Low Serum Beta-2 Microglobulin Level: A Possible Biomarker for Sarcopenia in the Elderly Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Type and Ethics
2.2. Determination and Selection of Sample Size
2.3. Data Collection
2.4. General Practice Physical Activity Questionnaire (GPPAQ)
2.5. Sarcopenia Screening Test (SARC-F Scale)
2.6. Frailty Scale (FRAIL Scale)
2.7. Nutrition Information Form
2.8. Muscle Strength Measurement
2.9. Body Composition Measurements (Bioelectrical Impedance Method-BIA)
2.10. Measurement of Serum Beta-2 Microglobulin Level
2.11. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef] [PubMed]
- Morley, J. Sarcopenia: Diagnosis and treatment. J. Nutr. Health Aging 2008, 12, 452–456. [Google Scholar] [CrossRef] [PubMed]
- El-Sebaie, M.; Elwakil, W. Biomarkers of sarcopenia: An unmet need. Egypt. Rheumatol. Rehabil. 2023, 50, 45. [Google Scholar] [CrossRef]
- Wang, X.-L.; Wang, X.-L.; He, S.; Zhai, H.-L. Association of β2-Microglobulin with the prognosis of non-Hodgkin’s lymphoma: A meta analysis. Int. J. Clin. Exp. Med. 2015, 8, 3992. [Google Scholar] [PubMed] [PubMed Central]
- Chitra, P.; Bakthavatsalam, B.; Palvannan, T. Beta-2 microglobulin as an immunological marker to assess the progression of human immunodeficiency virus infected patients on highly active antiretroviral therapy. Clin. Chim. Acta 2011, 412, 1151–1154. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Shen, Y.-Y.; Ji, L.-J.; Jiang, X.-Y.; Wang, X.-F.; Shi, Y. Association between serum β2-Microglobulin levels and frailty in an elderly Chinese population: Results from RuLAS. Clin. Interv. Aging 2017, 12, 1725–1729. [Google Scholar] [CrossRef]
- Bayram, E.; Karaduman, D.; Kaya, B.; Mete, B.; Özbek, S.; Yaman, A. Less Is More: Beta-2 Microglobulin as a Frailty Marker in Community-Dwelling Older Adults. Turk. J. Geriatr. 2022, 25, 542–550. [Google Scholar] [CrossRef]
- Kuyumcu, M.E.; Halil, M.; Kara, Ö.; Çuni, B.; Çağlayan, G.; Güven, S.; Yeşil, Y.; Arık, G.; Yavuz, B.B.; Cankurtaran, M.; et al. Ultrasonographic evaluation of the calf muscle mass and architecture in elderly patients with and without sarcopenia. Arch. Gerontol. Geriatr. 2016, 65, 218–224. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Ahmad, S.; Harris, T.; Limb, E.; Kerry, S.; Victor, C.; Ekelund, U.; Iliffe, S.; Whincup, P.; Beighton, C.; Ussher, M. Evaluation of reliability and validity of the General Practice Physical Activity Questionnaire (GPPAQ) in 60–74 year old primary care patients. BMC Fam. Pract. 2015, 16, 113. [Google Scholar] [CrossRef]
- Noğay, A.E.K.; Özen, M. Birinci basamak için fiziksel aktivite anketinin Türkçe uyarlamasının geçerlilik ve güvenilirliği. Konuralp Med. J. 2019, 11, 1–8. [Google Scholar]
- kiş, H.C.; karaca, K.E. The adaptation and validity of SARC-F Scale in individuals over the age of 65. Online J. Sci. Technol.-Aptil 2021, 11, 71–81. [Google Scholar]
- Hymabaccus, B.A.B.; Dogrul, R.T.; Balcı, C.; Ozsurekcı, C.; Calıskan, H.; Karabulut, E.; Halıl, M.; Cankurtaran, M.; Dogu, B.B. An effective and practical tool to assess physical frailty in older adults: Turkish validation of the FRAIL Scale. Marmara Med. J. 2023, 36, 149–156. [Google Scholar] [CrossRef]
