Age-Related Macular Degeneration (AMD): Pathophysiology, Drug Targeting Approaches, and Recent Developments in Nanotherapeutics
Abstract
:1. Introduction
2. Etiology, Types and Symptoms of Age-Related Macular Degeneration
Prevalence and Risk Factors of AMD
3. Pathologies Associated with AMD
3.1. Oxidative Stress
3.2. Inflammation
3.3. Angiogenesis
3.4. Complement System and AMD
3.5. Bioactive Lipids and AMD
4. Therapeutic Intervention in AMD
4.1. Management of AMD
4.1.1. Anti-VEGF Agents
4.1.2. Anti-VEGF Biosimilars
Anti-VEGF Drugs | Structure | Target/Mechanism of Action | MW (kDa) | Half-Life in Days | FDA Approval | Side Effects |
---|---|---|---|---|---|---|
Pegaptanib Macugen® | Pegylated neutralizing RNA aptamer | Inhbits VEGF-A_165 isoforms | 50 | Human: 10 | 2004 | Anterior chamber inflammation, blurred vision, cataract, conjunctival hemorrhage, hypertension, increased intraocular pressure, punctate keratitis, reduced visual acuity |
Ranibizumab Lucentis® | Recombinant humanized mAb IgG1 [87] | Inhbits All isoforms of VEGF-A | 48 | Rabbit: 2.88 Human: 9 | 2006 | Conjunctival Hemorrhage, eye pain, vitreous floaters, and increased IOP |
Byooviz™ Ranibizumab biosimilar | Recombinant humanized IgG1 kappa isotype monoclonal antibody fragment | Inhbits All isoforms of VEGF-A | 48 | Human: 9 | 2021 Got interchangeability status in 2023 | Conjunctival Hemorrhage, eye pain, vitreous floaters, and increased IOP |
CIMERLI™ (ranibizumab-eqrn) | Inhbits All isoforms of VEGF-A | 48 | Human: 9 | 2022 | Conjunctival Hemorrhage, eye pain, and increased IOP | |
Ximluci | Recombinant humanized IgG1 kappa isotype monoclonal antibody fragment | Inhbits All isoforms of VEGF-A | 48 | Human: 9 | Approved by EMA in 2022 | Retinal detachment, resulting in flashes of light with floaters progressing to a temporary loss of sight or a clouding of the lens (cataract) |
Bevacizumab Avastin® | Recombinant humanized full-length mAb IgG1 | Inhbits All isoforms of VEGF-A | 149 | Rabbit: 4.3 Human: 4.9 | Off-label use for AMD | Epistaxis, headache, hypertension, rhinitis, proteinuria, taste alteration, dry skin, rectal hemorrhage, lacrimation disorder, and exfoliative dermatitis. |
Aflibercept Eylea® | Fusion of the second domain of VEGFRs 1 and the third domain of VEGFR 2 to the Fc portion of human IgG1 | Inhbits All isoforms of VEGF-A and B | 115 | Rabbit: 3.63 Human: 11 | 2011 | EYLEA caused conjunctival hemorrhage, eye pain, cataracts, vitreous detachment, vitreous floaters, and increased intraocular pressure. |
Yesafili | Fusion of the second domain of VEGFRs 1 and the third domain of VEGFR 2 to the Fc portion of human IgG | Attaches to VEGF A and B, to placental growth factor as decoy | 7 days | Rabbit: 3.63 Human: 11 | EMA authorization in 2023 | Aflibercept caused conjunctival hemorrhage, eye pain, cataracts, vitreous detachment, vitreous floaters, and intraocular pressure increased. |
Brolucizumab Beovu® | region of human IgG1 IG Fv Fragment and single-chain antibody fragment (scFv) | Inhbits All isoforms of VEGF-A | 26 | Cynomolgus monkey: 2.4 days (in ocular compartments) | 2019 | Blurred vision, cataracts, conjunctival hemorrhage, eye pain, and vitreous floaters |
4.1.3. Other Antiangiogenic Biotherapeutics
4.1.4. Bispecific Antibodies
4.1.5. Small Molecules
4.1.6. Ocular Gene Therapies
4.1.7. Antioxidant Therapies
4.1.8. Role of Anti-Inflammatory Drugs on Inhibition of Angiogenesis in Experimental AMD
5. Strategic Drug Delivery Approaches
5.1. Routes of Ocular Drug Delivery
5.2. Intravitreal Pharmacokinetics
6. Formulations for Therapy of AMD with Preclinical/Clinical Studies
6.1. Polymeric Nanoparticles
Title | Highlights of Article | Year of Publication | References |
---|---|---|---|
Long-acting intraocular Delivery strategies for biological therapy of age–related macular degeneration” | Physiological and anatomical barriers to drug delivery. Prospects for biological therapeutics. Development of drug delivery methodologies. | 2019 | [156] |
Recent theranostic paradigms for the management of Age-related macular degeneration | Application of printing 3D and AI to manage AMD. Possibilities of research in therapy. | 2020 | [157] |
Nanotechnology for Age-Related Macular Degeneration | Development of nano-drug delivery systems and gene therapy strategies. Novel targeting strategies and the potential application of delivery methods. | 2021 | [158] |
Nanotechnology: revolutionizing the delivery of drugs to treat age-related macular degeneration | AMD biology and the pathophysiology. Successes and limitations of available therapies. Novel therapeutics. | 2021 | [159] |
Therapeutic Approaches for Age-Related Macular Degeneration | Recent challenges encountered in the treatment of different forms of AMD. Innovative nanoformulations, 3D bioprinting, and techniques to monitor the progress. | 2022 | [160] |
Novel Approaches in the Drug Development and Delivery Systems for Age-Related Macular Degeneration | Approaches for the treatment of AMD. Novel drug delivery systems and route of administration for AMD. | 2023 | [161] |
Advanced nanomedicines for the treatment of age-related macular degeneration | Latest pre-clinical treatment options in ocular drug delivery to the retina. Explores the advantages of nanoparticle-based therapeutic approaches for AMD. | 2024 | [162] |
Age-Related Macular Degeneration—Therapies and Their Delivery | Different types of nanocarriers developed for the topical ocular delivery system. Important treatment options for AMD. | 2024 | [163] |
6.2. Lipid-Based Nanoformulations
Liposome
6.3. Metallic Nanoparticles
6.4. Non-Metallic Nanoparticles
6.5. Clinical Investigations of Formulations
Drug(s)/Active Components | Formulation(s) | Route of Administration | Outcome(s) | References |
---|---|---|---|---|
Sunitinib | Liposomes | Intravitreal injection | Inhibitory effect on mice in a laser-induced CNV | [175] |
Bevacizumab | Liposomes | Intravitreal injection | More effective as anti-angiogenesis in nAMD, good permeation via the cell model barrier, long-term stability improved | [176] |
microRNA-150 and quercetin | Lipid NPs | -- | Have a potent effect on the fundus, preventing CNV for up to two weeks in a rat model without endangering the retina. | [177] |
Angiopoietin 1 | PLGA NPs | intravenous injection | Successfully lessen the leaking of neovascularization | [178] |
Mesenchymal stem cell (MSC) | exosomes | In vitro study in ARPE-19 cells | Using the Nrf2/Kepa1 signaling pathway regulation, exosomes shield RPE cells from oxidative damage. | [179] |
Siglecs (sialic-acid-binding immunoglobulin-type lectins) | PolySialic acid-nanoparticles | Intravitreal injection | PolySia-NPs reduced the size of neovascular lesions | [180] |
Cerium nitrate | Cerium nanoparticles | Topical eye drops | By reducing VEGF and raising PEDF levels, therapy reduced laser-induced choroidal neovascular lesions in mice. | [181] |
Dexamethasone and bevacizumab | PLGA and polyethylenimine NPs | Intravitreal injection | Showed good anti-angiogenic effect on HUVEC cells, Enhanced inhibitory effect on VEGF secretion | [182] |
Bevacizumab | Chitosan NPs in hyaluronic acid | Ocular implant | Sustained release | [183] |
Aflibercept and Dexamethasone | Micro- and nanoparticle hydrogel | -- | Sustained release up to 224 days | [184] |
Everolimus | Nanomicelles with Soluplus® | Topical | Enhance permeation of drug via cornea | [185] |
Ovalbumin | PLGA NP loaded bilayer microneedle | Ex vivo study on porcine sclera | Sustained release of protein and bypasses scleral barrier | [186] |
