Effects of a Pedometer-Based Walking Program in Patients with COPD—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Study Design
2.3. Measurements
2.4. Statistics
3. Results
4. Discussion
Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef] [PubMed]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Mathers, C.D.; Loncar, D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [Green Version]
- Mannino, D.M.; Buist, A.S. Global burden of COPD: Risk factors, prevalence, and future trends. Lancet 2007, 370, 765–773. [Google Scholar] [CrossRef]
- Vestbo, J.; Hurd, S.S.; Agustí, A.G.; Jones, P.W.; Vogelmeier, C.; Anzueto, A.; Barnes, P.J.; Fabbri, L.M.; Martinez, F.J.; Nishimura, M. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 2013, 187, 347–365. [Google Scholar] [CrossRef]
- Waschki, B.; Kirsten, A.; Holz, O.; Müller, K.-C.; Meyer, T.; Watz, H.; Magnussen, H. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: A prospective cohort study. Chest 2011, 140, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Parada, A.; Klaassen, J.; Lisboa, C.; Saldías, F.; Mendoza, L.; Díaz, O. Reduction of physical activity in patients with chronic obstructive pulmonary disease. Rev. Med. Chile 2011, 139, 1562–1572. [Google Scholar] [CrossRef] [Green Version]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.-C. An official American Thoracic Society/European Respiratory Society statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef]
- Fischer, M.J.; Scharloo, M.; Abbink, J.J.; van‘t Hul, A.J.; van Ranst, D.; Rudolphus, A.; Weinman, J.; Rabe, K.F.; Kaptein, A.A. Drop-out and attendance in pulmonary rehabilitation: The role of clinical and psychosocial variables. Respir. Med. 2009, 103, 1564–1571. [Google Scholar] [CrossRef] [Green Version]
- Martinez, C.H.; Raparla, S.; Plauschinat, C.A.; Giardino, N.D.; Rogers, B.; Beresford, J.; Bentkover, J.D.; Schachtner-Appel, A.; Curtis, J.L.; Martinez, F.J. Gender differences in symptoms and care delivery for chronic obstructive pulmonary disease. J. Women’s Health 2012, 21, 1267–1274. [Google Scholar] [CrossRef] [Green Version]
- Boeselt, T.; Spielmanns, M.; Nell, C.; Storre, J.H.; Windisch, W.; Magerhans, L.; Beutel, B.; Kenn, K.; Greulich, T.; Alter, P. Validity and usability of physical activity monitoring in patients with chronic obstructive pulmonary disease (COPD). PLoS ONE 2016, 11, e0157229. [Google Scholar] [CrossRef] [PubMed]
- Bravata, D.M.; Smith-Spangler, C.; Sundaram, V.; Gienger, A.L.; Lin, N.; Lewis, R.; Stave, C.D.; Olkin, I.; Sirard, J.R. Using pedometers to increase physical activity and improve health: A systematic review. JAMA 2007, 298, 2296–2304. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.F.; Hurd, S.; Anzueto, A.; Barnes, P.J.; Buist, S.A.; Calverley, P.; Fukuchi, Y.; Jenkins, C.; Rodriguez-Roisin, R.; Van Weel, C. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med. 2007, 176, 532–555. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.; Gustafsson, P. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bestall, J.C.; Paul, E.A.; Garrod, R.; Garnham, R.; Jones, P.W.; A Wedzicha, J. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 1999, 54, 581–586. [Google Scholar] [CrossRef] [Green Version]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Cave, A.; Atkinson, L.; Tsiligianni, I.G.; Kaplan, A. Assessment of COPD wellness tools for use in primary care: An IPCRG initiative. Int. J. Chronic Obstr. Pulm. Dis. 2012, 7, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Ware, J., Jr.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of scales and preliminary tests of reliability and validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Clarenbach, C.F.; Sievi, N.A.; Haile, S.R.; Brack, T.; Brutsche, M.H.; Frey, M.; Irani, S.; Leuppi, J.D.; Thurnheer, R.; Kohler, M. Determinants of annual change in physical activity in COPD. Respirology 2017, 22, 1133–1139. [Google Scholar] [CrossRef]
