The Impact of Simulated Gastric Acid and Toothbrushing on Surface Characteristics of Resin-Modified Glass-Ionomer Cements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Calculation
2.2. Sample Preparation
2.3. Finishing and Polishing Procedure
2.4. Acid Attack Simulation
2.5. Toothbrushing Simulation
2.6. Surface Roughness Evaluation
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowen, R.L.; Marjenhoff, W.A. Dental composites/glass ionomers: The materials. J. Adv. Dent. Res. 1992, 6, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D.; Kent, B.E. The glass-ionomer cement, a new translucent dental filling material. J. Chem. Technol. Biotechnol. 1971, 21, 313. [Google Scholar] [CrossRef]
- Zaghloul, N.M. Effect of Dentin Conditioning and Erosive Coca Cola Challenge on the Micro-shear Bond Strength and SEM Evaluation of Resin-Modified Glass-Ionomer Cement-in vitro study. Egypt. Dent. J. 2019, 65, 1431–1442. [Google Scholar] [CrossRef] [Green Version]
- Sadaghiani, L.; Wilson, M.A.; Wilson, N.H. Effect of selected mouthwashes on the surface roughness of resin modified glass-ionomer restorative materials. Dent. Mater. 2007, 23, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Taraboanta, I.; Stoleriu, S.; Iovan, G.; Moldovanu, A.; Georgescu, A.; Negraia, M.; Andrian, S. Evaluation of pre-heating effects on marginal adaptation of resin-based materials. Mat. Plast. 2018, 55, 238–242. [Google Scholar] [CrossRef]
- Ciurea, A.; Delean, A.G.; Didilescu, A.; Monea, M.; Roman, A.; Boariu, M.; Stratul, Ș.I.; Mîrza, C.M.; Micu, I.C.; Șurlin, P.; et al. In Vitro Study on the Adhesive Performance of Some Resin-Based Materials Used to Restore Class II Cavities. Materials 2021, 14, 4299. [Google Scholar] [CrossRef]
- Imbery, T.A.; Namboodiri, A.; Duncan, A.; Amos, R.; Best, A.M.; Moon, P.C. Evaluating dentin surface treatments for resin-modified glass ionomer restorative materials. Oper. Dent. 2013, 38, 429–438. [Google Scholar] [CrossRef] [Green Version]
- McCabe, J.F. Resin-modified glass-ionomers. Biomaterials 1998, 19, 521–527. [Google Scholar] [CrossRef]
- Briso, A.L.; Caruzo, L.P.; Guedes, A.P.; Catelan, A.; Santos, P.D. In vitro evaluation of surface roughness and microhardness of restorative materials submitted to erosive challenges. Oper. Dent. 2011, 36, 397–402. [Google Scholar] [CrossRef]
- Gradinaru, I.; Ignat, L.; Giurgiu, L.C.; Dascalu, C.G.; Hurjui, L.L.; Ignat, M.E.; Doroftei, F.; Surlari, Z.; Fotea, S.I.; Gurau, G.A.; et al. Study on the Surface Condition of Composite Biomaterials Related to Saliva pH. Mat. Plast. 2020, 57, 174–179. [Google Scholar] [CrossRef]
- Loguercio, A.D.; Reis, A.; Barbosa, A.N.; Roulet, J.F. Five-year double-blind randomized clinical evaluation of a resin-modified glass ionomer and a polyacid-modified resin in noncarious cervical lesions. J. Adhes. Dent. 2003, 5, 323–332. [Google Scholar]
- Bollen, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef]
- Ablal, M.A.; Kaur, J.S.; Cooper, L.; Jarad, F.D.; Milosevic, A.; Higham, S.M.; Preston, A.J. The erosive potential of some alcopops using bovine enamel: An in vitro study. J. Dent. 2009, 37, 835–839. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Makkar, S.; Kumar, R.; Pasricha, S.; Gupta, P. Comparative evaluation of surface properties of enamel and different esthetic restorative materials under erosive and abrasive challenges: An in vitro study. Indian J. Dent. 2015, 6, 172. [Google Scholar]