- Cimmino, F.; Petrella, L.; Cavaliere, G.; Ambrosio, K.; Trinchese, G.; Monda, V.; D’Angelo, M.; Di Giacomo, C.; Sacconi, A.; Messina, G. A Bioelectrical Impedance Analysis in Adult Subjects: The Relationship between Phase Angle and Body Cell Mass. J. Funct. Morphol. Kinesiol. 2023, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, S.K. Sarcopenia: A contemporary health problem among older adult populations. Nutrients 2020, 12, 1293. [Google Scholar] [CrossRef]
- Metter, E.J.; Conwit, R.; Tobin, J.; Fozard, J.L. Age-associated loss of power and strength in the upper extremities in women and men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1997, 52, B267–B276. [Google Scholar] [CrossRef]
- Batsis, J.A.; Mackenzie, T.A.; Lopez-Jimenez, F.; Bartels, S.J. Sarcopenia, sarcopenic obesity, and functional impairments in older adults: National Health and Nutrition Examination Surveys 1999–2004. Nutr. Res. 2015, 35, 1031–1039. [Google Scholar] [CrossRef]
- Yamada, M.; Nishiguchi, S.; Fukutani, N.; Tanigawa, T.; Yukutake, T.; Kayama, H.; Aoyama, T.; Arai, H. Prevalence of sarcopenia in Community-Dwelling Japanese older adults. J. Am. Med. Dir. Assoc. 2013, 14, 911–915. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Lee, Y.; Chung, Y.-S.; Lee, D.-J.; Joo, N.-S.; Hong, D.; Song, G.E.; Kim, H.-J.; Choi, Y.J.; Kim, K.-M. Prevalence of sarcopenia and sarcopenic obesity in the Korean population based on the Fourth Korean National Health and Nutritional Examination Surveys. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2012, 67, 1107–1113. [Google Scholar] [CrossRef]
- Shafiee, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of sarcopenia in the world: A systematic review and Meta-Analysis of general population studies. J. Diabetes Metab. Disord. 2017, 16, 21. [Google Scholar] [CrossRef]
- Papadopoulou, S.; Tsintavis, P.; Potsaki, G.; Papandreou, D. Differences in the prevalence of sarcopenia in community-dwelling, nursing home and hospitalized individuals. A systematic review and Meta-Analysis. J. Nutr. Health Aging 2020, 24, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global prevalence of sarcopenia and severe sarcopenia: A systematic review and Meta-Analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Chien, M.Y.; Huang, T.Y.; Wu, Y.T. Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in Community-Dwelling elderly people in Taiwan. J. Am. Geriatr. Soc. 2008, 56, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.; Visser, P.J.; Aalten, P.; Aarsland, D.; Alcolea, D. Prevalence of cerebral amyloid pathology in persons without dementia: A Meta-Analysis. JAMA 2015, 313, 1924–1938. [Google Scholar] [CrossRef] [PubMed]
- Verdijk, L.B.; Snijders, T.; Drost, M.; Delhaas, T.; Kadi, F.; Van Loon, L.J. Satellite cells in human skeletal muscle; from birth to old age. Age 2014, 36, 545–557. [Google Scholar] [CrossRef]
- Dumont, N.A.; Wang, Y.X.; Rudnicki, M.A. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 2015, 142, 1572–1581. [Google Scholar] [CrossRef]
- Riuzzi, F.; Sorci, G.; Arcuri, C.; Giambanco, I.; Bellezza, I.; Minelli, A.; Donato, R. Cellular and molecular mechanisms of sarcopenia: The S100B perspective. J. Cachexia Sarcopenia Muscle 2018, 9, 1255–1268. [Google Scholar] [CrossRef]
- Henrot, P.; Blervaque, L.; Dupin, I.; Zysman, M.; Esteves, P.; Gouzi, F.; Hayot, M.; Pomiès, P.; Berger, P. Cellular interplay in skeletal muscle regeneration and wasting: Insights from animal models. J. Cachexia Sarcopenia Muscle 2023, 14, 745–757. [Google Scholar] [CrossRef]