Dasatinib | Spray-dried PLGA particles | Intravitreal injection | Prolonged release and notable suppression of collagen matrix contraction. | [187] |
Fenofibrate | PLGA NPs | Intravitreal injection | Improved retinal vascular leakage, inhibited retinal leukostasis, controlled VEGF overexpression, and decreased injection frequency | [188] |
Bevacizumab | Albumin PLGA NPs. | Vitreous injection in New Zealand albino rabbits | Sustained-release formulation of bevacizumab and extended for about 8 weeks | [189] |
Bevacizumab | Carbon nanovesicles | Intravitreal injection | increased bioavailability, sustained release | [41] |
Sirolimus | Chitosan functionalized PLGA NPs | In vitro, and ex vivo studies | NPs penetrated more to scleral tissue, less cytotoxicity | [190] |
Cerium oxide and Melanin | ceria-coated melanin-PEG nanoparticles (CMNPs) | Intravitreal injection | new monotherapy intended to protect the RPE and photoreceptors in AMD | [191] |
Drug(s)/Actives | MOA | Delivery System | Use(s) | Suggested Route of Administration | Stage(s) | References |
---|---|---|---|---|---|---|
Bevacizumab | VEGF inhibitor | Intracapsular drug ring | Exudative AMD | During cataract surgery | Preclinical | [194] |
Ixoberogene Soroparvovec | anti-VEGF | Gene therapy | AMD | Intravitreal | phase 1 study | [195] |
Voretigene Neparvovec | Gene therapy | Retinal degeneration | Subretinal injection/oral | Successful phase I to III studies | [196] | |
Pan-9080622 | VEGF/FGF/tyrosine kinase inhibitor | Eyedrops | Exudative AMD | Topical | Phase I/II | [197] |
Ranibizumab | VEGF inhibitor | Liposome | Exudative AMD | Subconjunctival | Preclinical | [166] |
Ranibizumab | VEGF inhibitor | Refillable port delivery system | Exudative AMD | Trans-scleral implantation | Phase III trials | [198] |
GB-102 (Sunitinib Malate) | tyrosine kinase inhibitor | Bioerodable polymeric nanoparticles | neovascular AMD | Intravitreal depot injection | Phase I/II trials | [199] |
LHA-510 (Acrizanib) | Tyrosine kinase-VEGF receptor inhibitor | eyedrops | exudative AMD | Topically | Failed Phase II trial | [200] |
Bevacizumab | VEGF inhibitor | Liposome | Exudative AMD | Intravitreal injection | Preclinical | [201] |
Dexamethasone, + Aflibercept | Anti-inflammatory and VEGF inhibitor | Polymeric nanoparticles | Wet AMD | Release time of 224 days | [184] |
7. Conclusions and Prospects for the Future
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Moqri, M.; Herzog, C.; Poganik, J.R.; Justice, J.; Belsky, D.W.; Higgins-Chen, A.; Moskalev, A.; Fuellen, G.; Cohen, A.A.; Bautmans, I.; et al. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell 2023, 186, 3758–3775. [Google Scholar] [CrossRef] [PubMed]
- Tartiere, A.G.; Freije, J.M.P.; López-Otín, C. The hallmarks of aging as a conceptual framework for health and longevity research. Front. Aging 2024, 5, 1334261. [Google Scholar] [CrossRef] [PubMed]
- Gellert, P.; Alonso-Perez, E. Psychosocial and biological pathways to aging: The role(s) of the behavioral and social sciences in geroscience. Z. Fur Gerontol. Geriatr. 2024, 57, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Q.; Welchowski, T.; Schmid, M.; Mauschitz, M.M.; Holz, F.G.; Finger, R.P. Prevalence and incidence of age-related macular degeneration in Europe: A systematic review and meta-analysis. Br. J. Ophthalmol. 2020, 104, 1077–1084. [Google Scholar] [CrossRef]
- Weber, C.; Bertelsmann, M.; Kiy, Z.; Stasik, I.; Holz, F.G.; Liegl, R. Antiplatelet and anticoagulant therapy in patients with submacular hemorrhage caused by neovascular age-related macular degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 261, 1413–1421. [Google Scholar] [CrossRef]
- Tedros, A.G. World report on vision. World Health Organ 2019, 214, 180–235. [Google Scholar]
- Yin, J.; Jiang, B.; Zhao, T.; Guo, X.; Tan, Y.; Wang, Y. Trends in the global burden of vision loss among the older adults from 1990 to 2019. Front. Public Health 2024, 12, 1324141. [Google Scholar] [CrossRef]
- Amini, M.A.; Karbasi, A.; Vahabirad, M.; Khanaghaei, M.; Alizamir, A. Mechanistic Insight into Age-Related Macular Degeneration (AMD): Anatomy, Epidemiology, Genetics, Pathogenesis, Prevention, Implications, and Treatment Strategies to Pace AMD Management. Chonnam Med. J. 2023, 59, 143. [Google Scholar] [CrossRef]
- Steinmetz, J.D.; Bourne, R.R.A.; Briant, P.S.; Flaxman, S.R.; Taylor, H.R.B.; Jonas, J.B.; Abdoli, A.A.; Abrha, W.A.; Abualhasan, A.; Abu-Gharbieh, E.G. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef]
- Fleckenstein, M.; Schmitz-Valckenberg, S.; Chakravarthy, U. Age-Related Macular Degeneration: A Review. JAMA 2024, 331, 147–157. [Google Scholar] [CrossRef]
- Jun, S.; Datta, S.; Wang, L.; Pegany, R.; Cano, M.; Handa, J.T. The impact of lipids, lipid oxidation, and inflammation on AMD, and the potential role of miRNAs on lipid metabolism in the RPE. Exp. Eye Res. 2019, 181, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Seah, I.; Zhao, X.; Lin, Q.; Liu, Z.; Su, S.Z.Z.; Yuen, Y.S.; Hunziker, W.; Lingam, G.; Loh, X.J.; Su, X. Use of biomaterials for sustained delivery of anti-VEGF to treat retinal diseases. Eye 2020, 34, 1341–1356. [Google Scholar] [CrossRef] [PubMed]
- Khalili Pour, E.; Bazvand, F.; Iyer, S.; Khojasteh, H.; Roohipourmoallai, R.; Hajizadeh, F. Age-Related Macular Degeneration. In Atlas of Ocular Optical Coherence Tomography; Springer: Berlin/Heidelberg, Germany, 2023; pp. 35–79. [Google Scholar]
- Luaces-Rodriguez, A.; Mondelo-Garcia, C.; Zarra-Ferro, I.; Gonzalez-Barcia, M.; Aguiar, P.; Fernandez-Ferreiro, A.; Otero-Espinar, F.J. Intravitreal anti-VEGF drug delivery systems for age-related macular degeneration. Int. J. Pharm. 2020, 573, 118767. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi Falavarjani, K.; Nguyen, Q.D. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature. Eye 2013, 27, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Lumbreras, A.; Ghule, P.; Panchal, R.; Giannouchos, T.; Lockhart, C.M.; Brixner, D. Real-world evidence in the use of Bevacizumab in age-related macular degeneration (ArMD): A scoping review. Int. Ophthalmol. 2023, 43, 4527–4539. [Google Scholar] [CrossRef]
- Zou, M.; Zhang, Y.; Chen, A.; Young, C.A.; Li, Y.; Zheng, D.; Jin, G. Variations and trends in global disease burden of age-related macular degeneration: 1990–2017. Acta Ophthalmol. 2021, 99, e330–e335. [Google Scholar] [CrossRef]
- Purola, P.; Kaarniranta, K.; Ojamo, M.; Gissler, M.; Uusitalo, H. Visual impairment due to age-related macular degeneration during 40 years in Finland and the impact of novel therapies. Acta Ophthalmol. 2023, 101, 57–64. [Google Scholar] [CrossRef]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.-Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef]
- Xu, X.; Wu, J.; Yu, X.; Tang, Y.; Tang, X.; Shentu, X. Regional differences in the global burden of age-related macular degeneration. BMC Public Health 2020, 20, 410. [Google Scholar] [CrossRef]
- Frank, R.N.; Puklin, J.E.; Stock, C.; Canter, L.A. Race, iris color, and age-related macular degeneration. Trans. Am. Ophthalmol. Soc. 2000, 98, 109. [Google Scholar]
- Park, S.J.; Kwon, K.-e.; Choi, N.-K.; Park, K.H.; Woo, S.J. Prevalence and incidence of exudative age-related macular degeneration in South Korea: A nationwide population-based study. Ophthalmology 2015, 122, 2063–2070. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Qiao, L.; Du, M.; Qu, C.; Wan, L.; Li, J.; Huang, L. Age-related macular degeneration: Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis. 2022, 9, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, U.; Wong, T.Y.; Fletcher, A.; Piault, E.; Evans, C.; Zlateva, G.; Buggage, R.; Pleil, A.; Mitchell, P. Clinical risk factors for age-related macular degeneration: A systematic review and meta-analysis. BMC Ophthalmol. 2010, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Guymer, R.H.; Campbell, T.G. Age-related macular degeneration. Lancet 2023, 401, 1459–1472. [Google Scholar] [CrossRef] [PubMed]
