × 105 cells | ↓ AST, ALT, IFN-γ, TNF-α, IL-6, IL-12b, TGF-β1, α-SMA, collagen-1, and collagen-4 ↑ MMP13, IL-10, caspase 3 |
Famulari et al., 2020 [58] | HLSC | Crigler Najjar Syndrome type I (mouse) | Intrahepatic | 1 × 105 cells | ↑ Survival ↓ Bilirubin, brain injury |
Rostom et al., 2020 [66] | Rat BM-MSC or MSC-EV | CCl4-induced chronic liver fibrosis (mouse) | Systemic intravenous | 80 µg EVs protein/rat 1 × 106 cells 3 × 106 cells | ↓ ALT, AST ↑ Albumin in MSC groups ↓ Collagen deposition in 1 × 106 MSC and EV groups |
Cai et al., 2020 [50] | Human umbilical cord-derived MSC labelled with melanin nanoparticles | Acetaminophen-induced ALF (mouse) | Systemic intravenous | 5 × 105 cells | Effective long-term in vivo tracking ↓ AST, ALT |
Bruno et al., 2020 [74] | HLSC-EV | NASH (mouse) | Systemic intravenous | 2.5 × 1010 EVs 5 × 1010 EVs | ↓ ALT, inflammatory and pro-fibrotic gene expression ↑ albumin |
Calleri et al., 2021 [75] | HLSC-EV | Hepatic IRI (mouse) | Systemic intravenous | 3 × 109 EVs 7.5 × 109 EVs | ↓ ALT, LDH, tissue injury, inflammation |
Yang et al., 2021 [63] | Human umbilical cord-derived MSC-CM | NAFLD (mouse) | Systemic intravenous | CM every 3 days for 2 months | ↑ Mitochondrial function ↓ ALT, AST, steatosis, inflammation, apoptosis |
Pinheiro et al., 2021 [64] | Mouse adipose tissue-derived MSC-CM | Cholestatic liver fibrosis (mouse) | Intraperitoneal | CM at 5th and 6th day after bile duct ligation | ↓ ALT, AST, ALP, collagen deposition, inflammation |
Ma et al., 2022 [51] | Human umbilical cord-derived MSC and mouse adipose-derived MSC | CCl4-induced ALF and chronic liver fibrosis (mouse) | Systemic intravenous | 5 × 105 cells | Acute injury: ↓ AST, ALT, TNF-α, IL-1β, MCP-1, NK activity Chronic injury: limited effects and ↑ NK activity |
Abo-Aziza et al., 2022 [46] | Rat BM-MSC and hepatogenic cells derived from BM-MSC | Acute aflatoxicosis (rat) | Systemic intravenous/intrahepatic | 2 × 106 cells at 2-week intervals | ↓ TNF-α, IL-4, AST, ALT ↑ Antioxidant enzymes |
3.3. Current Application of MSCs and Derived Products during Machine Perfusion of the Liver
Author | Model | Treatment | Dose | Duration | Perfusate | Mechanism | Outcomes |
---|---|---|---|---|---|---|---|
Sasajima et al., 2018 [76] | 30 min-DCD Rat | Swine adipose MSC | 2 × 105 1 × 106 | 2 h NMP | Krebs–Henseleit bicarbonate buffer (~30–40 mL) | NA | ↑ Bile production ↓ Sinusoidal space narrowing and hepatocellular vacuolization |
Rigo et al., 2018 [91] | Rat | Human HLSC-EV | 5 × 108/g liver | 4 h NMP | Williams E medium, glucose, penicillin, streptomycin, glutamine, insulin, heparin, bicarbonate (50 mL) Full rat blood (20 mL) | ↓ HIF-1α, TGF-β1 | ↓ AST, LDH ↓ Suzuki’s scores, apoptotic cells |
Yang et al., 2020 [77] | 30 min-DCD Rat | Rat BM-MSC | 1 × 107 | 8 h NMP | DMEM/F12, FBS, penicillin, streptomycin, heparin, insulin, dexamethasone (60 mL) Full rat blood (20 mL) | ↓ Macrophage activation ↓ Endothelial activation (↓ICAM-1, VCAM-1, vWF) ↑ Microcirculation perfusion (↓ ET-1, ↑ eNOS) | ↓ AST, ALT, ALP, lactate ↑ Bile production ↓ Suzuki’s scores, apoptotic cells ↓ Mitochondrial damage |
Yang et al., 2020 [78] | 30 min-DCD Rat | Rat BM-MSC | 1–3 × 107 | 8 h NMP | DMEM/F12, FBS, penicillin, streptomycin, heparin, insulin, dexamethasone (60 mL) Full rat blood (20 mL) | ↓ Oxidative stress (↓MPO, MDA, ↑ GSH) ↓ Expression of JNK-NF-kB signaling ↑ Expression of AMPK signaling | ↓ AST, ALT, lactate ↑ Bile production ↓ Suzuki’s scores, apoptotic cells ↓ Mitochondrial damage |
Cao et al., 2020 [81] | 30 min-DCD Rat | Rat HO-1 BM-MSC Rat BM-MSC | 1.5–3 × 107 | 4 h NMP | DMEM/F12, FBS, penicillin, streptomycin, heparin, insulin, dexamethasone (60 mL) Full rat blood (20 mL) | ↓ IL-1β, IL-6, TNFα, HMGB1 ↓ Expression of JNK-NF-kB signaling | ↑ Post-transplant survival ↓ Biliary injury (↑ CK19+ cells) ↑ Post-transplant survival ↓ AST, ALT, ALP, gGT ↓ Biliary injury (↑ CK19+ cells) ↓ Suzuki’s scores |
Verstegen et al., 2020 [87] | 15–45 min DCD Pig | Human BM-MSC | 5–10 × 106/kg liver | 30 min HOPE 4 h NMP | HOPE: University of Wisconsin solution NMP: autologous pig full blood | ↑ IL-6, IL-8 | Effective hepatic uptake Immunomodulation |
Laing et al., 2020 [88] | Discarded human livers | Human MAPC | 50 × 106 | 6 h NMP | Packed human red blood cells, human albumin, heparin, sodium bicarbonate, calcium gluconate, vancomycin, gentamicin, epoprostenol, aminoplasmal, dextrose | ↑ IL-4, IL-5, IL-6, IL-8, 10, MCP-1, SDF-1α, IL-1β, GM- CSF | Effective hepatic uptake Immunomodulatory effects |
Sun et al., 2021 [79] | 30 min-DCD Rat | Rat BM-MSC | 1–3 × 107 | 6 h NMP | DMEM/F12, FBS, penicillin, streptomycin, heparin, insulin, dexamethasone (60 mL) Full rat blood (20 mL) | ↓ Oxidative stress and ferroptosis (↓ MDA and PTGS2, ↑ GSH and GPX4) ↓ Autophagy (↑ FTH1 and P62) | ↓ AST, ALT ↑ Bile production ↓ Suzuki’s scores |