- du Moulin, M.; Taube, K.; Wegscheider, K.; Behnke, M.; van den Bussche, H. Home-based exercise training as maintenance after outpatient pulmonary rehabilitation. Respiration 2009, 77, 139–145. [Google Scholar] [CrossRef]
- Salcedo, P.A.; Lindheimer, J.B.; Klein-Adams, J.C.; Sotolongo, A.M.; Falvo, M.J. Effects of exercise training on pulmonary function in adults with chronic lung asease: A meta-analysis of randomized controlled trials. Arch. Phys. Med. Rehabil. 2018, 99, 2561–2569. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, L.; Horta, P.; Espinoza, J.; Aguilera, M.; Balmaceda, N.; Castro, A.; Ruiz, M.; Díaz, O.; Hopkinson, N. Pedometers to enhance physical activity in COPD: A randomised controlled trial. Eur. Respir. J. 2014, 45, 347–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawagoshi, A.; Kiyokawa, N.; Sugawara, K.; Takahashi, H.; Sakata, S.; Satake, M.; Shioya, T. Effects of low-intensity exercise and home-based pulmonary rehabilitation with pedometer feedback on physical activity in elderly patients with chronic obstructive pulmonary disease. Respir. Med. 2015, 109, 364–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riebe, D.; Ehrman, J.K.; Liguori, G. ACSM Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2017; pp. 128–130. [Google Scholar]
- Lindberg, R. Active living: On the Road with the 10,000 Stepssm Program. J. Am. Diet. Assoc. 2000, 100, 878–879. [Google Scholar] [CrossRef]
- Moy, M.L.; Collins, R.J.; Martinez, C.H.; Kadri, R.; Roman, P.; Holleman, R.G.; Kim, H.M.; Nguyen, H.Q.; Cohen, M.D.; Goodrich, D.E. An internet-mediated pedometer-based program improves health-related quality-of-life domains and daily step counts in COPD. Chest 2015, 148, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Bender, B.G.; DePew, A.; Emmett, A.; Goelz, K.; Make, B.; Sharma, S.; Underwood, J.; Stempel, D. A Patient-Centered Walking Program for COPD. Chronic Obstr. Pulm. Dis. 2016, 3, 769–777. [Google Scholar] [CrossRef]
- Widyastuti, K.; Makhabah, D.; Setijadi, A.; Sutanto, Y.S.; Ambrosino, N. Benefits and costs of home pedometer assisted physical activity in patients with COPD. A preliminary randomized controlled trial. Pulmonology 2018, 24, 211–218. [Google Scholar] [CrossRef]
- Kesaniemi, Y.K.; Danforth, E.; Jensen, M.D.; Kopelman, P.G.; Lefèbvre, P.; Reeder, B.A. Dose-response issues concerning physical activity and health: An evidence-based symposium. Med. Sci. Sports Exerc. 2001, 33, S351–S358. [Google Scholar] [CrossRef]
- Miravitlles, M.; Ferrer, M.; Pont, À.; Zalacain, R.; Alvarez-Sala, J.L.; Masa, F.; Verea, H.; Murio, C.; Ros, F.; Vidal, R.; et al. Effect of exacerbations on quality of life in patients with chronic obstructive pulmonary disease: A 2 year follow up study. Thorax 2004, 59, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Spruit, M.A.; Watkins, M.L.; Edwards, L.D.; Vestbo, J.; Calverley, P.M.; Pinto-Plata, V.; Celli, B.R.; Tal-Singer, R.; Wouters, E.F. Determinants of poor 6-min walking distance in patients with COPD: The ECLIPSE cohort. Respir. Med. 2010, 104, 849–857. [Google Scholar] [CrossRef]
PG (n = 15) | CG (n = 11) | p | |
---|---|---|---|
Gold n (%) | 0.70 | ||
II | 8 (53.3%) | 7 (63.6%) | |
III | 7 (46.7%) | 4 (36.4%) | |
Gender | 1.00 | ||
Male | 13 (86.7%) | 9 (81.8%) | |
Female | 2 (13.3%) | 2 (18.2%) | |
Age (year) | 73.5 ± 8.2 | 71.9 ± 11.1 | 0.678 |