- Hemingway, C.A.; Parker, D.M.; Addy, M.; Barbour, M.E. Erosion of enamel by non-carbonated soft drinks with and without toothbrushing abrasion. Br. Dent. J. 2006, 201, 447–450. [Google Scholar] [CrossRef] [Green Version]
- da Silva, A.B.; Gomes, I.A.; Gonçalves, L.M. In vitro quantitative comparison of erosive potential of infant mouthwashes on glass ionomer cement. J. Clin. Exp. Dent. 2018, 10, 206. [Google Scholar] [CrossRef] [Green Version]
- Tărăboanță, I.; Stoleriu, S.; Gurlui, S.; Nica, I.; Tărăboanță-Gamen, A.C.; Iovan, A.; Andrian, S. The Influence of Abrasive and Acidic Aggressions on the Surface Condition of Flowable Composite Resin. Materials 2022, 15, 1000. [Google Scholar] [CrossRef]
- Momoi, Y.; Hirosaki, K.; Kohno, A.; McCabe, J.F. In vitro toothbrush-dentifrice abrasion of resin-modified glass ionomers. Dent. Mater. 1997, 13, 82–88. [Google Scholar] [CrossRef]
- Bartlett, D.W.; Coward, P.Y. Comparison of the erosive potential of gastric juice and a carbonated drink in vitro. J. Oral. Rehabil. 2001, 28, 1045–1047. [Google Scholar] [CrossRef]
- Yehia, D.; Zaki, I.A.; Zaki, I.; Mahmoud, E.; Hamzawy, A.; Abd, S. Effect of simulated gastric juice on surface characteristics of direct esthetic restorations 1. Aust. J. Basic Appl. Sci. 2012, 6, 686–694. [Google Scholar]
- Hamburger, J.T.; Opdam, N.J.; Bronkhorst, E.M.; Kreulen, C.M.; Roeters, J.J.; Huysmans, M.C. Clinical performance of direct composite restorations for treatment of severe tooth wear. J. Adhes. Dent. 2011, 13, 585–593. [Google Scholar] [PubMed]
- de Luca Cunha, C.M.; Wambier, L.M.; Dias, G.F.; Reis, A.; Alves, F.B.; Chibinsk, A.C.; Wambier, D.S. In Vitro Evaluation of the Impact of Erosive/Abrasive Challenge in Glass Ionomer Cements. Biomed. J. Sci. Tech. Res. 2017, 1, 1263–1266. [Google Scholar]
- Nicholson, J.W.; Czarnecka, B. The biocompatibility of resin-modified glass-ionomer cements for dentistry. Dent. Mater. 2008, 24, 1702–1708. [Google Scholar] [CrossRef]
- Cattani-Lorente, M.A.; Dupuis, V.; Payan, J.; Moya, F.; Meyer, J.M. Effect of water on the physical properties of resin-modified glass ionomer cements. Dent. Mater. 1999, 15, 71–78. [Google Scholar] [CrossRef]
- Wilson, A.D. Resin-modified glass-ionomer cements. Int. J. Prosthodont. 1990, 3, 425–429. [Google Scholar] [PubMed]
- Kanchanavasita, W.; Anstice, H.M.; Pearson, G.J. Water sorption characteristics of resin-modified glass-ionomer cements. Biomaterials 1997, 18, 343–349. [Google Scholar] [CrossRef]
- El-Badrawy, W.A.; McComb, D.; Wood, R.E. Effect of home-use fluoride gels on glass ionomer and composite restorations. Dent. Mater. 1993, 9, 63–67. [Google Scholar] [CrossRef]
- Fukazawa, M.; Matsuya, S.; Yamane, M. Mechanism for erosion of glass-ionomer cements in an acidic buffer solution. J. Dent. Res. 1987, 66, 1770–1774. [Google Scholar] [CrossRef]
- Tărăboanță, I.; Buhățel, D.; Brînză Concită, C.A.; Andrian, S.; Nica, I.; Tărăboanță-Gamen, A.C.; Brânzan, R.; Stoleriu, S. Evaluation of the Surface Roughness of Bulk-Fill Composite Resins after Submission to Acidic and Abrasive Aggressions. Biomedicines 2022, 10, 1008. [Google Scholar] [CrossRef]
- Francisconi, L.F.; Honório, H.M.; Rios, D.; Magalhães, A.C.; Machado, M.D.; Buzalaf, M.R. Effect of erosive pH cycling on different restorative materials and on enamel restored with these materials. Oper. Dent. 2008, 33, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Harrington, E. Toothbrush-dentifrice abrasion—A suggested standard method. Br. Dent. J. 1982, 153, 135–138. [Google Scholar] [CrossRef]