Cao et al., 2021 [82] | 30 min-DCD Rat | Rat HO-1 BM-MSC Rat BM-MSC | 1 × 107 | Not reported | DMEM/F12, FBS, penicillin, streptomycin, heparin (60 mL) Full rat blood (20 mL) | ↓ NK-T and T-CD8+ infiltration ↓ IFN-γ, TNF-α, IL-2 | ↑ Post-transplant survival ↓ Scute cellular rejection ↓ AST, ALT, ALP, GGT, bilirubin ↓ Apoptotic cells |
Tian et al., 2021 [84] | 30 min-DCD Rat | Rat HO-1 BM-MSC Rat BM-MSC | 1–3 × 107 | 4 h NMP | DMEM/F12, FBS, penicillin, streptomycin, heparin, insulin, dexamethasone (60 mL) Full rat blood (20 mL) | ↑ Expression of Wnt signaling | ↑ Post-transplant survival ↓ AST ALT, ALP, GGT, bilirubin ↓ Bile ducts integrity ↓ Apoptosis and ↑ proliferation of peribiliary glands cells |
De Stefano et al., 2021 [93] | 60 min-DCD Rat | Human HLSC-EV | 5 × 108/g liver 25 × 108/g liver | 6 h NMP | Williams E medium, penicillin, streptomycin, glutamine, insulin, heparin, bicarbonate, taurocholic acid (100 mL) Packed human red blood cells (50 mL) | NA | ↓ AST, ALT, phosphates, ↓ Total HCO3− need ↑ Bile production (high dose only) ↓ Necrosis and ↑ proliferation (igh dose only) ↓ Vascular resistance (high dose only) |
Wu et al., 2022 [83] | 30 min-DCD Rat | Rat HO-1 BM-MSC Rat BM-MSC | 1 × 107 | 4 h NMP | DMEM/F12, FBS, penicillin, streptomycin, heparin, insulin, dexamethasone (60 mL) Full rat blood (20 mL) | ↓ Dendritic cells maturation ↓ T-CD4+ infiltration ↓ IFN-γ, TNF-α, CCL-2, CXCL-9, CXCL-10 | ↑ Post-transplant survival ↓ Acute cellular rejection ↓ AST, ALT, ALP, bilirubin ↓ Apoptotic cells |
4. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sousa Da Silva, R.X.; Weber, A.; Dutkowski, P.; Clavien, P.A. Machine Perfusion in Liver Transplantation. Hepatology, 2022; 1–19, in press. [Google Scholar] [CrossRef] [PubMed]
- Patrono, D.; Surra, A.; Catalano, G.; Rizza, G.; Berchialla, P.; Martini, S.; Tandoi, F.; Lupo, F.; Mirabella, S.; Stratta, C.; et al. Hypothermic Oxygenated Machine Perfusion of Liver Grafts from Brain-Dead Donors. Sci. Rep. 2019, 9, 9337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrono, D.; Cussa, D.; Sciannameo, V.; Montanari, E.; Panconesi, R.; Berchialla, P.; Lepore, M.; Gambella, A.; Rizza, G.; Catalano, G.; et al. Outcome of Liver Transplantation with Grafts from Brain-Dead Donors Treated with Dual Hypothermic Oxygenated Machine Perfusion, with Particular Reference to Elderly Donors. Am. J. Transplant. 2022, 22, 1382–1395. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.; Muller, X.; Kalisvaart, M.; Muellhaupt, B.; Perera, M.T.P.R.; Isaac, J.R.; Clavien, P.A.; Muiesan, P.; Dutkowski, P. Outcomes of DCD Liver Transplantation Using Organs Treated by Hypothermic Oxygenated Perfusion before Implantation. J. Hepatol. 2019, 70, 50–57. [Google Scholar] [CrossRef] [PubMed]
- van Rijn, R.; Karimian, N.; Matton, A.P.M.; Burlage, L.C.; Westerkamp, A.C.; van den Berg, A.P.; de Kleine, R.H.J.; de Boer, M.T.; Lisman, T.; Porte, R.J. Dual Hypothermic Oxygenated Machine Perfusion in Liver Transplants Donated after Circulatory Death. Br. J. Surg. 2017, 104, 907–917. [Google Scholar] [CrossRef] [Green Version]
- van Rijn, R.; Schurink, I.J.; de Vries, Y.; van den Berg, A.P.; Cortes Cerisuelo, M.; Darwish Murad, S.; Erdmann, J.I.; Gilbo, N.; de Haas, R.J.; Heaton, N.; et al. Hypothermic Machine Perfusion in Liver Transplantation—A Randomized Trial. N. Engl. J. Med. 2021, 384, 1391–1401. [Google Scholar] [CrossRef]
- Czigany, Z.; Pratschke, J.; Froněk, J.; Guba, M.; Schöning, W.; Raptis, D.A.; Andrassy, J.; Kramer, M.; Strnad, P.; Tolba, R.H.; et al. Hypothermic Oxygenated Machine Perfusion Reduces Early Allograft Injury and Improves Post-Transplant Outcomes in Extended Criteria Donation Liver Transplantation from Donation After Brain Death: Results from a Multicenter Randomized Controlled Trial (HOPE ECD-DBD). Ann. Surg. 2021, 274, 705–712. [Google Scholar] [CrossRef]
- Ravaioli, M.; Germinario, G.; Dajti, G.; Sessa, M.; Vasuri, F.; Siniscalchi, A.; Morelli, M.C.; Serenari, M.; Del Gaudio, M.; Zanfi, C.; et al. Hypothermic Oxygenated Perfusion in Extended Criteria Donor Liver Transplantation—A Randomized Clinical Trial. Am. J. Transplant. 2022, 10, 2401–2408. [Google Scholar] [CrossRef]
- Nasralla, D.; Coussios, C.C.; Mergental, H.; Akhtar, M.Z.; Butler, A.J.; Ceresa, C.D.L.; Chiocchia, V.; Dutton, S.J.; García-Valdecasas, J.C.; Heaton, N.; et al. A Randomized Trial of Normothermic Preservation in Liver Transplantation. Nature 2018, 557, 50–56. [Google Scholar] [CrossRef]
- Markmann, J.F.; Abouljoud, M.S.; Ghobrial, R.M.; Bhati, C.S.; Pelletier, S.J.; Lu, A.D.; Ottmann, S.; Klair, T.; Eymard, C.; Roll, G.R.; et al. Impact of Portable Normothermic Blood-Based Machine Perfusion on Outcomes of Liver Transplant: The OCS Liver PROTECT Randomized Clinical Trial. JAMA Surg. 2022, 157, 189–198. [Google Scholar] [CrossRef]
