Usefulness of Lateral Lumbar Interbody Fusion Combined with Indirect Decompression for Degenerative Lumbar Spondylolisthesis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Results
3.2. Radiological Results
3.3. Post-Operative Complications
4. Discussion
4.1. Usefulness of Lif/Pps and the Strong Point of This Study
4.2. Indications and Limitations of Lif for Lumbar Spondylolisthesis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, K.T.; Gupta, S.K.; Justis, J.R.; Sherman, M.C. Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg. Focus 2001, 10, E10. [Google Scholar] [CrossRef] [PubMed]
- Foley, K.T.; Holly, L.T.; Schwender, J.D. Minimally invasive lumbar fusion. Spine (Phila Pa 1976) 2003, 28, S26–S35. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Kaneko, Y.; Funao, H.; Ishihara, S.; Shinohara, A.; Nakanishi, K.; Hikata, T.; Fujita, N.; Iwanami, A.; Hosogane, N.; et al. A novel percutaneous guide wire (S-Wire) for percutaneous pedicle screw insertion: Its development, efficacy, and safety. Surg. Innov. 2015, 22, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Shiono, Y.; Funao, H.; Singh, K.; Matsumoto, M. A novel groove entry technique for inserting thoracic percutaneous pedicle screws. Clin. Spine Surg. 2017, 30, 57–64. [Google Scholar] [CrossRef]
- Ozgur, B.M.; Aryan, H.E.; Pimenta, L.; Taylor, W.R. Extreme lateral interbody fusion (XLIF): A novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006, 6, 435–443. [Google Scholar] [CrossRef]
- Berjano, P.; Lamartina, C. Far lateral approaches (XLIF) in adult scoliosis. Eur. Spine J. 2013, 22, S242–S253. [Google Scholar] [CrossRef] [Green Version]
- Joseph, J.R.; Smith, B.W.; La Marca, F.; Park, P. Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: A systematic review of the literature. Neurosurg. Focus 2015, 39, E4. [Google Scholar] [CrossRef] [Green Version]
- Sembrano, J.N.; Tohmeh, A.; Isaacs, R. SOLAS Degenerative Study Group. Two-year comparative outcomes of MIS lateral and MIS transforaminal interbody fusion in the treatment of degenerative spondylolisthesis: Part I. clinical findings. Spine (Phila Pa 1976) 2016, 41, S123–S132. [Google Scholar]
- Lin, G.X.; Akbary, K.; Kotheeranurak, V.; Quillo-Olvera, J.; Jo, H.J.; Yang, A.W.; Mahatthanatrakul, A.; Kim, J.S. Clinical and radiologic outcomes of direct versus indirect decompression with lumbar interbody fusion: A matched-pair comparison analysis. World Neurosurg. 2018, 119, e898–e909. [Google Scholar] [CrossRef]
- Chang, S.Y.; Nam, Y.; Lee, J.; Chang, B.S.; Lee, C.K.; Kim, H. Impact of preoperative diagnosis on clinical outcomes of oblique lateral interbody fusion for lumbar degenerative disease in a single-institution prospective cohort. Orthop. Surg. 2019, 11, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Kirnaz, S.; Navarro-Ramirez, R.; Gu, J.; Wipplinger, C.; Hussain, I.; Adjei, J.; Kim, E.; Schmidt, F.A.; Wong, T.; Hernandez, R.N.; et al. Indirect decompression failure after lateral lumbar interbody fusion—reported failures and predictive factors: Systematic review. Global. Spine J. 2020, 10, 8S–16S. [Google Scholar] [CrossRef] [PubMed]
