Implicit Motor Learning Strategies Benefit Dual-Task Performance in Patients with Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Characteristics of Attention and Working Memory
2.3. Procedures and Tasks
2.4. Explicit Knowledge Confirmation
2.5. Data Analysis
3. Results
3.1. Participants
3.2. Error Rates and Total Mean Reaction Times
3.3. Reaction Time and Learning Score
3.4. Correlation
3.5. Explicit Knowledge
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plummer, P.; Eskes, G.; Wallece, S.; Giuffrida, C.; Fraas, M.; Campbell, G.; Clifton, K.L.; Skidmore, E.R.; on behalf of the American Congress of Rehabilitation Medicine Stroke Networking Group Cognition Task Force. Cognitive-motor interference during functional mobility after stroke: State of the science and implications for future research. Arch. Phys. Med. Rehabil. 2013, 94, 2565–2574. [Google Scholar] [CrossRef]
- Meester, D.; Al-Yahya, E.; Dennis, A.; Collett, J.; Wade, D.T.; Ovington, M.; Liu, F.; Meaney, A.; Cockburn, J.; Johansen-berg, H.; et al. A randomized controlled trial of a walking training with simultaneous cognitive demand (Dual-task) in chronic stroke. Eur. J. Neurol. 2019, 26, 435–441. [Google Scholar] [CrossRef]
- Al-Yahya, E.; Dawes, H.; Smith, L.; Dennis, A.; Howells, K.; Cockburn, J. Cognitive motor interference while walking: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2011, 35, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Ashby, F.G.; Turner, B.O.; Horvitz, J.C. Cortical and basal ganglia contributions to habit learning and automaticity. Trends Cogn. Sci. 2010, 14, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Penhune, V.B.; Steele, C.J. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav. Brain Res. 2012, 226, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Ullman, M.T. Contributions of memory circuits to language: The declarative/procedural model. Cognition 2004, 92, 231–270. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Yang, Y.R.; Tsai, Y.A.; Wang, R.Y. Cognitive and motor dual-task gait training improve dual-task gait performance after stroke—A randomized controlled pilot trial. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.Y.C.; Yang, L.; Quyang, H.; Lam, F.M.H.; Huang, M.; Jehu, D.A. Dual-task exercise reduces cognitive-motor interference in walking and falls after stroke: A randomized controlled study. Stroke 2018, 49, 2990–2998. [Google Scholar] [CrossRef]
- Kübler, S.; Strobach, T.; Schubert, T. The role of working memory for task-order coordination in dual-task situations. Psychol. Res. 2022, 86, 452–473. [Google Scholar] [CrossRef]
- Kal, E.; Winters, M.; Van Der Kamp, J.; Houdijk, H.; Van Bennekom, C.; Scherder, E. Is implicit motor learning preserved after stroke? A systematic review with meta-analysis. PLoS ONE 2016, 11, e0166376. [Google Scholar] [CrossRef]
- Kal, E.; Prosée, R.; Winters, M.; Van Der Kamp, J. Does implicit motor learning lead to greater automatization of motor skills compared to explicit motor learning? A systematic review. PLoS ONE 2018, 13, e0203591. [Google Scholar] [CrossRef] [PubMed]
- Dahms, C.; Brodoehl, S.; Witte, O.W.; Klingner, C.M. The importance of different learning stages for motor sequence learning after stroke. Hum. Brain Mapp. 2020, 41, 270–286. [Google Scholar] [CrossRef] [PubMed]
- Reber, A.S. Implicit learning and tacit knowledge. J. Exp. Psychol. Gen. 1989, 118, 219–235. [Google Scholar] [CrossRef]
- Dovern, A.; Fink, G.R.; Saliger, J.; Karbe, H.; Koch, I.; Weiss, P.H. Apraxia impairs intentional retrieval of incidentally acquired motor knowledge. J. Neurosci. 2011, 31, 8102–8108. [Google Scholar] [CrossRef] [PubMed]
- Dovern, A.; Niessen, E.; Ant, J.M.; Klinger, C.M. Timing independent spatial motor sequence learning is preserved in left hemisphere stroke. Neuropsychologia 2017, 106, 322–327. [Google Scholar] [CrossRef]
- Maxwell, J.P.; Masters, R.S.W.; Kerr, E.; Weedon, E. The implicit benefit of learning without errors. Q. J. Exp. Psychol. 2001, 54, 1049–1068. [Google Scholar] [CrossRef]
- Orrell, A.J.; Eves, F.F.; Masters, R.S.W. Motor learning of a dynamic balancing task after stroke: Implicit implications for stroke rehabilitation. Phys. Ther. 2006, 86, 369–380. [Google Scholar] [CrossRef]