- Ghinolfi, D.; Rreka, E.; De Tata, V.; Franzini, M.; Pezzati, D.; Fierabracci, V.; Masini, M.; Cacciatoinsilla, A.; Bindi, M.L.; Marselli, L.; et al. Pilot, Open, Randomized, Prospective Trial for Normothermic Machine Perfusion Evaluation in Liver Transplantation From Older Donors. Liver Transplant. 2019, 25, 436–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Del Val, A.; Guarrera, J.; Porte, R.J.; Selzner, M.; Spiro, M.; Raptis, D.A.; Friend, P.J. Does Machine Perfusion Improve Immediate and Short-term Outcomes by Enhancing Graft Function and Recipient Recovery after Liver Transplantation? A Systematic Review of the Literature, Meta-analysis and Expert Panel Recommendations. Clin. Transplant. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Qin, Y.F.; Ren, S.H.; Peng, Q.F.; Qin, H.; Wang, Z.B.; Da Wang, H.; Li, G.M.; Zhu, Y.L.; Sun, C.L.; et al. Structural and Temporal Dynamics of Mesenchymal Stem Cells in Liver Diseases From 2001 to 2021: A Bibliometric Analysis. Front. Immunol. 2022, 13, 859972. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wu, P.; Li, L.; Xu, W.; Jiang, J. Mesenchymal Stem Cells and Their Small Extracellular Vesicles as Crucial Immunological Efficacy for Hepatic Diseases. Front. Immunol. 2022, 13, 880523. [Google Scholar] [CrossRef] [PubMed]
- Psaraki, A.; Ntari, L.; Karakostas, C.; Korrou-Karava, D.; Roubelakis, M.G. Extracellular Vesicles Derived from Mesenchymal Stem/Stromal Cells: The Regenerative Impact in Liver Diseases. Hepatology 2022, 75, 1590–1603. [Google Scholar] [CrossRef]
- Lukomska, B.; Stanaszek, L.; Zuba-Surma, E.; Legosz, P.; Sarzynska, S.; Drela, K. Challenges and Controversies in Human Mesenchymal Stem Cell Therapy. Stem Cells Int. 2019, 2019, 9628536. [Google Scholar] [CrossRef] [Green Version]
- Luijmes, S.H.; Verstegen, M.M.A.; Hoogduijn, M.J.; Seghers, L.; Minnee, R.C.; Mahtab, E.A.F.; Taverne, Y.J.H.J.; Reinders, M.E.J.; van der Laan, L.J.W.; de Jonge, J. The Current Status of Stem Cell-Based Therapies during Ex Vivo Graft Perfusion: An Integrated Review of Four Organs. Am. J. Transplant. 2022; in press. [Google Scholar] [CrossRef]
- Pienaar, B.H.; Lindell, S.L.; Van Gulik, T.; Southard, J.H.; Belzer, F.O. Seventy-Two-Hour Preservation of the Canine Liver by Machine Perfusion. Transplantation 1990, 49, 258–260. [Google Scholar] [CrossRef]
- Yanaga, K.; Makowka, L.; Lebeau, G.; Hwang, R.R.; Shimada, M.; Kakizoe, S.; Demetris, A.J.; Starzl, T.E. A New Liver Perfusion and Preservation System for Transplantation Research in Large Animals. J. Investig. Surg. 1990, 3, 65–75. [Google Scholar] [CrossRef] [Green Version]
- van Leeuwen, O.B.; Bodewes, S.B.; Lantinga, V.A.; Haring, M.P.D.; Thorne, A.M.; Brüggenwirth, I.M.A.; van den Berg, A.P.; de Boer, M.T.; de Jong, I.E.M.; de Kleine, R.H.J.; et al. Sequential Hypothermic and Normothermic Machine Perfusion Enables Safe Transplantation of High-Risk Donor Livers. Am. J. Transplant. 2022, 22, 1658–1670. [Google Scholar] [CrossRef]
- Mergental, H.; Laing, R.W.; Kirkham, A.J.; Perera, M.T.P.R.; Boteon, Y.L.; Attard, J.; Barton, D.; Curbishley, S.; Wilkhu, M.; Neil, D.A.H.; et al. Transplantation of Discarded Livers Following Viability Testing with Normothermic Machine Perfusion. Nat. Commun. 2020, 11, 2939. [Google Scholar] [CrossRef] [PubMed]
- Ghinolfi, D.; Lai, Q.; Dondossola, D.; De Carlis, R.; Zanierato, M.; Patrono, D.; Baroni, S.; Bassi, D.; Ferla, F.; Lauterio, A.; et al. Machine Perfusions in Liver Transplantation: The Evidence-Based Position Paper of the Italian Society of Organ and Tissue Transplantation. Liver Transplant. 2020, 26, 1298–1315. [Google Scholar] [CrossRef] [PubMed]
- Guarrera, J.V.; Henry, S.D.; Samstein, B.; Odeh-Ramadan, R.; Kinkhabwala, M.; Goldstein, M.J.; Ratner, L.E.; Renz, J.F.; Lee, H.T.; Brown, R.S.; et al. Hypothermic Machine Preservation in Human Liver Transplantation: The First Clinical Series. Am. J. Transplant. 2010, 10, 372–381. [Google Scholar] [CrossRef]
- Ravikumar, R.; Jassem, W.; Mergental, H.; Heaton, N.; Mirza, D.; Perera, M.T.P.R.; Quaglia, A.; Holroyd, D.; Vogel, T.; Coussios, C.C.; et al. Liver Transplantation After Ex Vivo Normothermic Machine Preservation: A Phase 1 (First-in-Man) Clinical Trial. Am. J. Transplant. 2016, 16, 1779–1787. [Google Scholar] [CrossRef] [PubMed]
- Patrono, D.; Cussa, D.; Rigo, F.; Romagnoli, R.; Angelico, R.; Bellini, M.I.; Bonaccorsi-Riani, E.; Brüggenwirth, I.M.A.; Czigany, Z.; De Carlis, R.; et al. Heterogeneous Indications and the Need for Viability Assessment: An International Survey on the Use of Machine Perfusion in Liver Transplantation. Artif. Organs 2022, 46, 296–305. [Google Scholar] [CrossRef]
- Karangwa, S.A.; Dutkowski, P.; Fontes, P.; Friend, P.J.; Guarrera, J.V.; Markmann, J.F.; Mergental, H.; Minor, T.; Quintini, C.; Selzner, M.; et al. Machine Perfusion of Donor Livers for Transplantation: A Proposal for Standardized Nomenclature and Reporting Guidelines. Am. J. Transplant. 2016, 16, 2932–2942. [Google Scholar] [CrossRef] [PubMed]