Body height (cm) | 163.5 ± 6.8 | 163.0 ± 9.2 | 0.881 |
Body weight (kg) | 59.0 ± 10.9 | 56.2 ± 10.0 | 0.512 |
BMI (kg/m2) | 22.2 ± 4.4 | 21.0 ± 2.3 | 0.443 |
Pulmonary function test | |||
FEV1 (L) | 1.2 ± 0.4 | 1.3 ± 0.6 | 0.718 |
Predicted FEV1(%) | 51.2 ± 13.7 | 53.0 ± 16.3 | 0.750 |
FVC (L) | 2.5 ± 0.7 | 2.8 ± 1.1 | 0.299 |
Predicted FVC(%) | 81.0±14.3 | 84.3 ± 32.5 | 0.751 |
FEV1/FVC (%) | 49.8 ± 15.2 | 47.7 ± 19.0 | 0.762 |
mMRC score | 1.5 ± 1.1 | 1.6 ± 0.7 | 0.829 |
Exercise capacity | |||
6 MWD(m) | 450.5 ± 102.4 | 397.8 ± 110.9 | 0.153 |
% of predicted 6 MWD | 115.2 ± 25.9% | 74.5 ± 37.5% | 0.014 |
Daily steps (steps) | 4768.4 ± 2643.3 | 4468.8 ± 3783.9 | 0.700 |
Quality of life | |||
SF12 PCS | 35.5 ± 10.2 | 38.2 ± 7.1 | 0.608 |
SF12 MCS | 48.7 ± 10.9 | 46.8 ± 10.3 | 0.550 |
PG | CG | |||||
---|---|---|---|---|---|---|
Pre | Post | p | Pre | Post | p | |
Pulmonary function | ||||||
FEV1 (L) | 1.2 ± 0.4 | 1.2 ± 0.4 | 0.181 | 1.3 ± 0.6 | 1.3 ± 0.6 | 0.859 |
Predicted FEV1(%) | 51.2 ± 13.7 | 53.7 ± 15.9 | 0.222 | 53.0 ± 16.3 | 51.6 ± 16.1 | 0.831 |
FVC (L) | 2.5 ± 0.7 | 2.8 ± 0.9 | 0.022 * | 2.8 ± 1.1 | 2.9 ± 1.1 | 0.823 |
Predicted FVC (%) | 81.0 ± 14.3 | 90.6 ± 23.4 | 0.021 * | 84.3 ± 32.5 | 90.5 ± 24.6 | 0.439 |
FEV1/FVC (%) | 49.8 ± 15.2 | 47.5 ± 15.9 | 0.210 | 47.7 ± 19.0 | 47.6 ± 20.1 | 0.891 |
Dyspnea | ||||||
mMRC | 1.5 ± 1.1 | 1.6 ± 1.1 | 0.50 | 1.6 ± 0.7 | 1.8 ± 0.9 | 0.192 |
Exercise capacity | ||||||
6 MWD (m) | 450.5 ± 102.4 | 450.0 ± 108.4 | 0.969 | 397.8 ± 110.9 | 412.2 ± 108.8 | 0.212 |
% of predicted 6 MWD | 115.2 ± 25.9% | 114.6 ± 26.6% | 0.815 | 74.5 ± 37.5% | 74.4 ± 38.1% | 0.992 |
Quality of life | ||||||
SF12 PCS | 35.5 ± 10.2 | 38.4 ± 9.8 | 0.189 | 38.2 ± 7.1 | 41.1 ± 10.3 | 0.168 |
SF12 MCS | 48.7 ± 10.9 | 50.8 ± 10.3 | 0.310 | 46.8 ± 10.3 | 46.9 ± 12.0 | 0.991 |
PG | CG | p | |
---|---|---|---|
ΔFEV1 (L) | 0.06 ± 0.16 | −0.01 ± 0.17 | 0.310 |
ΔPredicted FEV1 (%) | 2.55 ± 7.6 | −1.44 ± 7.3 | 0.192 |
ΔFVC (L) | 0.28 ± 0.40 | 0.02 ± 0.32 | 0.081 |
ΔPredicted FVC (%) | 9.67 ± 14.3 | 6.15 ± 25.1 | 0.650 |
ΔFEV1/FVC (%) | −2.26 ± 6.7 | −0.09 ± 2.3 | 0.323 |
ΔDyspnea scale-mMRC | 0.13 ± 0.74 | 0.21 ± 0.58 | 0.745 |
Δ6 MWD (meter) | −0.53 ± 50.0 | 12.6 ± 39.4 | 0.481 |
ΔDaily steps (steps) | 2274.3 ± 3014.2 | −83.7 ± 923.3 | 0.011 * |
ΔCAT | −4.80 ± 6.06 | 1.55 ± 6.5 | 0.022 * |
ΔSF12 PCS | 2.96 ± 8.0 | 3.51 ± 6.4 | 0.859 |
ΔSF12 MCS | 2.1 ± 7.4 | −0.05 ± 14.1 | 0.629 |
ΔDaily Steps | ΔCAT | |
---|---|---|
ΔFEV1 (L) | 0.073 | 0.399 |
ΔPredicted FEV1 (%) | 0.200 | 0.439 * |
ΔFVC (L) | 0.287 | 0.356 |
ΔPredicted FVC (%) | 0.180 | 0.289 |
ΔFEV1/FVC (%) | 0.096 | 0.053 |
ΔmMRC | 0.385 * | 0.405 |
Δ6 MWD (meter) | 0.380 | 0.022 |
ΔDaily steps | 1 | 0.505 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-H.; Chen, L.-R.; Tsao, C.-C.; Chen, Y.-C.; Huang, C.-C. Effects of a Pedometer-Based Walking Program in Patients with COPD—A Pilot Study. Medicina 2022, 58, 490. https://doi.org/10.3390/medicina58040490
Chen Y-H, Chen L-R, Tsao C-C, Chen Y-C, Huang C-C. Effects of a Pedometer-Based Walking Program in Patients with COPD—A Pilot Study. Medicina. 2022; 58(4):490. https://doi.org/10.3390/medicina58040490
Chicago/Turabian StyleChen, Yen-Huey, Li-Rong Chen, Ching-Ching Tsao, Yu-Cheng Chen, and Chung-Chi Huang. 2022. "Effects of a Pedometer-Based Walking Program in Patients with COPD—A Pilot Study" Medicina 58, no. 4: 490. https://doi.org/10.3390/medicina58040490
APA StyleChen, Y. -H., Chen, L. -R., Tsao, C. -C., Chen, Y. -C., & Huang, C. -C. (2022). Effects of a Pedometer-Based Walking Program in Patients with COPD—A Pilot Study. Medicina, 58(4), 490. https://doi.org/10.3390/medicina58040490