- Zarbin, M.A. Current concepts in the pathogenesis of age-related macular degeneration. Arch. Ophthalmol. 2004, 122, 598–614. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Sodha, S.J.; Junnuthula, V.; Kolimi, P.; Dyawanapelly, S. Novel and investigational therapies for wet and dry age-related macular degeneration. Drug Discov. Today 2022, 27, 2322–2332. [Google Scholar] [CrossRef]
- Priore, L.V.D.; Geng, L.; Tezel, T.H.; Kaplan, H.J. Extracellular matrix ligands promote RPE attachment to inner Bruch’s membrane. Curr. Eye Res. 2002, 25, 79–89. [Google Scholar] [CrossRef]
- Serjanov, D.; Hyde, D.R. Extracellular Matrix: The Unexplored Aspects of Retinal Pathologies and Regeneration. In Retinal Degenerative Diseases XIX: Mechanisms and Experimental Therapy; Springer: Berlin/Heidelberg, Germany, 2023; pp. 309–317. [Google Scholar]
- Kaluzhny, Y.; Kinuthia, M.W.; Lapointe, A.M.; Truong, T.; Klausner, M.; Hayden, P. Oxidative stress in corneal injuries of different origin: Utilization of 3D human corneal epithelial tissue model. Exp. Eye Res. 2020, 190, 107867. [Google Scholar] [CrossRef]
- Chen, H.C.; Yang, S.F.; Lee, C.Y.; Hsueh, Y.J.; Huang, J.Y.; Chang, C.K. Differences in change of post-operative antioxidant levels between laser-assisted lenticule extraction and femtosecond laser in situ keratomileusis. J. Cell. Mol. Med. 2023, 28, e18069. [Google Scholar] [CrossRef]
- Xu, H.-Z.; Song, Z.; Fu, S.; Zhu, M.; Le, Y.-Z. RPE barrier breakdown in diabetic retinopathy: Seeing is believing. J. Ocul. Biol. Dis. Inform. 2011, 4, 83–92. [Google Scholar] [CrossRef]
- Dörschmann, P.; Akkurt, H.; Kopplin, G.; Mikkelsen, M.D.; Meyer, A.S.; Roider, J.; Klettner, A. Establishment of specific age-related macular degeneration relevant gene expression panels using porcine retinal pigment epithelium for assessing fucoidan bioactivity. Exp. Eye Res. 2023, 231, 109469. [Google Scholar] [CrossRef] [PubMed]
- Kushwah, N.; Bora, K.; Maurya, M.; Pavlovich, M.C.; Chen, J. Oxidative stress and antioxidants in age-related macular degeneration. Antioxidants 2023, 12, 1379. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, D. Glutathione and Glutathione-dependent Enzymes: From Biochemistry to Gerontology and Successful Aging. Ageing Res. Rev. 2023, 92, 102066. [Google Scholar] [PubMed]
- Pan, C.; Banerjee, K.; Lehmann, G.L.; Almeida, D.; Hajjar, K.A.; Benedicto, I.; Jiang, Z.; Radu, R.A.; Thompson, D.H.; Rodriguez-Boulan, E. Lipofuscin causes atypical necroptosis through lysosomal membrane permeabilization. Proc. Natl. Acad. Sci. USA 2021, 118, e2100122118. [Google Scholar] [CrossRef] [PubMed]
- Różanowska, M.B. Lipofuscin, its origin, properties, and contribution to retinal fluorescence as a potential biomarker of oxidative damage to the retina. Antioxidants 2023, 12, 2111. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, M.; Cano, M.; Handa, J.T. Mice that produce ApoB100 lipoproteins in the RPE do not develop drusen yet are still a valuable experimental system. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7285–7295. [Google Scholar] [CrossRef]
- Handa, J.T.; Cano, M.; Wang, L.; Datta, S.; Liu, T. Lipids, oxidized lipids, oxidation-specific epitopes, and Age-related Macular Degeneration. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2017, 1862, 430–440. [Google Scholar] [CrossRef]
- Hadziahmetovic, M.; Malek, G. Age-related macular degeneration revisited: From pathology and cellular stress to potential therapies. Front. Cell Dev. Biol. 2021, 8, 612812. [Google Scholar] [CrossRef]
- Anand, A.; Jian, H.-J.; Huang, H.-H.; Hean, L.E.; Li, Y.-J.; Lai, J.-Y.; Chou, H.-D.; Kang, Y.-C.; Wu, W.-C.; Lai, C.-C.; et al. Anti-angiogenic carbon nanovesicles loaded with bevacizumab for the treatment of age-related macular degeneration. Carbon 2023, 201, 362–370. [Google Scholar] [CrossRef]
- Marneros, A.G. Role of inflammasome activation in neovascular age-related macular degeneration. FEBS J. 2023, 290, 28–36. [Google Scholar] [CrossRef]
- Pan, N.; Shi, J.; Du, S.; Qiu, Z.; Ran, Q.; Guo, Y.; Ma, A.; Zhang, Q.; Sang, A.; Yang, X. Honokiol Attenuates Choroidal Neovascularization by Inhibiting the Hypoxia-inducible Factor-α/Vascular Endothelial Growth Factor Axis via Nuclear transcription factor-kappa B Activation. Curr. Eye Res. 2023, 49, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Kiernan, D.F. Stopping Dry-to-Wet AMD Conversion. Ophthalmol. Manag. 2012, 59–64. Available online: https://ophthalmologymanagement.com/issues/2012/november/stopping-dry-to-wet-amd-conversion/ (accessed on 3 September 2024).
- Jaffe, G.J.; Ciulla, T.A.; Ciardella, A.P.; Devin, F.; Dugel, P.U.; Eandi, C.M.; Masonson, H.; Monés, J.; Pearlman, J.A.; Quaranta-El Maftouhi, M. Dual antagonism of PDGF and VEGF in neovascular age-related macular degeneration: A phase IIb, multicenter, randomized controlled trial. Ophthalmology 2017, 124, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Du, S.; Yang, D.; Jin, X.; Zhang, Y.; Wang, D.; Wang, H.; Zhang, Y.; Zhu, M. LncRNA MALAT1 knockdown inhibits the development of choroidal neovascularization. Heliyon 2023, 9, e19503. [Google Scholar] [CrossRef] [PubMed]
- Bajic, G.; Degn, S.E.; Thiel, S.; Andersen, G.R. Complement activation, regulation, and molecular basis for complement-related diseases. EMBO J. 2015, 34, 2735–2757. [Google Scholar] [CrossRef] [PubMed]
- Merle, N.S.; Church, S.E.; Fremeaux-Bacchi, V.; Roumenina, L.T. Complement system part I—Molecular mechanisms of activation and regulation. Front. Immunol. 2015, 6, 262. [Google Scholar] [CrossRef]
- Liszewski, M.K.; Atkinson, J.P. Complement regulators in human disease: Lessons from modern genetics. J. Intern. Med. 2015, 277, 294–305. [Google Scholar] [CrossRef]
- Huang, L.; Xiong, W.; Cheng, L.; Li, H. Bioinformatics-based analysis of programmed cell death pathway and key prognostic genes in gastric cancer: Implications for the development of therapeutics. J. Gene Med. 2024, 26, e3590. [Google Scholar] [CrossRef]
- Manai, F.; Smedowski, A.; Kaarniranta, K.; Comincini, S.; Amadio, M. Extracellular vesicles in degenerative retinal diseases: A new therapeutic paradigm. J. Control. Release 2024, 365, 448–468. [Google Scholar] [CrossRef]
- Armento, A.; Ueffing, M.; Clark, S.J. The complement system in age-related macular degeneration. Cell. Mol. Life Sci. 2021, 78, 4487–4505. [Google Scholar] [CrossRef]
- Shughoury, A.; Sevgi, D.D.; Ciulla, T.A. The complement system: A novel therapeutic target for age-related macular degeneration. Expert Opin. Pharmacother. 2023, 24, 1887–1899. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, V.; Lorés-Motta, L.; He, F.; Fathalla, D.; Tilakaratna, V.; McHarg, S.; Bayatti, N.; Acar, İ.E.; Hoyng, C.B.; Fauser, S.; et al. Increased circulating levels of Factor H-Related Protein 4 are strongly associated with age-related macular degeneration. Nat. Commun. 2020, 11, 778. [Google Scholar] [CrossRef] [PubMed]
- Mullins, R.F.; Schoo, D.P.; Sohn, E.H.; Flamme-Wiese, M.J.; Workamelahu, G.; Johnston, R.M.; Wang, K.; Tucker, B.A.; Stone, E.M. The membrane attack complex in aging human choriocapillaris: Relationship to macular degeneration and choroidal thinning. Am. J. Pathol. 2014, 184, 3142–3153. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Lai, K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp. Eye Res. 2023, 239, 109770. [Google Scholar] [CrossRef] [PubMed]