- De Carlis, R.; Schlegel, A.; Frassoni, S.; Olivieri, T.; Ravaioli, M.; Camagni, S.; Patrono, D.; Bassi, D.; Pagano, D.; Di Sandro, S.; et al. How to Preserve Liver Grafts from Circulatory Death with Long Warm Ischemia? A Retrospective Italian Cohort Study with Normothermic Regional Perfusion and Hypothermic Oxygenated Perfusion. Transplantation 2021, 105, 2385–2396. [Google Scholar] [CrossRef]
- Patrono, D.; Zanierato, M.; Vergano, M.; Magaton, C.; Diale, E.; Rizza, G.; Catalano, S.; Mirabella, S.; Cocchis, D.; Potenza, R.; et al. Normothermic Regional Perfusion and Hypothermic Oxygenated Machine Perfusion for Livers Donated after Controlled Circulatory Death with Prolonged Warm Ischemia Time: A Matched Comparison with Livers From Brain-Dead Donors. Transpl. Int. 2022, 35, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, J.; Otarashvili, G.; Meszaros, A.; Ebner, S.; Weissenbacher, A.; Cardini, B.; Oberhuber, R.; Resch, T.; Öfner, D.; Schneeberger, S.; et al. Restoring Mitochondrial Function While Avoiding Redox Stress: The Key to Preventing Ischemia/Reperfusion Injury in Machine Perfused Liver Grafts? Int. J. Mol. Sci. 2020, 21, 3132. [Google Scholar] [CrossRef] [PubMed]
- Widmer, J.; Eden, J.; Carvalho, M.F.; Dutkowski, P.; Schlegel, A. Machine Perfusion for Extended Criteria Donor Livers: What Challenges Remain? J. Clin. Med. 2022, 11, 5218. [Google Scholar] [CrossRef]
- Schlegel, A.; Muller, X.; Mueller, M.; Stepanova, A.; Kron, P.; de Rougemont, O.; Muiesan, P.; Clavien, P.A.; Galkin, A.; Meierhofer, D.; et al. Hypothermic Oxygenated Perfusion Protects from Mitochondrial Injury before Liver Transplantation. eBioMedicine 2020, 60, 103014. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.; De Rougemont, O.; Graf, R.; Clavien, P.A.; Dutkowski, P. Protective Mechanisms of End-Ischemic Cold Machine Perfusion in DCD Liver Grafts. J. Hepatol. 2013, 58, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Jassem, W.; Xystrakis, E.; Ghnewa, Y.G.; Yuksel, M.; Pop, O.; Martinez-Llordella, M.; Jabri, Y.; Huang, X.; Lozano, J.J.; Quaglia, A.; et al. Normothermic Machine Perfusion (NMP) Inhibits Proinflammatory Responses in the Liver and Promotes Regeneration. Hepatology 2019, 70, 682–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hann, A.; Lembach, H.; Nutu, A.; Dassanayake, B.; Tillakaratne, S.; McKay, S.C.; Boteon, A.P.C.S.; Boteon, Y.L.; Mergental, H.; Murphy, N.; et al. Outcomes of Normothermic Machine Perfusion of Liver Grafts in Repeat Liver Transplantation (NAPLES Initiative). Br. J. Surg. 2022, 49, 258–260. [Google Scholar] [CrossRef] [PubMed]
- Muller, X.; Schlegel, A.; Kron, P.; Eshmuminov, D.; Würdinger, M.; Meierhofer, D.; Clavien, P.A.; Dutkowski, P. Novel Real-Time Prediction of Liver Graft Function During Hypothermic Oxygenated Machine Perfusion Before Liver Transplantation. Ann. Surg. 2019, 270, 783–790. [Google Scholar] [CrossRef]
- Patrono, D.; Catalano, G.; Rizza, G.; Lavorato, N.; Berchialla, P.; Gambella, A.; Caropreso, P.; Mengozzi, G.; Romagnoli, R. Perfusate Analysis during Dual Hypothermic Oxygenated Machine Perfusion of Liver Grafts: Correlations with Donor Factors and Early Outcomes. Transplantation 2020, 104, 1929–1942. [Google Scholar] [CrossRef]
- Patrono, D.; Roggio, D.; Mazzeo, A.T.; Catalano, G.; Mazza, E.; Rizza, G.; Gambella, A.; Rigo, F.; Leone, N.; Elia, V.; et al. Clinical Assessment of Liver Metabolism during Hypothermic Oxygenated Machine Perfusion Using Microdialysis. Artif. Organs 2022, 46, 281–295. [Google Scholar] [CrossRef]
- Rayar, M.; Beaurepaire, J.M.; Bajeux, E.; Hamonic, S.; Renard, T.; Locher, C.; Desfourneaux, V.; Merdrignac, A.; Bergeat, D.; Lakehal, M.; et al. Hypothermic Oxygenated Perfusion Improves Extended Criteria Donor Liver Graft Function and Reduces Duration of Hospitalization Without Extra Cost: The PERPHO Study. Liver Transplant. 2021, 27, 349–362. [Google Scholar] [CrossRef]
- Patrono, D.; Lonati, C.; Romagnoli, R. Viability Testing during Liver Preservation. Curr. Opin. Organ Transplant. 2022, 27, 454–465. [Google Scholar] [CrossRef]
- Wiest, E.F.; Zubair, A.C. Challenges of Manufacturing Mesenchymal Stromal Cell–Derived Extracellular Vesicles in Regenerative Medicine. Cytotherapy 2020, 22, 606–612. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Kou, M.; Huang, L.; Yang, J.; Chiang, Z.; Chen, S.; Liu, J.; Guo, L.; Zhang, X.; Zhou, X.; Xu, X.; et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Immunomodulation and Regeneration: A next Generation Therapeutic Tool? Cell Death Dis. 2022, 13, 580. [Google Scholar] [CrossRef] [PubMed]
- Keshtkar, S.; Azarpira, N.; Ghahremani, M.H. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Novel Frontiers in Regenerative Medicine. Stem Cell Res. Ther. 2018, 9, 63. [Google Scholar] [CrossRef]