- Janacsek, K.; Nemeth, D. Implicit sequence learning and working memory: Correlated or complicated? Cortex 2013, 49, 2001–2006. [Google Scholar] [CrossRef]
- Denneman, R.P.M.; Kal, E.; Houdijk, H. Over-focused? The relation between patients’ inclination for conscious control and single- and dual-task motor performance after stroke. Gait Posture 2018, 62, 206–213. [Google Scholar] [CrossRef]
- Janacsek, K.; Shattuck, K.F.; Tgarelli, K.M.; Lum, J.A.G.; Turkeltaub, P.E.; Ullman, M.T. Sequence learning in the human brain: A functional neuroanatomical meta-analysis of serial reaction time studies. Neuroimage 2020, 207, 116387. [Google Scholar] [CrossRef]
- Jie, L.J.; Kleynen, M.; Meijer, K.; Beurskens, A.; Braun, S. Implicit and explicit motor learning interventions have similar effects on walking speed in people after stroke: A randomized controlled trial. Phys. Ther. 2021, 101, pzab017. [Google Scholar] [CrossRef]
- Nissen, M.J.; Bullemer, P. Attentional requirements of learning: Evidence from performance measures. Cogn. Psychol. 1987, 19, 1–32. [Google Scholar] [CrossRef]
- Varjacic, A.; Mantini, D.; Demeyere, N.; Gillebert, C.R. Neural signatures of Trail Making Test performance: Evidence from lesion-mapping and neuroimaging studies. Neuropsychologia 2018, 115, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Tombaugh, T.N. Trail Making Test A and B: Normative data stratified by age and education. Arch. Clin. Neuropsychol. 2004, 19, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Ekkel, M.R.; van Lier, R.; Steenbergen, B. Learning to echolocate in sighted people: A correlational study on attention, working memory and spatial abilities. Exp. Brain Res. 2017, 235, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Tombaugh, T.N. A comprehensive review of the Paced Auditory Serial Addition Test (PASAT). Arch. Clin. Neuropsychol. 2006, 21, 53–76. [Google Scholar] [CrossRef]
- Nikravesh, M.; Jafari, Z.; Mehrpour, M.; Kazemi, R.; Shavaki, Y.A.; Hossienifar, S.; Azizi, M.P. The paced auditory serial addition test for working memory assessment: Psychometric properties. Med. J. Islamic Repub. Iran 2017, 31, 349–354. [Google Scholar] [CrossRef]
- Woods, D.L.; Wyma, J.M.; Herron, T.J.; Yund, E.W.; Reed, B. The dyad-adaptive paced auditory serial addition test (da-pasat): Normative data and the effects of repeated testing, simulated malingering, and traumatic brain injury. PLoS ONE 2018, 13, e0178148. [Google Scholar] [CrossRef]
- Khaw, J.; Subramaniam, P.; Aziz, N.A.A.; Raymond, A.A.; Zaidi, W.A.W.; Ghazali, S.E. Current update on the clinical utility of MMSE and MoCA for stroke patients in Asia: A systematic review. Int. J. Environ. Res. Public. Health 2021, 18, 8962. [Google Scholar] [CrossRef]
- Ehsani, F.; Abdollahi, I.; Bandpei, M.A.; Zahiri, N.; Jaberzadeh, S. Motor learning and movement performance: Older versus younger adults. Basic. Clin. Neurosci. 2015, 6, 231–238. [Google Scholar]
- Schmitz, X.; Bier, N.; Joubert, S.; Lejeune, C.; Salmon, E.; Rouleau, I.; Meulemans, T. The benefits of errorless learning for serial reaction time performance in Alzheimer’s disease. J. Alzheimers Dis. 2014, 39, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Schuchard, J.; Nerantzini, M.; Thompson, C.K. Implicit learning and implicit treatment outcomes in individuals with aphasia individuals with aphasia. Aphasiology 2017, 31, 25–48. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, L.; Vázquez, G.A. Sequence learning under dual-task conditions: Alternatives to a resource-based account. Psychol. Res. 2005, 69, 352–368. [Google Scholar] [CrossRef]
- Vandenbossche, J.; Coomans, D.; Homblé, K.; Deroost, N. The effect of cognitive aging on implicit sequence learning and dual-tasking. Front. Psychol. 2014, 5, 154. [Google Scholar] [CrossRef]
- Boyd, L.A.; Winstein, C.J. Impact of explicit information on implicit motor-sequence learning following middle cerebral artery stroke. Phys. Ther. 2003, 83, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Vakil, E.; Kahan, S.; Huberman, M.; Osimani, A. Motor and non-motor sequence learning in patients with basal ganglia lesions: The case of serial reaction time (SRT). Neuropsychologia 2000, 38, 1–10. [Google Scholar] [CrossRef]
- Boyd, L.A.; Winstein, C.J. Providing explicit information disrupts implicit motor learning after basal ganglia stroke. Learn. Mem. 2004, 11, 388–396. [Google Scholar] [CrossRef]