- Papp, A.; Papp, K.; Uzonyi, B.; Cserhalmi, M.; Csincsi, Á.I.; Szabó, Z.; Bánlaki, Z.; Ermert, D.; Prohászka, Z.; Erdei, A.; et al. Complement Factor H-related proteins FHR1 and FHR5 interact with extracellular matrix ligands, reduce Factor H regulatory activity and enhance complement activation. Front. Immunol. 2022, 13, 845953. [Google Scholar] [CrossRef]
- Swinkels, M.; Zhang, J.H.; Tilakaratna, V.; Black, G.; Perveen, R.; McHarg, S.; Inforzato, A.; Day, A.J.; Clark, S.J. C-reactive protein and pentraxin-3 binding of factor H-like protein 1 differs from complement factor H: Implications for retinal inflammation. Sci. Rep. 2018, 8, 1643. [Google Scholar] [CrossRef]
- Yates, J.R.W.; Sepp, T.; Matharu, B.K.; Khan, J.C.; Thurlby, D.A.; Shahid, H.; Clayton, D.G.; Hayward, C.; Morgan, J.; Wright, A.F.; et al. Complement C3 variant and the risk of age-related macular degeneration. N. Engl. J. Med. 2007, 357, 553–561. [Google Scholar] [CrossRef]
- Zelinger, L.; Martin, T.M.; Advani, J.; Campello, L.; English, M.A.; Kwong, A.; Weber, C.; Maykoski, J.; Sergeev, Y.V.; Fariss, R.; et al. Ultra-rare complement factor 8 coding variants in families with age-related macular degeneration. iScience 2023, 26, 106417. [Google Scholar] [CrossRef]
- Jiang, H.; Shi, X.; Fan, Y.; Wang, D.; Li, B.; Zhou, J.; Pei, C.; Ma, L. Dietary omega-3 polyunsaturated fatty acids and fish intake and risk of age-related macular degeneration. Clin. Nutr. 2021, 40, 5662–5673. [Google Scholar] [CrossRef]
- Querques, G.; Souied, E.H. The role of omega-3 and micronutrients in age-related macular degeneration. Surv. Ophthalmol. 2014, 59, 532–539. [Google Scholar] [CrossRef]
- Saxena, S.; Singh, R.; Dutta, D.; Gautam, N.; Setya, S.; Talegaonkar, S. Nutraceuticals and Their Applications: Recent Trends and Challenges. In Anxiety Gut Microbiome Nutraceuticals; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–32. [Google Scholar]
- Duan, H.; Song, W.; Zhao, J.; Yan, W. Polyunsaturated Fatty Acids (PUFAs): Sources, Digestion, Absorption, Application and Their Potential Adjunctive Effects on Visual Fatigue. Nutrients 2023, 15, 2633. [Google Scholar] [CrossRef] [PubMed]
- Connor, K.M.; SanGiovanni, J.P.; Lofqvist, C.; Aderman, C.M.; Chen, J.; Higuchi, A.; Hong, S.; Pravda, E.A.; Majchrzak, S.; Carper, D.; et al. Increased dietary intake of ω-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat. Med. 2007, 13, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Rezig, L.; Ghzaiel, I.; Ksila, M.; Yammine, A.; Nury, T.; Zarrouk, A.; Samadi, M.; Chouaibi, M.; Vejux, A.; Lizard, G. Cytoprotective activities of representative nutrients from the Mediterranean diet and of Mediterranean oils against 7-ketocholesterol-and 7β-hydroxycholesterol-induced cytotoxicity: Application to age-related diseases and civilization diseases. Steroids 2022, 187, 109093. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, I.R.; Clark, M.E.; Lee, J.W.; Curcio, C.A. 7-ketocholesterol accumulates in ocular tissues as a consequence of aging and is present in high levels in drusen. Exp. Eye Res. 2014, 128, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Pariente, A.; Pérez-Sala, Á.; Ochoa, R.; Bobadilla, M.; Villanueva-Martínez, Á.; Peláez, R.; Larráyoz, I.M. Identification of 7-Ketocholesterol-Modulated Pathways and Sterculic Acid Protective Effect in Retinal Pigmented Epithelium Cells by Using Genome-Wide Transcriptomic Analysis. Int. J. Mol. Sci. 2023, 24, 7459. [Google Scholar] [CrossRef] [PubMed]
- Pariente, A.; Peláez, R.; Pérez-Sala, Á.; Larráyoz, I.M. Inflammatory and cell death mechanisms induced by 7-ketocholesterol in the retina. Implications for age-related macular degeneration. Exp. Eye Res. 2019, 187, 107746. [Google Scholar] [CrossRef] [PubMed]
- Ferris, F.L.; Fine, S.L.; Hyman, L. Age-related macular degeneration and blindness due to neovascular maculopathy. Arch. Ophthalmol. 1984, 102, 1640–1642. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Ahn, J.; Shin, J.Y. Sequential structural and functional change in geographic atrophy on multimodal imaging in non-exudative age-related macular degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 261, 2199–2207. [Google Scholar] [CrossRef]
- Savastano, A.; Ferrara, S.; Sasso, P.; Savastano, M.C.; Crincoli, E.; Caporossi, T.; De Vico, U.; Vidal Aroca, F.; Francione, G.; Sammarco, L.; et al. Smaller-Incision new-generation implantable miniature telescope: Three-months follow-up study. Eur. J. Ophthalmol. 2024, 34, 1111–1118. [Google Scholar] [CrossRef]
- Abbas, A.; O’Byrne, C.; Fu, D.J.; Moraes, G.; Balaskas, K.; Struyven, R.; Beqiri, S.; Wagner, S.K.; Korot, E.; Keane, P.A. Evaluating an automated machine learning model that predicts visual acuity outcomes in patients with neovascular age-related macular degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 2461–2473. [Google Scholar] [CrossRef]
- ElSheikh, R.H.; Chauhan, M.Z.; Sallam, A.B. Current and novel therapeutic approaches for treatment of neovascular age-related macular degeneration. Biomolecules 2022, 12, 1629. [Google Scholar] [CrossRef] [PubMed]
- Fabre, M.; Mateo, L.; Lamaa, D.; Baillif, S.; Pagès, G.; Demange, L.; Ronco, C.; Benhida, R. Recent advances in age-related macular degeneration therapies. Molecules 2022, 27, 5089. [Google Scholar] [CrossRef]
- Waugh, N.; Loveman, E.; Colquitt, J.; Royle, P.; Yeong, J.L.; Hoad, G.; Lois, N. Treatments for dry age-related macular degeneration and Stargardt disease: A systematic review. Health Technol. Assess. 2018, 22, 1–168. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.S.; Park, S.S.; Albini, T.A.; Canto-Soler, M.V.; Klassen, H.; MacLaren, R.E.; Takahashi, M.; Nagiel, A.; Schwartz, S.D.; Bharti, K. Retinal stem cell transplantation: Balancing safety and potential. Prog. Retin. Eye Res. 2020, 75, 100779. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.A.B.; Lojudice, F.H.; Ribeiro, L.Z.; da Cruz, N.F.S.; Polizelli, M.U.; Cristovam, P.C.; Innocenti, F.; Morimoto, L.; Magalhães, O., Jr.; Sallum, J.M.F. Transplantation of subretinal stem cell–derived retinal pigment epithelium for stargardt disease: A Phase I Clinical Trial. Retina 2023, 43, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Mahla, R.S.; Mukherjee, A.K.; Amin, S.; Jainarayanan, A.; Mouroug-Anand, N.; Nandakumar, A.; Prasad, A.D. Stem Cells Application in Eye Regeneration and Restoration of Vision. In Handbook of Stem Cell Applications; Springer Nature: Singapore, 2024; pp. 233–263. [Google Scholar]
- Li, S.; Xu, F.; Liu, L.; Ju, R.; Bergquist, J.; Zheng, Q.Y.; Mi, J.; Lu, L.; Li, X.; Tian, G. A systems genetics approach to revealing the Pdgfb molecular network of the retina. Mol. Vis. 2020, 26, 459. [Google Scholar]
- Yonekawa, Y.; Kim, I.K. Clinical characteristics and current treatment of age-related macular degeneration. Cold Spring Harb. Perspect. Med. 2015, 5, a017178. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Das, A.; Do, D.V.; Dugel, P.U.; Gomes, A.; Holz, F.G.; Koh, A.; Pan, C.K.; Sepah, Y.J.; Patel, N.; et al. Brolucizumab: Evolution through preclinical and clinical studies and the implications for the management of neovascular age-related macular degeneration. Ophthalmology 2020, 127, 963–976. [Google Scholar] [CrossRef]