- Schwartz, R.E.; Reyes, M.; Koodie, L.; Jiang, Y.; Blackstad, M.; Lund, T.; Lenvik, T.; Johnson, S.; Hu, W.S.; Verfaillie, C.M. Multipotent Adult Progenitor Cells from Bone Marrow Differentiate into Functional Hepatocyte-like Cells. J. Clin. Investig. 2002, 109, 1291–1302. [Google Scholar] [CrossRef] [PubMed]
- Stock, P.; Brückner, S.; Winkler, S.; Dollinger, M.M.; Christ, B. Human Bone Marrow Mesenchymal Stem Cell-Derived Hepatocytes Improve the Mouse Liver after Acute Acetaminophen Intoxication by Preventing Progress of Injury. Int. J. Mol. Sci. 2014, 15, 7004–7028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abo-Aziza, F.A.M.; Zaki, A.K.A.; Adel, R.M.; Fotouh, A. Amelioration of Aflatoxin Acute Hepatitis Rat Model by Bone Marrow Mesenchymal Stem Cells and Their Hepatogenic Differentiation. Vet. World 2022, 15, 1347–1364. [Google Scholar] [CrossRef]
- Qu, M.; Yuan, X.; Liu, D.; Ma, Y.; Zhu, J.; Cui, J.; Yu, M.; Li, C.; Guo, D. Bone Marrow-Derived Mesenchymal Stem Cells Attenuate Immune-Mediated Liver Injury and Compromise Virus Control during Acute Hepatitis B Virus Infection in Mice. Stem Cells Dev. 2017, 26, 818–827. [Google Scholar] [CrossRef]
- Hwang, Y.; Kim, J.C.; Tae, G. Significantly Enhanced Recovery of Acute Liver Failure by Liver Targeted Delivery of Stem Cells via Heparin Functionalization. Biomaterials 2019, 209, 67–78. [Google Scholar] [CrossRef]
- Luo, X.Y.; Meng, X.J.; Cao, D.C.; Wang, W.; Zhou, K.; Li, L.; Guo, M.; Wang, P. Transplantation of Bone Marrow Mesenchymal Stromal Cells Attenuates Liver Fibrosis in Mice by Regulating Macrophage Subtypes. Stem Cell Res. Ther. 2019, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Sun, J.; Sun, Y.; Zhao, X.; Guo, C.; Dong, J.; Peng, X.; Zhang, R. NIR-II FL/PA Dual-Modal Imaging Long-Term Tracking of Human Umbilical Cord-Derived Mesenchymal Stem Cells Labeled with Melanin Nanoparticles and Visible HUMSC-Based Liver Regeneration for Acute Liver Failure. Biomater. Sci. 2020, 8, 6592–6602. [Google Scholar] [CrossRef]
- Ma, C.; Han, L.; Wu, J.; Tang, F.; Deng, Q.; He, T.; Wu, Z.; Ma, C.; Huang, W.; Huang, R.; et al. MSCs Cell Fates in Murine Acute Liver Injury and Chronic Liver Fibrosis Induced by Carbon Tetrachloride. Drug Metab. Dispos. 2022; Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Eom, Y.W.; Yoon, Y.; Baik, S.K. Mesenchymal Stem Cell Therapy for Liver Disease: Current Status and Future Perspectives. Curr. Opin. Gastroenterol. 2021, 37, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.B.; Bruno, S.; Buttiglieri, S.; Tetta, C.; Gatti, S.; Deregibus, M.C.; Bussolati, B.; Camussi, G. Isolation and Characterization of a Stem Cell Population from Adult Human Liver. Stem Cells 2006, 24, 2840–2850. [Google Scholar] [CrossRef] [PubMed]
- Fonsato, V.; Herrera, M.B.; Buttiglieri, S.; Gatti, S.; Camussi, G.; Tetta, C. Use of a Rotary Bioartificial Liver in the Differentiation of Human Liver Stem Cells. Tissue Eng. Part C Methods 2010, 16, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Bruno, S.; Grange, C.; Tapparo, M.; Pasquino, C.; Romagnoli, R.; Dametto, E.; Amoroso, A.; Tetta, C.; Camussi, G. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation. Stem Cells Int. 2016, 2016, 8468549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, M.B.; Fonsato, V.; Bruno, S.; Grange, C.; Gilbo, N.; Romagnoli, R.; Tetta, C.; Camussi, G. Human Liver Stem Cells Improve Liver Injury in a Model of Fulminant Liver Failure. Hepatology 2013, 57, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Tableros, V.; Herrera Sanchez, M.B.; Figliolini, F.; Romagnoli, R.; Tetta, C.; Camussi, G. Recellularization of Rat Liver Scaffolds by Human Liver Stem Cells. Tissue Eng. Part A 2015, 21, 1929–1939. [Google Scholar] [CrossRef] [Green Version]
- Famulari, E.S.; Navarro-Tableros, V.; Herrera Sanchez, M.B.; Bortolussi, G.; Gai, M.; Conti, L.; Silengo, L.; Tolosano, E.; Tetta, C.; Muro, A.F.; et al. Human Liver Stem Cells Express UGT1A1 and Improve Phenotype of Immunocompromised Crigler Najjar Syndrome Type I Mice. Sci. Rep. 2020, 10, 887. [Google Scholar] [CrossRef] [Green Version]
- Spada, M.; Porta, F.; Righi, D.; Gazzera, C.; Tandoi, F.; Ferrero, I.; Fagioli, F.; Sanchez, M.B.H.; Calvo, P.L.; Biamino, E.; et al. Intrahepatic Administration of Human Liver Stem Cells in Infants with Inherited Neonatal-Onset Hyperammonemia: A Phase I Study. Stem Cell Rev. Rep. 2020, 16, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Haarer, J.; Johnson, C.L.; Soeder, Y.; Dahlke, M.H. Caveats of Mesenchymal Stem Cell Therapy in Solid Organ Transplantation. Transpl. Int. 2015, 28, 1–9. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.; Yang, L.; Zhang, G.; Wang, Y.; Zhang, S. The Effects of Conditioned Medium Derived from Mesenchymal Stem Cells Cocultured with Hepatocytes on Damaged Hepatocytes and Acute Liver Failure in Rats. Stem Cells Int. 2018, 2018, 9156560. [Google Scholar] [CrossRef] [PubMed]