- Orrell, A.J.; Eves, F.F.; Masters, R.S.W.; Macmahon, K.M.M. Implicit sequence learning processes after unilateral stroke. Neuropsychol. Rehabil. 2007, 17, 335–354. [Google Scholar] [CrossRef]
- Unsworth, N.; Engle, R.W. Individual differences in working memory capacity and learning: Evidence from the serial reaction time task. Mem. Cognit. 2005, 33, 213–220. [Google Scholar] [CrossRef]
- Bo, J.; Jennett, S.; Seider, R.D. Working memory capacity correlates with implicit serial reaction time task performance. Exp. Brain Res. 2011, 214, 73–81. [Google Scholar] [CrossRef]
- Bo, J.; Jennett, S.; Seider, R.D. Differential working memory correlates for implicit sequence performance in young and older adults. Exp. Brain Res. 2012, 221, 467–477. [Google Scholar] [CrossRef]
- Masters, R.S.W. Knowledge, knerves and know-how: The role of explicit versus implicit knowledge in the breakdown of a complex motor skill under pressure. Br. J. Psychol. 1992, 83, 343–358. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory: Looking back and looking forward. Nat. Rev. Neurosci. 2003, 4, 829–839. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Baddeley, H.A.; Bucks, R.S.; Wilcock, G.K. Attentional control in Alzheimer’s disease. Brain 2001, 124, 1492–1508. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A.D.; Bressi, S.; Della Sala, S.; Logie, R.; Spinnler, H. The decline of working memory in Alzheimer’s disease: A longitudinal study. Brain 1991, 114, 2521–2542. [Google Scholar] [CrossRef] [PubMed]
Patients with Stroke (n = 17) | Healthy Controls (n = 21) | p-Value | |
---|---|---|---|
Mean age (years) | 63.4 (±9.4) | 66.0 (±5.7) | 0.360 |
Male/female | 8/9 | 6/15 | |
TMT-A (s) ** | 71.6 (±29.7) | 40.1 (±13.2) | 0.001 |
TMT-B (s) ** | 126.6 (±57.0) | 63.5 (±15.8) | 0.001 |
PASAT (%) * | 45.2 (±20.6) | 59.0 (± 17.2) | 0.033 |
MMSE | 27.2 (±1.9) | 28.3 (±1.7) | 0.065 |
NIHSS | 2.6 (±1.8) | NA |
Participant | Lesion Side | Etiology | Lesion Location | Hemiparesis | Time Since Onset (Months) |
---|---|---|---|---|---|
1 | Right | Ischemic | Temporal/Parietal | 14 | |
2 | Left | Hemorrhagic | Frontal | None | 23 |
3 | Right | Hemorrhagic | Frontal/Parietal | None | 1 |
4 | Right | Hemorrhagic | Putamen | 191 | |
5 | Right | Hemorrhagic | Parietal/Putamen | 75 | |
6 | Right | Hemorrhagic | Frontal/Putamen | 68 | |
7 | Right | Ischemic | Putamen | 84 | |
8 | Right | Ischemic | Frontal/Temporal/Parietal | 21 | |
9 | Right | Hemorrhagic | Thalamus | 6 | |
10 | Right | Hemorrhagic | Frontal | None | 4 |
11 | Right | Hemorrhagic | Temporal | 11 | |
12 | Left | Ischemic | Putamen | 3 | |
13 | Left | Ischemic | Putamen | 3 | |
14 | Left | Ischemic | Globus pallidus | None | 16 |
15 | Left | Hemorrhagic | Thalamus | None | 2 |
16 | Right | Hemorrhagic | Putamen | 2 | |
17 | Right | Ischemic | Putamen | 4 |
Group | Condition | Total Mean RT (ms) | Error Rate (%) | Learning Score (RT Block 6–RT Block 5) (ms) | Explicit Knowledge (No. of Items) |
---|---|---|---|---|---|
Stroke | Implicit | 1366.2 ± 64.9 ** | 1.0 ± 0.1 | 50.1 ± 12.7 | 1.9 ± 0.3 |
Explicit | 1328.0 ± 56.9 ** | 0.6 ± 0.1 | 14.6 ± 11.8 | 2.3 ± 0.3 | |
Control | Implicit | 987.6 ± 28.0 | 0.0 ± 0.0 | 40.6 ± 10.0 | 2.7 ± 0.2 |
Explicit | 985.1 ± 37.1 | 0.0 ± 0.0 | 28.6 ± 9.5 | 2.9 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arikawa, E.; Kubota, M.; Haraguchi, T.; Takata, M.; Natsugoe, S. Implicit Motor Learning Strategies Benefit Dual-Task Performance in Patients with Stroke. Medicina 2023, 59, 1673. https://doi.org/10.3390/medicina59091673
Arikawa E, Kubota M, Haraguchi T, Takata M, Natsugoe S. Implicit Motor Learning Strategies Benefit Dual-Task Performance in Patients with Stroke. Medicina. 2023; 59(9):1673. https://doi.org/10.3390/medicina59091673
Chicago/Turabian StyleArikawa, Eito, Masatomo Kubota, Tomoko Haraguchi, Masachika Takata, and Shoji Natsugoe. 2023. "Implicit Motor Learning Strategies Benefit Dual-Task Performance in Patients with Stroke" Medicina 59, no. 9: 1673. https://doi.org/10.3390/medicina59091673
APA StyleArikawa, E., Kubota, M., Haraguchi, T., Takata, M., & Natsugoe, S. (2023). Implicit Motor Learning Strategies Benefit Dual-Task Performance in Patients with Stroke. Medicina, 59(9), 1673. https://doi.org/10.3390/medicina59091673