- Formica, M.L.; Awde Alfonso, H.G.; Palma, S.D. Biological drug therapy for ocular angiogenesis: Anti-VEGF agents and novel strategies based on nanotechnology. Pharmacol. Res. Perspect. 2021, 9, e00723. [Google Scholar] [CrossRef]
- Alfonso, H.G.A.; Paz, M.C.; Palma, S.D.; Formica, M.L. Advances in nanotechnology-based anti-VEGF agents for the management of ocular angiogenesis. In Nanotechnology in Ophthalmology; Elsevier: Amsterdam, The Netherlands, 2023; pp. 247–262. [Google Scholar]
- Khachigian, L.M.; Liew, G.; Teo, K.Y.C.; Wong, T.Y.; Mitchell, P. Emerging therapeutic strategies for unmet need in neovascular age-related macular degeneration. J. Transl. Med. 2023, 21, 133. [Google Scholar] [CrossRef]
- Kaiser, S.M.; Arepalli, S.; Ehlers, J.P. Current and future anti-VEGF agents for neovascular age-related macular degeneration. J. Exp. Pharmacol. 2021, 13, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Abdulbaqi, I.M.; Darwis, Y.; Khan, N.A.K.; Abou Assi, R.; Khan, A.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomed. 2016, 11, 2279. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, T.; Jia, H.; Gao, M.; Li, Y.; Wan, X.; Huang, Z.; Li, M.; Zhai, Y.; Li, X.; et al. Targeting C3b/C4b and VEGF with a bispecific fusion protein optimized for neovascular age-related macular degeneration therapy. Sci. Transl. Med. 2022, 14, eabj2177. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.L.; Boyer, D.; Brown, D.M.; Chaudhry, N.; Elman, M.; Liang, C.; O’Shaughnessy, D.; Parsons, E.C.; Patel, S.; Slakter, J.S. Oral tyrosine kinase inhibitor for neovascular age-related macular degeneration: A phase 1 dose-escalation study. JAMA Ophthalmol. 2017, 135, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.N.; O’Shaughnessy, D.; Fisher, K.; Cerami, J.; Awh, C.C.; Salazar, D.E.; Rosenfeld, P.; Heier, J.S. APEX: A phase II randomised clinical trial evaluating the safety and preliminary efficacy of oral X-82 to treat exudative age-related macular degeneration. Br. J. Ophthalmol. 2021, 105, 716–722. [Google Scholar] [CrossRef]
- Mohamed, J.M.M.; Ahmad, F.; El-Sherbiny, M.; Padhare, S.; Khan, S. Nanocarriers: The enhanced potential treatment of age-related macular degeneration. In Nanotechnology Principles in Drug Targeting and Diagnosis; Elsevier: Amsterdam, The Netherlands, 2023; pp. 255–267. [Google Scholar]
- Kaiser, P.K.; Treatment of Age-Related Macular Degeneration with Photodynamic Therapy Study Group. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: 5-year results of two randomized clinical trials with an open-label extension: TAP report no. 8. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 244, 1132–1142. [Google Scholar] [CrossRef]
- Sterling, C., Jr.; Márquez-Garbán, D.; Vadgama, J.V.; Pietras, R.J. Squalamines in Blockade of Tumor-Associated Angiogenesis and Cancer Progression. Cancers 2022, 14, 5154. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nonaka, Y.; Futakawa, S.; Imai, H.; Akita, K.; Nishihata, T.; Fujiwara, M.; Ali, Y.; Bhisitkul, R.B.; Nakamura, Y. Anti-angiogenic and anti-scarring dual action of an anti-fibroblast growth factor 2 aptamer in animal models of retinal disease. Mol. Ther.-Nucleic Acids 2019, 17, 819–828. [Google Scholar] [CrossRef]
- Nakamura, Y. Multiple therapeutic applications of RBM-007, an anti-FGF2 aptamer. Cells 2021, 10, 1617. [Google Scholar] [CrossRef]
- Pereira, D.S.; Akita, K.; Bhisitkul, R.B.; Nishihata, T.; Ali, Y.; Nakamura, E.; Nakamura, Y. Safety and tolerability of intravitreal umedaptanib pegol (anti-FGF2) for neovascular age-related macular degeneration (nAMD): A phase 1, open-label study. Eye 2023, 38, 1149–1154. [Google Scholar] [CrossRef]
- Tan, Y.; Ma, L.; Yang, X.; Cheng, Q.-N.; Wu, J.-F. Current Status and Challenges of Aptamers Screening and Optimization. Comb. Chem. High Throughput Screen. 2023, 26, 1067–1082. [Google Scholar] [CrossRef] [PubMed]
- Khanani, A.M.; Thomas, M.J.; Aziz, A.A.; Weng, C.Y.; Danzig, C.J.; Yiu, G.; Kiss, S.; Waheed, N.K.; Kaiser, P.K. Review of gene therapies for age-related macular degeneration. Eye 2022, 36, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Samulski, R.J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 2020, 21, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Tai, P.W.L.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef]
- Blasiak, J.; Pawlowska, E. A New Generation of Gene Therapies as the Future of Wet AMD Treatment. IJMS 2024, 25, 2386. [Google Scholar] [CrossRef] [PubMed]
- Kiss, S.; Bender, K.O.; Grishanin, R.N.; Hanna, K.M.; Nieves, J.D.; Sharma, P.; Nguyen, A.T.; Rosario, R.J.; Greengard, J.S.; Gelfman, C.M.; et al. Long-term safety evaluation of continuous intraocular delivery of aflibercept by the intravitreal gene therapy candidate ADVM-022 in nonhuman primates. Transl. Vis. Sci. Technol. 2021, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Naser, M.; Nasr, M.M.; Shehata, L.H. Ocular Gene Therapy. Int. J. Progress. Sci. Technol. (IJPSAT) 2023, 40, 193–225. [Google Scholar] [CrossRef]
- Girgis, S.; Lee, L.R. Treatment of dry age-related macular degeneration: A review. Clin. Exp. Ophthalmol. 2023, 51, 835–852. [Google Scholar] [CrossRef]
- Csader, S.; Korhonen, S.; Kaarniranta, K.; Schwab, U. The effect of dietary supplementations on delaying the progression of age-related macular degeneration: A systematic review and meta-analysis. Nutrients 2022, 14, 4273. [Google Scholar] [CrossRef]
- Sin, H.P.Y.; Liu, D.T.L.; Lam, D.S.C. Lifestyle modification, nutritional and vitamins supplements for age-related macular degeneration. Acta Ophthalmol. 2013, 91, 6–11. [Google Scholar] [CrossRef]
- De Guimaraes, T.A.C.; Varela, M.D.; Georgiou, M.; Michaelides, M. Treatments for dry age-related macular degeneration: Therapeutic avenues, clinical trials and future directions. Br. J. Ophthalmol. 2021, 106, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Potilinski, M.C.; Tate, P.S.; Lorenc, V.E.; Gallo, J.E. New insights into oxidative stress and immune mechanisms involved in age-related macular degeneration tackled by novel therapies. Neuropharmacology 2021, 188, 108513. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-s.; Friedrichs, U.; Eichler, W.; Hoffmann, S.; Wiedemann, P. Inhibitory effects of triamcinolone acetonide on bFGF-induced migration and tube formation in choroidal microvascular endothelial cells. Graefe’s Arch. Clin. Exp. Ophthalmol. 2002, 240, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Ehmann, D.; García, R. Triple therapy for neovascular age-related macular degeneration (verteporfin photodynamic therapy, intravitreal dexamethasone, and intravitreal bevacizumab). Can. J. Ophthalmol. 2010, 45, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Degenring, R.F.; Kreissig, I.; Friedemann, T.; Akkoyun, I. Exudative age-related macular degeneration treated by intravitreal triamcinolone acetonide. A prospective comparative nonrandomized study. Eye 2005, 19, 163–170. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, V.M.; Chan, C.C. The role of anti-inflammatory agents in age-related macular degeneration (AMD) treatment. Eye 2011, 25, 127–139. [Google Scholar] [CrossRef]
- Rigas, B.; Huang, W.; Honkanen, R. NSAID-induced corneal melt: Clinical importance, pathogenesis, and risk mitigation. Surv. Ophthalmol. 2020, 65, 1–11. [Google Scholar] [CrossRef]
- Abdi, F.; Mohammadi, S.S.; Falavarjani, K.G. Intravitreal methotrexate. J. Ophthalmic Vis. Res. 2021, 16, 657. [Google Scholar] [CrossRef]
- Singh, M.; Bharadwaj, S.; Lee, K.E.; Kang, S.G. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J. Control. Release 2020, 328, 895–916. [Google Scholar] [CrossRef]