- Manzur, M.K.; Samuel, A.M.; Morse, K.W.; Shafi, K.; Gatto, B.J.; Gang, C.H.; Qureshi, S.A.; Iyer, S. Indirect lumbar decompression combined with or without additional direct posterior decompression: A systematic review. Glob. Spine J. 2021. [Google Scholar] [CrossRef] [PubMed]
- Fomica, M.; Quarto, E.; Zanirato, A.; Mosconi, L.; Vallerga, D.; Zotta, I.; Baracchini, M.L.; Formica, C.; Felli, L. Lateral lumbar interbody fusion: What is the evidence of indirect neural decompression? A systematic review of the literature. HSS J. 2020, 16, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, A.; Verma, S.; Mundis Jr, G.M.; Oskouian Jr, R.J.; Smith, D.A.; Uribe, J.S. Minimally invasive lateral retroperitoneal transpsoas interbody fusion for L4-5 spondylolisthesis: Clinical outcomes. J. Neurosurg. Spine 2013, 19, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.G.; Nunley, P.D.; Cavanaugh, D.; Kerr, E.; Utter, P.A.; Frank, K.; Stone, M. Short-term outcomes of lateral lumbar interbody fusion without decompression for the treatment of symptomatic degenerative spondylolisthesis at L4-5. Neurosurg. Focus 2018, 44, E6. [Google Scholar] [CrossRef] [Green Version]
- Khajavi, K.; Shen, A.; Hutchison, A. Substantial clinical benefit of minimally invasive lateral interbody fusion for degenerative spondylolisthesis. Eur. Spine J. 2015, 24, 314–321. [Google Scholar] [CrossRef]
- Kono, Y.; Gen, H.; Sakuma, Y.; Koshika, Y. Comparison of clinical and radiologic results of mini-open transforaminal lumbar interbody fusion and extreme lateral interbody fusion indirect decompression for degenerative lumbar spondylolisthesis. Asian Spine J. 2018, 12, 356–364. [Google Scholar] [CrossRef]
- Marchi, L.; Abdala, N.; Oliveira, L.; Amaral, R.; Coutinho, E.; Pimenta, L. Stand-alone lateral interbody fusion for the treatment of low-grade degenerative spondylolisthesis. Sci. World J. 2012, 2012, 456346. [Google Scholar] [CrossRef]
- Ohba, T.; Ebata, S.; Haro, H. Comparison of serum markers for muscle damage, surgical blood loss, postoperative recovery, and surgical site pain after extreme lateral interbody fusion with percutaneous pedicle screws or traditional open posterior lumbar interbody fusion. BMC Musculoskelet. Disord. 2017, 18, 415. [Google Scholar] [CrossRef] [Green Version]
- Pawar, A.Y.; Hughes, A.P.; Sama, A.A.; Girardi, F.P.; Lebl, D.R.; Cammisa, F.P. A comparative study of lateral lumbar interbody fusion and posterior lumbar interbody fusion in degenerative lumbar spondylolisthesis. Asian Spine J. 2015, 9, 668–674. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, W.B.; Lehmen, J.A.; Gerber, E.J.; Rodgers, J.A. Grade 2 spondylolisthesis at L4-5 treated by XLIF: Safety and midterm results in the “worst case scenario”. Sci. World J. 2012, 2012, 356712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, J.; Ohtori, S.; Orita, S.; Yamauchi, K.; Eguchi, Y.; Ochiai, N.; Kuniyoshi, K.; Aoki, Y.; Nakamura, J.; Miyagi, M.; et al. Radiographic evaluation of indirect decompression of mini-open anterior retroperitoneal lumbar interbody fusion: Oblique lateral interbody fusion for degenerated lumbar spondylolisthesis. Eur. Spine J. 2017, 26, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Li, J.; Zhang, M.; Ding, X.; Qi, D.; Li, G.; Shen, Y. Efficacy and radiographic analysis of oblique lumbar interbody fusion for degenerative lumbar spondylolisthesis. J. Orthop. Surg. Res. 2019, 14, 399. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; She, Y.; Ou, Y.; Zhu, Y.; Luo, W.; Jiang, D. Oblique lateral interbody fusion versus transforaminal lumbar interbody fusion in degenerative lumbar spondylolisthesis: A single-center retrospective comparative study. BioMed Res. Int. 2021, 2021, 6693446. [Google Scholar] [CrossRef]
- Chang, M.C.; Kim, G.U.; Choo, Y.J.; Lee, G.W. Transforaminal lumbar interbody fusion (TLIF) versus oblique lumbar interbody fusion (OLIF) in interbody fusion technique for degenerative spondylolisthesis: A systematic review and meta-analysis. Life 2021, 11, 696. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Kerezoudis, P.; Alvi, M.A.; Goncalves, S.; Bydon, M. Outcomes following minimally invasive lateral transpsoas interbody fusion for degenerative low grade lumbar spondylolisthesis: A systematic review. Clin. Neurol. Neurosurg. 2018, 167, 122–128. [Google Scholar] [CrossRef]
- Ishii, K.; Isogai, N.; Shiono, Y.; Yoshida, K.; Takahashi, Y.; Takeshima, K.; Nakayama, M.; Funao, H. Contraindication of minimally invasive lateral interbody fusion for percutaneous reduction of degenerative spondylolisthesis: A new radiographic indicator of bony lateral recess stenosis using I line. Asian Spine J. 2021, 15, 455–463. [Google Scholar] [CrossRef]
Study | Subjects | Mean Age (Years) | Female (%) | Mean FU Period (Months) | Mean BMI (kg/m2) | Smoker (%) | Diabetes Mellitus (%) |
---|---|---|---|---|---|---|---|
Ahmadian et al., 2013 | 31 | 61.5 | 71 | 18.2 | - | - | - |
Campbell et al., 2018 | 18 | 64 (10.5) | 61 | 6.2 (2.7) | 34 (7) | - | - |
Isaacs et al., 2016 | 29 | 63 | 55 | 24 | 30.1 | - | 28 |
Khajavi et al., 2015 | 60 | 67.7 {52–86} | 75 | 20.3 | 29.1 (4.8) | 40 | 23 |
Kono et al., 2018 | 20 | 69.9 (7.5) | 50 | 12 | - | - | - |
Marchi et al., 2012 | 52 | 67.6 (10.0) | 73.1 | 24 | 27.4 (3.3) | - | - |
Ohba et al., 2017 | 46 | 71.3 (8.6) | 67.4 | 24 | 23.4 (4.1) | 8.7 | - |
Pawar et al., 2015 | 39 | 59.0 | 79.5 | 16.1 | 29.6 | - | - |
Rodgers et al., 2012 | 63 | 66.4 {25–88} | 84.1 | 12 | 30.8 {16.9–48.4} | 74.6 | 14.3 |
Sato et al., 2017 | 20 | 69 (7.8) {55–82} | 55 | 12 (6–24) | - | 10 | 20 |
Sembrano et al., 2016 | 29 | 63 | 55 | 24 | 30.1 | 21 | 28 |
Wu et al., 2019 | 31 | 60 (9.3) {43–78} | 71 | 18.0 (2.87) [14,15,16,17,18,19,20,21,22,23,24,25,26,27] | - | - | - |
Total | 438 | 65.2 | 66.4 | 17.6 | 38.1 | 30.9 | 22.7 |