- Foroutan, T.; Kabiri, F.; Motamedi, E. Silica Magnetic Graphene Oxide Improves the Effects of Stem Cell-Conditioned Medium on Acute Liver Failure. ACS Omega 2021, 6, 21194–21206. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Cui, Y.; Song, J.; Cui, C.; Wang, L.; Liang, K.; Wang, C.; Sha, S.; He, Q.; Hu, H.; et al. Mesenchymal Stem Cell-Conditioned Medium Improved Mitochondrial Function and Alleviated Inflammation and Apoptosis in Non-Alcoholic Fatty Liver Disease by Regulating SIRT1. Biochem. Biophys. Res. Commun. 2021, 546, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, D.; Dias, I.; Freire, T.; Thole, A.A.; Stumbo, A.C.; Cortez, E.A.C.; de Carvalho, L.; de Carvalho, S.N. Effects of Mesenchymal Stem Cells Conditioned Medium Treatment in Mice with Cholestatic Liver Fibrosis. Life Sci. 2021, 281, 119768. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, S.; Pevere, F.; Stridfeldt, F.; Görgens, A.; Paba, C.; Sahu, S.S.; Mamand, D.R.; Gupta, D.; El Andaloussi, S.; Linnros, J.; et al. Multiparametric Profiling of Single Nanoscale Extracellular Vesicles by Combined Atomic Force and Fluorescence Microscopy: Correlation and Heterogeneity in Their Molecular and Biophysical Features. Small 2021, 17, e2008155. [Google Scholar] [CrossRef]
- Rostom, D.M.; Attia, N.; Khalifa, H.M.; Abou Nazel, M.W.; El Sabaawy, E.A. The Therapeutic Potential of Extracellular Vesicles Versus Mesenchymal Stem Cells in Liver Damage. Tissue Eng. Regen. Med. 2020, 17, 537–552. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.; Yin, Y.; Jia, X.; Mao, L. Mechanism of Cargo Sorting into Small Extracellular Vesicles. Bioengineered 2021, 12, 8186–8201. [Google Scholar] [CrossRef]
- Stam, J.; Bartel, S.; Bischoff, R.; Wolters, J.C. Isolation of Extracellular Vesicles with Combined Enrichment Methods. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1169, 122604. [Google Scholar] [CrossRef]
- Haga, H.; Yan, I.K.; Takahashi, K.; Matsuda, A.; Patel, T. Extracellular Vesicles from Bone Marrow-Derived Mesenchymal Stem Cells Improve Survival from Lethal Hepatic Failure in Mice. Stem Cells Transl. Med. 2017, 6, 1262–1272. [Google Scholar] [CrossRef]
- Haga, H.; Yan, I.K.; Borrelli, D.A.; Matsuda, A.; Parasramka, M.; Shukla, N.; Lee, D.D.; Patel, T. Extracellular Vesicles from Bone Marrow–Derived Mesenchymal Stem Cells Protect against Murine Hepatic Ischemia/Reperfusion Injury. Liver Transplant. 2017, 23, 791–803. [Google Scholar] [CrossRef]
- Todorova, D.; Simoncini, S.; Lacroix, R.; Sabatier, F.; Dignat-George, F. Extracellular Vesicles in Angiogenesis. Circ. Res. 2017, 120, 1658–1673. [Google Scholar] [CrossRef]
- Hazrati, A.; Malekpour, K.; Soudi, S.; Hashemi, S.M. Mesenchymal Stromal/Stem Cells and Their Extracellular Vesicles Application in Acute and Chronic Inflammatory Liver Diseases: Emphasizing on the Anti-Fibrotic and Immunomodulatory Mechanisms. Front. Immunol. 2022, 13, 865888. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.B.; Fonsato, V.; Gatti, S.; Deregibus, M.C.; Sordi, A.; Cantarella, D.; Calogero, R.; Bussolati, B.; Tetta, C.; Camussi, G. Human Liver Stem Cell-Derived Microvesicles Accelerate Hepatic Regeneration in Hepatectomized Rats. J. Cell. Mol. Med. 2010, 14, 1605–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruno, S.; Pasquino, C.; Herrera Sanchez, M.B.; Tapparo, M.; Figliolini, F.; Grange, C.; Chiabotto, G.; Cedrino, M.; Deregibus, M.C.; Tetta, C.; et al. HLSC-Derived Extracellular Vesicles Attenuate Liver Fibrosis and Inflammation in a Murine Model of Non-Alcoholic Steatohepatitis. Mol. Ther. 2020, 28, 479–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calleri, A.; Roggio, D.; Navarro-Tableros, V.; De Stefano, N.; Pasquino, C.; David, E.; Frigatti, G.; Rigo, F.; Antico, F.; Caropreso, P.; et al. Protective Effects of Human Liver Stem Cell-Derived Extracellular Vesicles in a Mouse Model of Hepatic Ischemia-Reperfusion Injury. Stem Cell Rev. Rep. 2021, 17, 459–470. [Google Scholar] [CrossRef]
- Sasajima, H.; Miyagi, S.; Kakizaki, Y.; Kamei, T.; Unno, M.; Satomi, S.; Goto, M. Cytoprotective Effects of Mesenchymal Stem Cells During Liver Transplantation from Donors After Cardiac Death in Rats. Transplant. Proc. 2018, 50, 2815–2820. [Google Scholar] [CrossRef]
- Yang, L.; Cao, H.; Sun, D.; Hou, B.; Lin, L.; Shen, Z.Y.; Song, H.L. Bone Marrow Mesenchymal Stem Cells Combine with Normothermic Machine Perfusion to Improve Rat Donor Liver Quality—The Important Role of Hepatic Microcirculation in Donation after Circulatory Death. Cell Tissue Res. 2020, 381, 239–254. [Google Scholar] [CrossRef]
- Yang, L.; Cao, H.; Sun, D.; Lin, L.; Zheng, W.P.; Shen, Z.Y.; Song, H.L. Normothermic Machine Perfusion Combined with Bone Marrow Mesenchymal Stem Cells Improves the Oxidative Stress Response and Mitochondrial Function in Rat Donation after Circulatory Death Livers. Stem Cells Dev. 2020, 29, 835–852. [Google Scholar] [CrossRef]