- Ahmed, S.; Amin, M.M.; Sayed, S. Ocular drug delivery: A comprehensive review. AAPS PharmSciTech 2023, 24, 66. [Google Scholar] [CrossRef]
- Ansari, M.; Kulkarni, Y.A.; Singh, K. Advanced Technologies of Drug Delivery to the Posterior Eye Segment Targeting Angiogenesis and Ocular Cancer. Crit. Rev. Ther. Drug Carr. Syst. 2024, 41, 85–124. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Chiang, B.; Wu, X.; Prausnitz, M.R. Ocular delivery of macromolecules. J. Control. Release 2014, 190, 172–181. [Google Scholar] [CrossRef]
- Wang, W.; Snider, N. Discovery and Potential Utility of a Novel Non-Invasive Ocular Delivery Platform. Pharmaceutics 2023, 15, 2344. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.G.; Sousa-Junior, A.A.; Cintra, B.A.S.; Dos Anjos, J.L.V.; Nascimento, T.L.; Mendes, L.P.; de Souza Vieira, M.; do Nascimento Ducas, R.; Valadares, M.C.; Mendanha, S.A.; et al. Pre-clinical safety of topically administered sunitinib-loaded lipid and polymeric nanocarriers targeting corneal neovascularization. Int. J. Pharm. 2023, 635, 122682. [Google Scholar] [CrossRef] [PubMed]
- Ilochonwu, B.C.; Van Der Lugt, S.A.; Annala, A.; Di Marco, G.; Sampon, T.; Siepmann, J.; Siepmann, F.; Hennink, W.E.; Vermonden, T. Thermo-responsive Diels-Alder stabilized hydrogels for ocular drug delivery of a corticosteroid and an anti-VEGF fab fragment. J. Control. Release 2023, 361, 334–349. [Google Scholar] [CrossRef] [PubMed]
- Agrahari, V.; Mandal, A.; Agrahari, V.; Trinh, H.M.; Joseph, M.; Ray, A.; Hadji, H.; Mitra, R.; Pal, D.; Mitra, A.K. A comprehensive insight on ocular pharmacokinetics. Drug Deliv. Transl. Res. 2016, 6, 735–754. [Google Scholar] [CrossRef]
- Jang, M.; Kang, M.; Lee, E.; Shin, D. Ocular and Plasma Pharmacokinetics of Enavogliflozin Ophthalmic Solution in Preclinical Species. Pharmaceuticals 2024, 17, 111. [Google Scholar] [CrossRef]
- De Castro, R.; Kandhola, G.; Kim, J.-W.; Moore Iii, Q.C.; Thompson, A.K. Fabrication of Chitosan/PEGDA Bionanocomposites for Enhanced Drug Encapsulation and Release Efficiency. Mol. Pharm. 2023, 20, 5532–5542. [Google Scholar] [CrossRef]
- Varela-Fernández, R.; Díaz-Tomé, V.; Luaces-Rodríguez, A.; Conde-Penedo, A.; García-Otero, X.; Luzardo-Álvarez, A.; Fernández-Ferreiro, A.; Otero-Espinar, F.J. Drug delivery to the posterior segment of the eye: Biopharmaceutic and pharmacokinetic considerations. Pharmaceutics 2020, 12, 269. [Google Scholar] [CrossRef]
- Alambiaga-Caravaca, A.M.; Iglesias, L.G.G.; Rodilla, V.; Kalia, Y.N.; López-Castellano, A. Biodistribution of progesterone in the eye after topical ocular administration via drops or inserts. Int. J. Pharm. 2023, 630, 122453. [Google Scholar] [CrossRef]
- Cong, Y.-Y.; Fan, B.; Zhang, Z.-Y.; Li, G.-Y. Implantable sustained-release drug delivery systems: A revolution for ocular therapeutics. Int. Ophthalmol. 2023, 3, 2575–2588. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-j.; Kang, D.W.; Kim, J.H.; Choi, G.-W.; Kang, M.; Cho, H.-Y. Multicompartmental pharmacokinetic evaluation of enavogliflozin eye drop formulation: Understanding its distribution to posterior segments. J. Pharm. Investig. 2024, 54, 329–343. [Google Scholar] [CrossRef]
- García-Quintanilla, L.; Luaces-Rodríguez, A.; Gil-Martínez, M.; Mondelo-García, C.; Maroñas, O.; Mangas-Sanjuan, V.; González-Barcia, M.; Zarra-Ferro, I.; Aguiar, P.; Otero-Espinar, F.J.; et al. Pharmacokinetics of intravitreal anti-VEGF drugs in age-related macular degeneration. Pharmaceutics 2019, 11, 365. [Google Scholar] [CrossRef] [PubMed]
- Del Amo, E.M.; Rimpelä, A.-K.; Heikkinen, E.; Kari, O.K.; Ramsay, E.; Lajunen, T.; Schmitt, M.; Pelkonen, L.; Bhattacharya, M.; Richardson, D. Pharmacokinetic aspects of retinal drug delivery. Prog. Retin. Eye Res. 2017, 57, 134–185. [Google Scholar] [CrossRef]
- Jordán, J.; Ruíz-Moreno, J.M. Advances in the understanding of retinal drug disposition and the role of blood–ocular barrier transporters. Expert Opin. Drug Metab. Toxicol. 2013, 9, 1181–1192. [Google Scholar] [CrossRef]
- Ramezani, P.; De Smedt, S.C.; Sauvage, F. Supramolecular dye nanoassemblies for advanced diagnostics and therapies. Bioeng. Transl. Med. 2024, 9, e10652. [Google Scholar] [CrossRef]
- Thornit, D.N.; Vinten, C.M.; Sander, B.; Lund-Andersen, H.; la Cour, M. Blood–retinal barrier glycerol permeability in diabetic macular edema and healthy eyes: Estimations from Macular Volume Changes after Peroral Glycerol. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2827–2834. [Google Scholar] [CrossRef]
- Käsdorf, B.T.; Arends, F.; Lieleg, O. Diffusion regulation in the vitreous humor. Biophys. J. 2015, 109, 2171–2181. [Google Scholar] [CrossRef]
- Nomoto, H.; Shiraga, F.; Kuno, N.; Kimura, E.; Fujii, S.; Shinomiya, K.; Nugent, A.K.; Hirooka, K.; Baba, T. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4807–4813. [Google Scholar] [CrossRef]
- Spruill, M.L.; Maletic-Savatic, M.; Martin, H.; Li, F.; Liu, X. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging. Biochem. Pharmacol. 2022, 201, 115080. [Google Scholar] [CrossRef]
- Mandal, A.; Pal, D.; Agrahari, V.; Trinh, H.M.; Joseph, M.; Mitra, A.K. Ocular delivery of proteins and peptides: Challenges and novel formulation approaches. Adv. Drug Deliv. Rev. 2018, 126, 67–95. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.; São Braz, B.; Delgado, E.; Gonçalves, L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int. J. Pharm. 2021, 606, 120873. [Google Scholar] [CrossRef] [PubMed]
- Al-Kinani, A.A.; Zidan, G.; Elsaid, N.; Seyfoddin, A.; Alani, A.W.G.; Alany, R.G. Ophthalmic gels: Past, present and future. Adv. Drug Deliv. Rev. 2018, 126, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Tsung, T.-H.; Chen, Y.-H.; Lu, D.-W. Updates on Biodegradable Formulations for Ocular Drug Delivery. Pharmaceutics 2023, 15, 734. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, S.; Wang, Z.; Chen, X.; Dana, R.; Annabi, N. Advanced nanodelivery platforms for topical ophthalmic drug delivery. Drug Discov. Today 2021, 26, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Akhter, M.H.; Ahmad, I.; Alshahrani, M.Y.; Al-Harbi, A.I.; Khalilullah, H.; Afzal, O.; Altamimi, A.S.A.; Najib Ullah, S.N.M.; Ojha, A.; Karim, S. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels 2022, 8, 82. [Google Scholar] [CrossRef]
- Pimple, P.; Sawant, A.; Nair, S.; Sawarkar, S.P. Current Insights into Targeting Strategies for the Effective Therapy of Diseases of the Posterior Eye Segment. Crit. Rev.™ Ther. Drug Carr. Syst. 2024, 41, 1–50. [Google Scholar] [CrossRef]
- Gorantla, S.; Rapalli, V.K.; Waghule, T.; Singh, P.P.; Dubey, S.K.; Saha, R.N.; Singhvi, G. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Adv. 2020, 10, 27835–27855. [Google Scholar] [CrossRef]
- Onugwu, A.L.; Nwagwu, C.S.; Onugwu, O.S.; Echezona, A.C.; Agbo, C.P.; Ihim, S.A.; Emeh, P.; Nnamani, P.O.; Attama, A.A.; Khutoryanskiy, V.V. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J. Control. Release 2023, 354, 465–488. [Google Scholar] [CrossRef]
- Sharma, Y.; Patel, P.; Kurmi, B.D. A Mini-review on New Developments in Nanocarriers and Polymers for Ophthalmic Drug Delivery Strategies. Curr. Drug Deliv. 2024, 1, 488–508. [Google Scholar] [CrossRef]
- Liu, L.-C.; Chen, Y.-H.; Lu, D.-W. Overview of Recent Advances in Nano-Based Ocular Drug Delivery. Int. J. Mol. Sci. 2023, 24, 15352. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, L.; Fu, Y. Nanotechnology-based ocular drug delivery systems: Recent advances and future prospects. J. Nanobiotechnol. 2023, 21, 232. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Dyawanapelly, S. Nanodiagnostics and Nanotherapeutics for age-related macular degeneration. J. Control. Release 2021, 329, 1262–1282. [Google Scholar] [CrossRef] [PubMed]