Study | No. of Levels Treated | Fused Level | Meyerding Classification | Surgical Procedure | Posterior Decompression | Posterior Instrumentation | Duration of Surgery (Minutes) | Blood Loss (mL) | Hospital Stay (Days) |
---|---|---|---|---|---|---|---|---|---|
Ahmadian et al., 2013 | 31 | L4/5: 31 (100%) | Grade I: 26 (83.9%) Grade II: 5 (16.1%) | XLIF | Indirect | Bilateral PS 100% | - | 94. (61.9) | 3.5 |
Campbell et al., 2018 | 20 | L3/4 and L4/5: 2 (11%) L4/5: 16 (89%) | Grade I: 15 (83%) Grade II: 3 (17%) | transpsoas approach | Indirect | Bilateral PS 89% Unilateral PS 11% | 165 (58) | 113 (79) | - |
Isaacs et al., 2016 | 36 1 level: 22 2 level: 7 | L3/4: 12 (41%) L4/5: 24 (83%) | Grade I: 28 (97%) Grade II: 1 (3%) | XLIF | Indirect | Bilateral PS 100% | - | - | - |
Khajavi et al., 2015 | 71 1 level: 49 (82%) 2 level: 11 (18%) | L2/3: 2 (3.3%) L3/4: 18 (30%) L4/5: 50 (83%) | Grade I: 47 (78%) Grade II: 13 (22%) | - | Indirect: 34 (56.7%) | PPS 57 95% | 206 (65–426) | 83 (10–1000) | 1.3 (0–4) |
Kono et al., 2018 | 20 | L3/4: 6 (30%) L4/5:14 (70%) | - | XLIF | Indirect | Bilateral PS 100% | 131 (23.2) | 36.1 (15.3) | 14.6 (7.5) |
Marchi et al., 2012 | 52 | L1–2: 2 (3.8%) L2–3: 9 (17.3%) L3–4: 14 (26.9%) L4–5: 27 (51.9%) | - | XLIF | Indirect | 0% (stand-alone) | 73.2 (31.4) | <50 | - |
Ohba et al., 2017 | 86 | - | Grade I or Grade II | XLIF | Indirect | Bilateral PS 100% | - | 51 (41) | - |
Pawar et al., 2015 | 48 | L3/4: 18 (37.5%) L4/5: 30 (62.5%) (included multilevel 9) | - | XLIF or COUGAR-SYSTEM | - | Bilateral or Unilateral PS 100% | 260.2 | 438 | - |
Rodgers et al., 2012 | 80 1 level: 49 (77.8%) 2 level: 11 (17.5%) 3 level: 3 (4.8%) | L2–3: 2 (3.2%) L3–4: 15 (23.8%) L4–5: 61 (96.8%) L5–S1 (AxiaLIF): 2 (3.2%) | Grade II: 63 (100%) | XLIF | Indirect | Bilateral PS: 9 (14.3%) Unilateral PS: 53 (84.1%) Transpedicular facet fixation: 1 (1.6%) Internally fixated implant: 10 (15.9%) | - | - | 1.2 (0–4) |
Sato et al., 2017 | 20 | L3–4 or L4–5 | - | OLIF | Indirect | Bilateral PS 100% | - | - | - |
Sembrano et al., 2016 | 36 1 level: 22 2 level: 7 | L3/4: 12 (41%) L4/5: 24 (83%) | - | XLIF | Indirect | Bilateral PS 100% | 171 {90–332} | <100 mL: 79% | 2 (0–6) |
Wu et al., 2019 | 46 1 level: 26 (83.9%) 2 level: 5 (16.1%) | - | Grade I: 31 (100%) | OLIF | - | - | 131.3 (14.6) | 163.6 (63.9) | - |
Study | VAS Back Pain Pre-op | VAS Back Pain Post-op | Diff | VAS Leg Pain Pre-op | VAS Leg Pain Post-op | Diff |
---|---|---|---|---|---|---|
Ahmadian et al., 2013 | 69.9 (15.1) | 38.7 (30) | 31.2 | - | - | - |
Khajavi et al., 2015 | 80 | 23 | 57 | 77 | 27 | 50 |
Marchi et al., 2012 | 78 | 31 | 47 | 54 | 23 | 31 |
Ohba et al., 2017 | 49 (32) | 15 (26) | 34 | - | - | - |
Pawar et al., 2015 | - | - | 46.3 | - | - | - |
Rodgers et al., 2012 | 87 (13) | 22 (20) | 65 | - | - | - |
Sato et al., 2017 | 55 (19) | 19 (9) | 36 | 81 (33) | 20 (7) | 61 |
Sembrano et al., 2016 | 73 | 19 | 54 | 70 | 19 | 51 |