- Sun, D.; Yang, L.; Zheng, W.; Cao, H.; Wu, L.; Song, H. Protective Effects of Bone Marrow Mesenchymal Stem Cells (BMMSCS) Combined with Normothermic Machine Perfusion on Liver Grafts Donated after Circulatory Death via Reducing the Ferroptosis of Hepatocytes. Med. Sci. Monit. 2021, 27, e930258. [Google Scholar] [CrossRef]
- Hou, B.; Song, H.; Cao, H.; Yang, L.; Sun, D.; Shen, Z. Effects of Bone Marrow Mesenchymal Stem Cells Combined with Normothermic Mechanical Perfusion on Biliary Epithelial Cells Donated after Cardiac Death in Rats. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2019, 31, 1137–1142. [Google Scholar] [CrossRef]
- Cao, H.; Yang, L.; Yang, L.; Hou, B.; Hou, B.; Sun, D.; Sun, D.; Lin, L.; Song, H.L.; Song, H.L.; et al. Heme Oxygenase-1-Modified Bone Marrow Mesenchymal Stem Cells Combined with Normothermic Machine Perfusion to Protect Donation after Circulatory Death Liver Grafts. Stem Cell Res. Ther. 2020, 11, 218. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Wu, L.; Tian, X.; Zheng, W.; Yuan, M.; Li, X.; Tian, X.; Wang, Y.; Song, H.; Shen, Z. HO-1/BMMSC Perfusion Using a Normothermic Machine Perfusion System Reduces the Acute Rejection of DCD Liver Transplantation by Regulating NKT Cell Co-Inhibitory Receptors in Rats. Stem Cell Res. Ther. 2021, 12, 587. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Cao, H.; Tian, X.; Zheng, W.; Yuan, M.; Li, X.; Tian, X.; Wang, Y.; Song, H. Bone Marrow Mesenchymal Stem Cells Modified with Heme Oxygenase-1 Alleviate Rejection of Donation after Circulatory Death Liver Transplantation by Inhibiting Dendritic Cell Maturation in Rats. Int. Immunopharmacol. 2022, 107, 108643. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Cao, H.; Wu, L.; Zheng, W.; Yuan, M.; Li, X.; Song, H.; Shen, Z. Heme Oxygenase-1-Modified Bone Marrow Mesenchymal Stem Cells Combined with Normothermic Machine Perfusion Repairs Bile Duct Injury in a Rat Model of DCD Liver Transplantation via Activation of Peribiliary Glands through the Wnt Pathway. Stem Cells Int. 2021, 2021, 9935370. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.Y.; Ma, D.; He, Z.C.; Liu, P.; Huang, J.; Fang, Q.; Zhao, J.Y.; Wang, J.S. Heme Oxygenase-1 Protects Bone Marrow Mesenchymal Stem Cells from Iron Overload through Decreasing Reactive Oxygen Species and Promoting IL-10 Generation. Exp. Cell Res. 2018, 362, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Todo, S.; Yamashita, K. Anti-Donor Regulatory T Cell Therapy in Liver Transplantation. Hum. Immunol. 2018, 79, 288–293. [Google Scholar] [CrossRef]
- Verstegen, M.M.A.; Mezzanotte, L.; Yanto Ridwan, R.; Wang, K.; De Haan, J.; Schurink, I.J.; Sierra Parraga, J.M.; Hoogduijn, M.; Kessler, B.M.; Huang, H.; et al. First Report on Ex Vivo Delivery of Paracrine Active Human Mesenchymal Stromal Cells to Liver Grafts during Machine Perfusion. Transplantation 2020, 104, E5–E7. [Google Scholar] [CrossRef] [Green Version]
- Laing, R.W.; Stubblefield, S.; Wallace, L.; Roobrouck, V.D.; Bhogal, R.H.; Schlegel, A.; Boteon, Y.L.; Reynolds, G.M.; Ting, A.E.; Mirza, D.F.; et al. The Delivery of Multipotent Adult Progenitor Cells to Extended Criteria Human Donor Livers Using Normothermic Machine Perfusion. Front. Immunol. 2020, 11, 1226. [Google Scholar] [CrossRef]
- Sierra Parraga, J.M.; Rozenberg, K.; Eijken, M.; Leuvenink, H.G.; Hunter, J.; Merino, A.; Moers, C.; Møller, B.K.; Ploeg, R.J.; Baan, C.C.; et al. Effects of Normothermic Machine Perfusion Conditions on Mesenchymal Stromal Cells. Front. Immunol. 2019, 10, 765. [Google Scholar] [CrossRef] [Green Version]
- Thompson, E.R.; Connelly, C.; Ali, S.; Sheerin, N.S.; Wilson, C.H. Cell Therapy during Machine Perfusion. Transpl. Int. 2021, 34, 49–58. [Google Scholar] [CrossRef]
- Rigo, F.; De Stefano, N.; Navarro-Tableros, V.; David, E.; Rizza, G.; Catalano, G.; Gilbo, N.; Maione, F.; Gonella, F.; Roggio, D.; et al. Extracellular Vesicles from Human Liver Stem Cells Reduce Injury in an Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model. Transplantation 2018, 102, e205–e210. [Google Scholar] [CrossRef] [PubMed]
- Rigo, F.; Navarro-Tableros, V.; De Stefano, N.; Calleri, A.; Romagnoli, R. Ex Vivo Normothermic Hypoxic Rat Liver Perfusion Model: An Experimental Setting for Organ Recondition and Pharmacological Intervention. In Methods in Molecular Biology; Stock, P., Christ, B., Eds.; Humana: New York, NY, USA, 2021; pp. 139–150. [Google Scholar]
- De Stefano, N.; Navarro-Tableros, V.; Roggio, D.; Calleri, A.; Rigo, F.; David, E.; Gambella, A.; Bassino, D.; Amoroso, A.; Patrono, D.; et al. Human Liver Stem Cell-Derived Extracellular Vesicles Reduce Injury in a Model of Normothermic Machine Perfusion of Rat Livers Previously Exposed to a Prolonged Warm Ischemia. Transpl. Int. 2021, 34, 1607–1617. [Google Scholar] [CrossRef]