- Geng, F.; Fan, X.; Liu, Y.; Lu, W.; Wei, G. Recent advances in nanocrystal-based technologies applied for ocular drug delivery. Expert Opin. Drug Deliv. 2024, 21, 211–227. [Google Scholar] [CrossRef]
- Mishra, A.; Shaima, K.A.; Sindhu, R.K. Novel Drug Delivery System for Ocular Target. In Nanotechnology and Drug Delivery; Jenny Stanford Publishing: Singapore, 2024; pp. 205–249. [Google Scholar]
- Torrecilla, J.; Rodríguez-Gascón, A.; Solinís, M.Á.; del Pozo-Rodríguez, A. Lipid nanoparticles as carriers for RNAi against viral infections: Current status and future perspectives. BioMed Res. Int. 2014, 2014, 1–17. [Google Scholar] [CrossRef]
- De la Fuente, M.; Raviña, M.; Paolicelli, P.; Sanchez, A.; Seijo, B.; Alonso, M.J. Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Adv. Drug Deliv. Rev. 2010, 62, 100–117. [Google Scholar] [CrossRef]
- Martens, T.F.; Remaut, K.; Deschout, H.; Engbersen, J.F.J.; Hennink, W.E.; Van Steenbergen, M.J.; Demeester, J.; De Smedt, S.C.; Braeckmans, K. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J. Control. Release 2015, 202, 83–92. [Google Scholar] [CrossRef]
- Pan, C.K.; Durairaj, C.; Kompella, U.B.; Agwu, O.; Oliver, S.C.N.; Quiroz-Mercado, H.; Mandava, N.; Olson, J.L. Comparison of long-acting bevacizumab formulations in the treatment of choroidal neovascularization in a rat model. J. Ocul. Pharmacol. Ther. 2011, 27, 219–224. [Google Scholar] [CrossRef]
- Iyer, S.; Radwan, A.E.; Hafezi-Moghadam, A.; Malyala, P.; Amiji, M. Long-acting intraocular Delivery strategies for biological therapy of age-related macular degeneration. J. Control. Release Off. J. Control. Release Soc. 2019, 296, 140–149. [Google Scholar] [CrossRef]
- Suri, R.; Neupane, Y.R.; Jain, G.K.; Kohli, K. Recent theranostic paradigms for the management of Age-related macular degeneration. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2020, 153, 105489. [Google Scholar] [CrossRef]
- Yang, B.; Li, G.; Liu, J.; Li, X.; Zhang, S. Nanotechnology for Age-Related Macular Degeneration. Pharmaceutics 2021, 13, 2035. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Mittal, S. Nanotechnology: Revolutionizing the delivery of drugs to treat age-related macular degeneration. Expert Opin. Drug Deliv. 2021, 18, 1131–1149. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Camacho, R.M.; Blanco-Llamero, C. Therapeutic Approaches for Age-Related Macular Degeneration. IJMS 2022, 23, 1769. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, H.; Prajapati, B.G. Novel Approaches in the Drug Development and Delivery Systems for Age-Related Macular Degeneration. Life 2023, 13, 568. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.S.; Han, Z. Advanced nanomedicines for the treatment of age-related macular degeneration. Nanoscale 2024, 16, 16769–16790. [Google Scholar] [CrossRef]
- Ponnusamy, C.; Ayarivan, P.; Selvamuthu, P.; Natesan, S. Age-Related Macular Degeneration—Therapies and Their Delivery. Curr. Drug Deliv. 2024, 21, 683–696. [Google Scholar] [CrossRef]
- Bhatt, P.; Narvekar, P.; Lalani, R.; Chougule, M.B.; Pathak, Y.; Sutariya, V. An in vitro assessment of thermo-reversible gel formulation containing sunitinib nanoparticles for neovascular age-related macular degeneration. AAPS PharmSciTech 2019, 20, 281. [Google Scholar] [CrossRef]
- Behroozi, F.; Abdkhodaie, M.J.; Abandansari, H.S.; Satarian, L.; Ashtiani, M.K.; Jaafari, M.R.; Baharvand, H. Smart liposomal drug delivery for treatment of oxidative stress model in human embryonic stem cell-derived retinal pigment epithelial cells. Int. J. Pharm. 2018, 548, 62–72. [Google Scholar] [CrossRef]
- Joseph, R.R.; Tan, D.W.N.; Ramon, M.R.M.; Natarajan, J.V.; Agrawal, R.; Wong, T.T.; Venkatraman, S.S. Characterization of liposomal carriers for the trans-scleral transport of Ranibizumab. Sci. Rep. 2017, 7, 16803. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, S.; Xu, N.; Liu, K.; Wei, F.; Zhang, X.; Zhang, J.; Gao, S. Topical Ophthalmic Liposomes Dual-Modified with Penetratin and Hyaluronic Acid for the Noninvasive Treatment of Neovascular Age-Related Macular Degeneration. Int. J. Nanomed. 2024, 19, 1887–1908. [Google Scholar] [CrossRef]
- Chen, X.; Liu, S.; Chen, M.; Ni, N.; Zhou, R.; Wang, Y.; Xu, Y.; Wang, Y.; Gao, H.; Zhang, D.; et al. Novel therapeutic perspectives for wet age-related macular degeneration: RGD-modified liposomes loaded with 2-deoxy-D-glucose as a promising nanomedicine. Biomed. Pharmacother. Biomed. Pharmacother. 2024, 175, 116776. [Google Scholar] [CrossRef] [PubMed]
- Christie, J.G.; Kompella, U.B. Ophthalmic light sensitive nanocarrier systems. Drug Discov. Today 2008, 13, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, S.J.; Llonch, S.; Borsch, O.; Ader, M. Transplantation of photoreceptors into the degenerative retina: Current state and future perspectives. Prog. Retin. Eye Res. 2019, 69, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Chemla, Y.; Betzer, O.; Markus, A.; Farah, N.; Motiei, M.; Popovtzer, R.; Mandel, Y. Gold nanoparticles for multimodal high-resolution imaging of transplanted cells for retinal replacement therapy. Nanomedicine 2019, 14, 1857–1871. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.B.; Sher, I.; Rencus-Lazar, S.; Rotenstreich, Y.; Gazit, E. Functional carbon quantum dots for ocular imaging and therapeutic applications. Small 2023, 19, 2205754. [Google Scholar] [CrossRef]
- Akuffo, K.O.; Nolan, J.M.; Howard, A.N.; Moran, R.; Stack, J.; Klein, R.; Klein, B.E.; Meuer, S.M.; Sabour-Pickett, S.; Thurnham, D.I. Sustained supplementation and monitored response with differing carotenoid formulations in early age-related macular degeneration. Eye 2015, 29, 902–912. [Google Scholar] [CrossRef]
- Obana, A.; Gohto, Y.; Nakazawa, R.; Moriyama, T.; Gellermann, W.; Bernstein, P.S. Effect of an antioxidant supplement containing high dose lutein and zeaxanthin on macular pigment and skin carotenoid levels. Sci. Rep. 2020, 10, 10262. [Google Scholar] [CrossRef]
- Tavakoli, S.; Puranen, J.; Bahrpeyma, S.; Lautala, V.E.; Karumo, S.; Lajunen, T.; Del Amo, E.M.; Ruponen, M.; Urtti, A. Liposomal sunitinib for ocular drug delivery: A potential treatment for choroidal neovascularization. Int. J. Pharm. 2022, 620, 121725. [Google Scholar] [CrossRef]
- Malakouti-Nejad, M.; Monti, D.; Burgalassi, S.; Bardania, H.; Elahi, E.; Morshedi, D. A comparison between the effects of two liposome-encapsulated bevacizumab formulations on ocular neovascularization inhibition. Colloids Surf. B Biointerfaces 2024, 234, 113708. [Google Scholar] [CrossRef]
- Li, W.; Chen, L.; Gu, Z.; Chen, Z.; Li, H.; Cheng, Z.; Li, H.; Zou, L. Co-delivery of microRNA-150 and quercetin by lipid nanoparticles (LNPs) for the targeted treatment of age-related macular degeneration (AMD). J. Control. Release 2023, 355, 358–370. [Google Scholar] [CrossRef]
- Yao, H.; Xu, H.; Wu, M.; Lei, W.; Li, L.; Liu, D.; Wang, Z.; Ran, H.; Ma, H.; Zhou, X. Targeted long-term noninvasive treatment of choroidal neovascularization by biodegradable nanoparticles. Acta Biomater. 2023, 166, 536–551. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Kang, Y.; Zhang, X.; Cheng, C. Mesenchymal stem cell exosomes as nanotherapeutics for dry age-related macular degeneration. J. Control. Release 2023, 357, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Sendra, V.G.; Patel, D.; Lad, A.; Greene, M.K.; Smyth, P.; Gallaher, S.A.; Herron, Ú.M.; Scott, C.J.; Genead, M.; et al. PolySialic acid-nanoparticles inhibit macrophage mediated inflammation through Siglec agonism: A potential treatment for age related macular degeneration. Front. Immunol. 2023, 14, 1237016. [Google Scholar] [CrossRef] [PubMed]