Total | 70.3 (13.7) | 24.0 (8.2) | 46.3 (12.0) | 70.5 (11.9) | 22.3 (3.6) | 48.3 (12.5) |
Study | ODI | RDQ | SF-36 PCS | SF-36 MCS | SF-12 PCS | SF-12 MCS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-op | Post-op | Diff | Pre-op | Post-op | Diff | Pre-op | Post-op | Diff | Pre-op | Post-op | Diff | Diff | Diff | |
Ahmadian et al., 2013 | 50.4 | 30.9 | 19.5 | - | - | - | - | - | - | - | - | - | - | - |
Campbell et al., 2018 | 49.1 | 23.1 | 53.0 | - | - | - | - | - | - | - | - | - | 5.4 | 4.7 |
Khajavi et al., 2015 | 43 | 21 | 51.0 | - | - | - | 31.2 | 43.6 | 40% | 43.8 | 52 | 19% | - | - |
Marchi et al., 2012 | 66 | 30 | 36 | - | - | - | - | - | - | - | - | - | - | - |
Ohba et al., 2017 | 21.2 (6.9) | 9.2 (7.4) | 12 | 13.9 (5.5) | 8.2 (5.4) | 5.7 | - | - | - | - | - | - | - | - |
Pawar et al., 2015 | - | - | 19.5 | - | - | - | - | - | - | - | - | - | 10.3 | 7.4 |
Sato et al., 2017 | 50 (16) | 16 (8) | 34 | - | - | - | - | - | - | - | - | - | - | - |
Sembrano et al., 2016 | 43 | 20 | 23 | - | - | - | 37.7 | 61.4 | 62.9% | 51 | 61.2 | 20% | - | - |
Wu et al., 2019 | 59.7 (6.3) | 14.8 (6.3) | 44.9 | - | - | - | - | - | - | - | - | - | - | - |
Total | 47.8 (13.3) | 20.6 (7.4) | 32.5 (14.9) | - | - | - | 34.5 (4.6) | 52.5 (12.6) | 51.5 (16.2)% | 47.4 (5.1) | 56.6 (6.5) | 19.5 (0.7)% | 7.9 (3.5) | 6.1 (1.9) |
Study | Spondylolisthesis (% or mm) | Disc Height (mm) | Disc Angle (°) | Lumbar Lordosis (°) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-op | Post-op | Diff | Pre-op | Post-op | Diff | Pre-op | Post-op | Diff | Pre-op | Post-op | Diff | |
Isaacs et al., 2016 | 3.4 (3.3) mm | 1.8 (1.9) mm | 1.7 (1.9) mm | 7.6 (1.9) | 9.1 (2.3) | 1.5 (2.0) | 9.2 (4.5) | 8.5 (4.2) | −0.7 | 58.4 (13.4) | 58.6 (13.5) | 1.8 (8.0) |
Khajavi et al., 2015 | 8.1 (20.3)% | 2.5 (6.5)% | 5.6% | 6.6 | 11.3 | 4.7 | - | - | - | - | - | - |
Kono et al., 2018 | 5.5 (2.9)% | 2.8% | 2.7% | 8.3 | 10.1 | 1.8 | 5.1 | 8.3 | 3.2 | - | - | - |
Marchi et al., 2012 | 15.1 (5.2)% {6–32} | 7.1 (6)% | 8.0% | - | - | 55% | 9.7 (3.8) | 15.7 (7.1) | 6.0 | 42.8 (15.0) | 46.5 (16.2) | 3.7 |
Pawar et al., 2015 | - | - | - | L3–4: 7.4 L4–5: 8 | L3–4: 13.2 L4–5: 13.3 | L3–4: 5.8 L4–5: 5.3 | L3–4: 11.2 L4–5: 15.6 | L3–4: 12.7 L4–5: 19.6 | L3–4: 1.5 L4–5: 4.0 | 44.1 | 47.5 | 3.4 |
Rodgers et al., 2012 | 11.1 (1.7) mm | 3.6 (2.3) mm | 7.5 mm | 4.6 (2.2) | 9.0 (2.5) | 4.4 | - | - | - | - | - | - |
Sato et al., 2017 | - | - | 9% | - | - | 61% | - | - | - | - | - | - |
Wu et al., 2019 | - | - | - | 8.1 (1.7) | 12.6 (1.1) | 4.5 | - | - | - | 43.1 (12.1) | 50.4 (9.4) | 7.3 |
Total | 9.6 (5.0)% | 4.1 (2.6)% | 6.3 (2.8)% | 7.2 (1.3) | 11.2 (1.9) | 4.0 (1.7) (55%) | 10.2 (3.8) | 13.0 (4.8) | 2.8 (2.5) (27.5%) | 47.1 (7.6) | 50.8 (5.5) | 4.1 (2.3) |
Study | Foraminal Height (mm) | Foraminal Area Approach Side (mm2) | Foraminal Area Contralateral Side (mm2) | Cross-Sectional Spinal Canal Area(mm2) | ||||||||
Pre-op | Post-op | Diff | Pre-op | Post-op | Diff | Pre-op | Post-op | Diff | Pre-op | Post-op | Diff | |