- Gregorini, M.; Corradetti, V.; Pattonieri, E.F.; Rocca, C.; Milanesi, S.; Peloso, A.; Canevari, S.; De Cecco, L.; Dugo, M.; Avanzini, M.A.; et al. Perfusion of Isolated Rat Kidney with Mesenchymal Stromal Cells/Extracellular Vesicles Prevents Ischaemic Injury. J. Cell. Mol. Med. 2017, 21, 3381–3393. [Google Scholar] [CrossRef] [PubMed]
- Rampino, T.; Gregorini, M.; Germinario, G.; Pattonieri, E.F.; Erasmi, F.; Grignano, M.A.; Bruno, S.; Alomari, E.; Bettati, S.; Asti, A.; et al. Extracellular Vesicles Derived from Mesenchymal Stromal Cells Delivered during Hypothermic Oxygenated Machine Perfusion Repair Ischemic/Reperfusion Damage of Kidneys from Extended Criteria Donors. Biology 2022, 11, 350. [Google Scholar] [CrossRef] [PubMed]
- Hsia, G.S.P.; Esposito, J.; Da Rocha, L.A.; Ramos, S.L.G.; Okamoto, O.K. Clinical Application of Human Induced Pluripotent Stem Cell-Derived Organoids as an Alternative to Organ Transplantation. Stem Cells Int. 2021, 2021, 6632160. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.Z.; Zheng, Y.W.; Ogawa, M.; Miyagi, E.; Taniguchi, H. Human Liver Organoids Generated with Single Donor-Derived Multiple Cells Rescue Mice from Acute Liver Failure. Stem Cell Res. Ther. 2018, 9, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sampaziotis, F.; Muraro, D.; Tysoe, O.C.; Sawiak, S.; Beach, T.E.; Godfrey, E.M.; Upponi, S.S.; Brevini, T.; Wesley, B.T.; Garcia-Bernardo, J.; et al. Cholangiocyte Organoids Can Repair Bile Ducts after Transplantation in the Human Liver. Science 2021, 371, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Sampaziotis, F.; Justin, A.W.; Tysoe, O.C.; Sawiak, S.; Godfrey, E.M.; Upponi, S.S.; Gieseck, R.L.; De Brito, M.C.; Berntsen, N.L.; Gómez-Vázquez, M.J.; et al. Reconstruction of the Mouse Extrahepatic Biliary Tree Using Primary Human Extrahepatic Cholangiocyte Organoids. Nat. Med. 2017, 23, 954–963. [Google Scholar] [CrossRef]
- Clavien, P.; Dutkowski, P.; Mueller, M.; Eshmuminov, D.; Borrego, L.B.; Weber, A.; Muellhaupt, B.; Sousa, R.X.; Silva, D.; Burg, B.R.; et al. Transplantation of a Human Liver Following 3 Days of Ex Situ Normothermic Preservation. Nat. Biotechnol. 2022, 40, 1610–1616. [Google Scholar] [CrossRef]
- Eshmuminov, D.; Becker, D.; Bautista Borrego, L.; Hefti, M.; Schuler, M.J.; Hagedorn, C.; Muller, X.; Mueller, M.; Onder, C.; Graf, R.; et al. An Integrated Perfusion Machine Preserves Injured Human Livers for 1 Week. Nat. Biotechnol. 2020, 38, 189–198. [Google Scholar] [CrossRef]
- Lau, N.S.; Ly, M.; Dennis, C.; Liu, K.; Kench, J.; Crawford, M.; Pulitano, C. Long-Term Normothermic Perfusion of Human Livers for Longer than 12 Days. Artif. Organs 2022, 46, 2504–2510. [Google Scholar] [CrossRef] [PubMed]
- Cesaretti, M.; Zarzavajian Le Bian, A.; Moccia, S.; Iannelli, A.; Schiavo, L.; Diaspro, A. From Deceased to Bioengineered Graft: New Frontiers in Liver Transplantation. Transplant. Rev. 2019, 33, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.E.; La Francesca, S.; Niles, J.A.; Vega, S.P.; Argueta, L.B.; Frank, L.; Christiani, D.C.; Pyles, R.B.; Himes, B.E.; Zhang, R.; et al. Production and Transplantation of Bioengineered Lung into a Large-Animal Model. Sci. Transl. Med. 2018, 10, eaao3926. [Google Scholar] [CrossRef] [Green Version]
- Kitano, K.; Ohata, K.; Economopoulos, K.P.; Gorman, D.E.; Gilpin, S.E.; Becerra, D.C.; Ott, H.C. Orthotopic Transplantation of Human Bioartificial Lung Grafts in a Porcine Model: A Feasibility Study. Semin. Thorac. Cardiovasc. Surg. 2022, 34, 752–759. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Stefano, N.; Calleri, A.; Navarro-Tableros, V.; Rigo, F.; Patrono, D.; Romagnoli, R. State-of-the-Art and Future Directions in Organ Regeneration with Mesenchymal Stem Cells and Derived Products during Dynamic Liver Preservation. Medicina 2022, 58, 1826. https://doi.org/10.3390/medicina58121826
De Stefano N, Calleri A, Navarro-Tableros V, Rigo F, Patrono D, Romagnoli R. State-of-the-Art and Future Directions in Organ Regeneration with Mesenchymal Stem Cells and Derived Products during Dynamic Liver Preservation. Medicina. 2022; 58(12):1826. https://doi.org/10.3390/medicina58121826
Chicago/Turabian StyleDe Stefano, Nicola, Alberto Calleri, Victor Navarro-Tableros, Federica Rigo, Damiano Patrono, and Renato Romagnoli. 2022. "State-of-the-Art and Future Directions in Organ Regeneration with Mesenchymal Stem Cells and Derived Products during Dynamic Liver Preservation" Medicina 58, no. 12: 1826. https://doi.org/10.3390/medicina58121826
APA StyleDe Stefano, N., Calleri, A., Navarro-Tableros, V., Rigo, F., Patrono, D., & Romagnoli, R. (2022). State-of-the-Art and Future Directions in Organ Regeneration with Mesenchymal Stem Cells and Derived Products during Dynamic Liver Preservation. Medicina, 58(12), 1826. https://doi.org/10.3390/medicina58121826