- Badia, A.; Duarri, A.; Salas, A.; Rosell, J.; Ramis, J.; Gusta, M.F.; Casals, E.; Zapata, M.A.; Puntes, V.; Garcia-Arumi, J. Repeated Topical Administration of 3 Nm Cerium Oxide Nanoparticles Reverts Disease Atrophic Phenotype and Arrests Neovascular Degeneration in AMD Mouse Models. ACS Nano 2023, 17, 910–926. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Li, G.; Xu, F.; Li, S.; Teng, L.; Li, Y.; Sun, F. Anti-angiogenic activity of bevacizumab-bearing dexamethasone-loaded plga nanoparticles for potential intravitreal applications. Int. J. Nanomed. 2019, 14, 8819–8834. [Google Scholar] [CrossRef]
- Badiee, P.; Varshochian, R.; Rafiee-Tehrani, M.; Abedin Dorkoosh, F.; Khoshayand, M.R.; Dinarvand, R. Ocular implant containing bevacizumab-loaded chitosan nanoparticles intended for choroidal neovascularization treatment. J. Biomed. Mater. Res. Part A 2018, 106, 2261–2271. [Google Scholar] [CrossRef]
- Rudeen, K.M.; Liu, W.; Mieler, W.F.; Kang-Mieler, J.J. Simultaneous Release of Aflibercept and Dexamethasone from an Ocular Drug Delivery System. Curr. Eye Res. 2022, 47, 1034–1042. [Google Scholar] [CrossRef]
- Mehra, N.; Aqil, M.; Sultana, Y. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: Formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study. Eur. J. Pharm. Sci. 2021, 159, 105735. [Google Scholar] [CrossRef]
- Wu, Y.; Vora, L.K.; Wang, Y.; Adrianto, M.F.; Tekko, I.A.; Waite, D.; Donnelly, R.F.; Thakur, R.R.S. Long-acting nanoparticle-loaded bilayer microneedles for protein delivery to the posterior segment of the eye. Eur. J. Pharm. Biopharm. 2021, 165, 306–318. [Google Scholar] [CrossRef]
- Chauhan, R.; Balgemann, R.; Greb, C.; Nunn, B.M.; Ueda, S.; Noma, H.; McDonald, K.; Kaplan, H.J.; Tamiya, S.; O’Toole, M.G. Production of dasatinib encapsulated spray-dried poly (lactic-co-glycolic acid) particles. J. Drug Deliv. Sci. Technol. 2019, 53, 101204. [Google Scholar] [CrossRef]
- Qiu, F.; Meng, T.; Chen, Q.; Zhou, K.; Shao, Y.; Matlock, G.; Ma, X.; Wu, W.; Du, Y.; Wang, X.; et al. Fenofibrate-loaded biodegradable nanoparticles for the treatment of experimental diabetic retinopathy and neovascular age-related macular degeneration. Mol. Pharm. 2019, 16, 1958–1970. [Google Scholar] [CrossRef] [PubMed]
- Varshochian, R.; Riazi-Esfahani, M.; Jeddi-Tehrani, M.; Mahmoudi, A.R.; Aghazadeh, S.; Mahbod, M.; Movassat, M.; Atyabi, F.; Sabzevari, A.; Dinarvand, R. Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment. J. Biomed. Mater. Res. Part A 2015, 103, 3148–3156. [Google Scholar] [CrossRef]
- Suri, R.; Neupane, Y.R.; Mehra, N.; Nematullah, M.; Khan, F.; Alam, O.; Iqubal, A.; Jain, G.K.; Kohli, K. Sirolimus loaded chitosan functionalized poly (lactic-co-glycolic acid)(PLGA) nanoparticles for potential treatment of age-related macular degeneration. Int. J. Biol. Macromol. 2021, 191, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-S.; Voinov, M.A.; Zheng, M.; Smirnov, A.I.; Han, Z. Dark matter: Developing a new nanoantioxidant-based therapeutic system for the treatment of age-related macular degeneration. Nano Today 2023, 50, 101879. [Google Scholar] [CrossRef]
- Samanta, A.; Aziz, A.A.; Jhingan, M.; Singh, S.R.; Khanani, A.M.; Chhablani, J. Emerging therapies in neovascular age-related macular degeneration in 2020. Asia-Pac. J. Ophthalmol. 2020, 9, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Rush, J.S.; Bingaman, D.P.; Chaney, P.G.; Wax, M.B.; Ceresa, B.P. Administration of menadione, vitamin K3, ameliorates off-target effects on corneal epithelial wound healing due to receptor tyrosine kinase inhibition. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5864–5871. [Google Scholar] [CrossRef]
- Gooch, N.; Burr, R.M.; Holt, D.J.; Gale, B.; Ambati, B. Design and in vitro biocompatibility of a novel ocular drug delivery device. J. Funct. Biomater. 2013, 4, 14–26. [Google Scholar] [CrossRef]
- Khanani, A.M.; Boyer, D.S.; Wykoff, C.C.; Regillo, C.D.; Busbee, B.G.; Pieramici, D.; Danzig, C.J.; Joondeph, B.C.; Major, J.C.; Turpcu, A.; et al. Safety and efficacy of ixoberogene soroparvovec in neovascular age-related macular degeneration in the United States (OPTIC): A prospective, two-year, multicentre phase 1 study. Eclinicalmedicine 2024, 67, 102394. [Google Scholar] [CrossRef]
- Lorenz, B.; Künzel, S.H.; Preising, M.N.; Scholz, J.P.; Chang, P.; Holz, F.G.; Herrmann, P. Single Center Experience with Voretigene Neparvovec Gene Augmentation Therapy in RPE65 Mutation–Associated Inherited Retinal Degeneration in a Clinical Setting. Ophthalmology 2024, 131, 161–178. [Google Scholar] [CrossRef]
- Tolentino, M.J.; Dennrick, A.; John, E.; Tolentino, M.S. Drugs in Phase II clinical trials for the treatment of age-related macular degeneration. Expert Opin. Investig. Drugs 2015, 24, 183–199. [Google Scholar] [CrossRef]
- Roche. Roche Presents Positive Phase II Results for the First-Ever Eye Implant Demonstrating Sustained Delivery of a Biologic Medicine to Treat People with Neovascular Age-Related Macular Degeneration. Available online: https://www.roche.com/investors/updates/inv-update-2018-07-26b (accessed on 29 October 2023).
- Wong, C.W.; Wong, T.T. Posterior segment drug delivery for the treatment of exudative age-related macular degeneration and diabetic macular oedema. Br. J. Ophthalmol. 2019, 103, 1356–1360. [Google Scholar] [CrossRef] [PubMed]
- Poor, S.H.; Weissgerber, G.; Adams, C.M.; Bhatt, H.; Browning, D.J.; Chastain, J.; Ciulla, T.A.; Ferriere, M.; Gedif, K.; Glazer, L.C.; et al. A randomized, double-masked, multicenter trial of topical acrizanib (LHA510), a tyrosine kinase VEGF-receptor inhibitor, in treatment-experienced subjects with neovascular age-related macular degeneration. Am. J. Ophthalmol. 2022, 239, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Abrishami, M.; Ganavati, S.Z.; Soroush, D.; Rouhbakhsh, M.; Jaafari, M.R.; Malaekeh-Nikouei, B. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina 2009, 29, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Yamamoto, A.; Nakagawa, A.; Hikima, T.; Isowaki, A. Potential of TAK-593 ophthalmic emulsion for the treatment of age-related macular degeneration. Biol. Pharm. Bull. 2023, 46, 921–928. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, M.; Negi, R.; Alka; Vinayagam, R.; Kang, S.G.; Shukla, P. Age-Related Macular Degeneration (AMD): Pathophysiology, Drug Targeting Approaches, and Recent Developments in Nanotherapeutics. Medicina 2024, 60, 1647. https://doi.org/10.3390/medicina60101647
Singh M, Negi R, Alka, Vinayagam R, Kang SG, Shukla P. Age-Related Macular Degeneration (AMD): Pathophysiology, Drug Targeting Approaches, and Recent Developments in Nanotherapeutics. Medicina. 2024; 60(10):1647. https://doi.org/10.3390/medicina60101647
Chicago/Turabian StyleSingh, Mahendra, Riyakshi Negi, Alka, Ramachandran Vinayagam, Sang Gu Kang, and Prashant Shukla. 2024. "Age-Related Macular Degeneration (AMD): Pathophysiology, Drug Targeting Approaches, and Recent Developments in Nanotherapeutics" Medicina 60, no. 10: 1647. https://doi.org/10.3390/medicina60101647
APA StyleSingh, M., Negi, R., Alka, Vinayagam, R., Kang, S. G., & Shukla, P. (2024). Age-Related Macular Degeneration (AMD): Pathophysiology, Drug Targeting Approaches, and Recent Developments in Nanotherapeutics. Medicina, 60(10), 1647. https://doi.org/10.3390/medicina60101647