Isaacs et al., 2016 | - | - | - | 81.5 | 100.0 | 13.4 (22.7%) | 89.4 | 101.1 | 7.8 (13.1%) | 135.1 (62.8) | 153.9 (63.0) | 13.9% |
Khajavi et al., 2015 | 19.4 | 23.2 | 19.7% | - | - | - | - | - | - | - | - | - |
Kono et al., 2018 | - | - | - | - | - | - | - | - | - | 26.4 | 55.4 | 29% |
Pawar et al., 2015 | L3–4: 15.6 L4–5: 14.4 | L3–4: 19.4 L4–5: 18.4 | L3–4: 24.4% L4–5: 27.8% | - | - | - | - | - | - | - | - | - |
Sato et al., 2017 | - | - | Left: 18% Right: 16% | - | - | 21% | - | - | 39% | - | - | 19% |
Total | 16.5 (2.6) | 20.3 (2.5) | 21.2 (4.8)% | - | - | 21.9 (1.2)% | - | - | 26.1 (18.3)% | - | - | 20.6 (7.7)% |
Study | Complications | Outcome |
---|---|---|
Ahmadian et al., 2013 | Anterior thigh numbness: 7 (22.5%) | 100% recovery by 3 months |
Campbell et al., 2018 | Anterior thigh dysesthesia: 6 (33%) Hip flexion weakness: 1 (6%) | 100% recovery by 2 weeks or 6 months 100% recovery by 4 weeks |
Khajavi et al., 2015 | Hip flexion weakness: 2 (3.3%) Anterior thigh discomfort: 3 (5%) | temporary |
Kono et al., 2018 | Thigh symptoms (approach side): 8 (40%) Thigh pain (contralateral side): 2 (10%) | resolved within 3 months by conservative therapy |
Marchi et al., 2012 | Psoas weakness: 10 (19.2%) Anterior thigh numbness: 5 (9.6%) | 100% recovery by 6 weeks |
Ohba et al., 2017 | Thigh sensory change: 5 (10.9%) Hip flexion weakness: 4 (8.7%) | temporary |
Pawar et al., 2015 | Sensory deficit: 7 (18%) Anterior groin pain and thigh pain: 8 (21%) Psoas mechanical flexion deficit: 5 (13%) | 100% recovery by 1 year |
Sato et al., 2017 | Thigh pain: 1 (5%) Thigh numbness: 1 (5%) | - |
Sembrano et al., 2016 | Hip flexion weakness: 9 (31.0%) Distal motor weakness (neural): 1 (3.4%; all left leg myotomes) Sensory deficit (neural): 3 (10.3%) | 100% recovery by 6 or 12 months |
Wu et al., 2019 | Thigh pain and/or numbness: 3 (9.7%) Thigh flexion weakness: 2 (6.5%) | temporary |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikaido, T.; Konno, S.-i. Usefulness of Lateral Lumbar Interbody Fusion Combined with Indirect Decompression for Degenerative Lumbar Spondylolisthesis: A Systematic Review. Medicina 2022, 58, 492. https://doi.org/10.3390/medicina58040492
Nikaido T, Konno S-i. Usefulness of Lateral Lumbar Interbody Fusion Combined with Indirect Decompression for Degenerative Lumbar Spondylolisthesis: A Systematic Review. Medicina. 2022; 58(4):492. https://doi.org/10.3390/medicina58040492
Chicago/Turabian StyleNikaido, Takuya, and Shin-ichi Konno. 2022. "Usefulness of Lateral Lumbar Interbody Fusion Combined with Indirect Decompression for Degenerative Lumbar Spondylolisthesis: A Systematic Review" Medicina 58, no. 4: 492. https://doi.org/10.3390/medicina58040492
APA StyleNikaido, T., & Konno, S. -i. (2022). Usefulness of Lateral Lumbar Interbody Fusion Combined with Indirect Decompression for Degenerative Lumbar Spondylolisthesis: A Systematic Review. Medicina, 58(4), 492. https://doi.org/10.3390/medicina58040492