- Goldstein, G.R.; Lerner, T. The effect of toothbrushing on a hybrid composite resin. J. Prosthet. Dent. 1991, 66, 498–500. [Google Scholar] [CrossRef]
- Rios, D.; Honório, H.M.; Araújo, P.A.; Machado, M.A. Wear and superficial roughness of glass ionomer cements used as sealants, after simulated toothbrushing. Pesqui. Odontol. Bras. 2002, 16, 343–348. [Google Scholar] [CrossRef]
- Komandla, D.R.; Acharya, S.R.; Pentapati, K.C. Comparative Evaluation of Surface Roughness of Resin-Modified Glass Ionomer and Glass Hybrid Restorative Materials Simulated by Tooth Brushing: An In-Vitro Study. Pesqui. Bras. Odontopediatria Clin. Integr. 2021, 21, e0259. [Google Scholar] [CrossRef]
- Andrian, S.; Munteanu, B.; Taraboanță, I.; Negraia, D.; Nica, P.E.; Stoleriu, S.; Nica, I. Surface roughness after finishing and polishing of a restorative nanocomposite material. In Proceedings of the 2017 E-Health and Bioengineering Conference (EHB), Sinaia, Romania, 22–24 June 2017; pp. 101–104. [Google Scholar]
- Carvalho, F.G.; Fucio, S.B.P.; Paula, A.B.; Correr, G.M.; Sinhoreti, M.A.C.; Puppin-Rontani, R.M. Child toothbrush abrasion effect on ionomeric materials. J. Dent. Child. 2008, 75, 112–116. [Google Scholar]
- Bajwa, N.K.; Pathak, A. Change in surface roughness of esthetic restorative materials after exposure to different immersion regimes in a cola drink. Int. Sch. Res. Notices. 2014, 2014, 353926. [Google Scholar] [CrossRef]
- Ghiorghe, C.A.; Iovan, G.; Pancu, G.; Topoliceanu, C.; Georgescu, A.; Rusu, L.C.; Andrian, S. Effects of Hydrochloric Acid on Enamel Adjacent to Composite Restorations an in vitro Study. Mat. Plast. 2015, 52, 301. [Google Scholar]
The Name of RMGIC | Manufacturer | Batch No. | Material Composition |
---|---|---|---|
Ionolux | VOCO GmbH, Cuxhaven, Germany | 2010139 | Liquid: Bis-GMA *, Polyacrilic acid, UDMA *, HEMA * |
Powder: fluoro-alumino-silicate glass | |||
Vitremer | 3 M-ESPE, St. Paul, MN, USA | NC32872 | Liquid: Polyacrilic acid copolymer, water, HEMA *, carboxylic acid copolymer |
Powder: fluoro-alumino-silicate glass, potassium persulfate, ascorbic acid | |||
Fuji II LC | GC Japan | 1911262 | Liquid: Acrylic maleic acid copolymer, HEMA *, UDMA *, camphoroquinone |
Powder: fluoro-alumino-silicate glass |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tărăboanță, I.; Buhățel, D.; Nica, I.; Stoleriu, S.; Ghiorghe, A.C.; Pancu, G.; Tărăboanță-Gamen, A.C.; Andrian, S. The Impact of Simulated Gastric Acid and Toothbrushing on Surface Characteristics of Resin-Modified Glass-Ionomer Cements. Medicina 2022, 58, 1149. https://doi.org/10.3390/medicina58091149
Tărăboanță I, Buhățel D, Nica I, Stoleriu S, Ghiorghe AC, Pancu G, Tărăboanță-Gamen AC, Andrian S. The Impact of Simulated Gastric Acid and Toothbrushing on Surface Characteristics of Resin-Modified Glass-Ionomer Cements. Medicina. 2022; 58(9):1149. https://doi.org/10.3390/medicina58091149
Chicago/Turabian StyleTărăboanță, Ionuț, Dan Buhățel, Irina Nica, Simona Stoleriu, Angela Cristina Ghiorghe, Galina Pancu, Andra Claudia Tărăboanță-Gamen, and Sorin Andrian. 2022. "The Impact of Simulated Gastric Acid and Toothbrushing on Surface Characteristics of Resin-Modified Glass-Ionomer Cements" Medicina 58, no. 9: 1149. https://doi.org/10.3390/medicina58091149
APA StyleTărăboanță, I., Buhățel, D., Nica, I., Stoleriu, S., Ghiorghe, A. C., Pancu, G., Tărăboanță-Gamen, A. C., & Andrian, S. (2022). The Impact of Simulated Gastric Acid and Toothbrushing on Surface Characteristics of Resin-Modified Glass-Ionomer Cements. Medicina, 58(9), 1149. https://doi.org/10.3390/medicina58091149