- Li, C.w.; Yu, K.; Shyh-Chang, N.; Jiang, Z.; Liu, T.; Ma, S.; Luo, L.; Guang, L.; Liang, K.; Ma, W. Pathogenesis of sarcopenia and the relationship with fat mass: Descriptive review. J. Cachexia Sarcopenia Muscle 2022, 13, 781–794. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, G.; Wang, K.; Yang, J.; Shen, Y.; Yang, X.; Chen, X.; Yao, X.; Gu, X.; Qi, L. Oxidative stress: Roles in skeletal muscle atrophy. Biochem. Pharmacol. 2023, 214, 115664. [Google Scholar] [CrossRef]
- Guder, W.G.; Hofmann, W. Clinical role of urinary low molecular weight proteins: Their diagnostic and prognostic implications. Scand. J. Clin. Lab. Investig. 2008, 68, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Suzuki, T.; Kim, M.; Kojima, N.; Yoshida, Y.; Hirano, H.; Saito, K.; Iwasa, H.; Shimada, H.; Hosoi, E. Incidence and predictors of sarcopenia onset in community-dwelling elderly Japanese women: 4-Year follow-Up study. J. Am. Med. Dir. Assoc. 2015, 16, 85.e1–85.e8. [Google Scholar] [CrossRef] [PubMed]
- Picca, A.; Coelho-Junior, H.J.; Calvani, R.; Marzetti, E.; Vetrano, D.L. Biomarkers shared by frailty and sarcopenia in older adults: A systematic review and Meta-Analysis. Ageing Res. Rev. 2022, 73, 101530. [Google Scholar] [CrossRef] [PubMed]
- Sivanathan, P.; Ooi, K.S.; Mohammad Haniff, M.A.S.; Ahmadipour, M.; Dee, C.F.; Mokhtar, N.M.; Hamzah, A.A.; Chang, E.Y. Lifting the veil: Characteristics, clinical significance, and application of β-2-Microglobulin as biomarkers and its detection with biosensors. ACS Biomater. Sci. Eng. 2022, 8, 3142–3161. [Google Scholar] [CrossRef]
Characteristics | Healthy Group (n = 238) Mean ± S.D. or n (%) | Sarcopenic Group (n = 13) Mean ± S.D. or n (%) | p |
---|---|---|---|
Age (years) | 71.93 ± 5.87 | 76.92 ± 8.35 | <0.001 |
Sex: Female/Male | 146 (61.3)/92 (38.7) | 10 (76.9)/3 (23.1) | 0.205 |
Chronic disease: Present/Absent | 195 (81.9)/43 (18.1) | 11 (84.6)/2 (15.4) | 0.578 |
Physical activity: Sedentary | 238 (100) | 13 (100) | N/A |
ASM (kg) | 21.29 ± 4.26 | 15.25 ± 2.98 | <0.001 |
ASMI (kg/m2) | 8.17 ± 6.39 | 1.12 ± 0.72 | <0.001 |
SARC-F score | 5.28 ± 3.64 | 5.76 ± 3.08 | 0.640 |
Hand grip (kg) | 23.31 ± 9.02 | 15.53 ± 5.85 | <0.001 |
Fragility score | 2.37 ± 1.36 | 2.33 ± 1.15 | 0.916 |
FFM (kg) | 51.86 ± 9.70 | 39.14 ± 7.35 | <0.001 |
Metabolic age (years) | 73.25 ± 9.16 | 75.69 ± 10.8 | 0.357 |
Metabolic rate (kcal) | 1.40 ± 0.18 | 1.22 ± 0.21 | <0.001 |
Internal lubrication | 12.97 ± 3.62 | 9.92 ± 2.81 | 0.003 |
Energy (kcal) | 1260.30 ± 328.06 | 1178.16 ± 270.75 | 0.377 |
Protein (g) | 46.08 ± 15.64 | 41.90 ± 13.64 | 0.347 |
Fat (g) | 46.38 ± 14.61 | 44.63 ± 11.05 | 0.673 |
Carbohydrate (g) | 159.59 ± 52.80 | 147.24 ± 46.06 | 0.410 |
Beta-2 Microglobulin (mcg/mL) | Matched Groups (n = 39) | p | |||
Normal (n = 26) | Sarcopenic (n = 13) | ||||
Mean ± S.D. | Min–Max | Mean ± S.D. | Min–Max | ||
4.46 ± 3.90 | 1.38–20.10 | 1.78 ± 0.46 | 1.19–2.83 | 0.002 |
Optimal Cut-Off (mcg/mL) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Youden Index | AUC |
---|---|---|---|---|---|---|
2.10 | 84.62 | 84.62 | 73.33 | 91.67 | 0.692 | 0.901 |
2.13 | 84.62 | 80.77 | 68.75 | 91.30 | 0.654 | 0.901 |
2.26 | 92.31 | 80.77 | 70.59 | 95.45 | 0.731 | 0.901 |
2.53 | 92.31 | 76.92 | 66.67 | 95.24 | 0.692 | 0.901 |
2.62 | 92.31 | 73.08 | 63.16 | 95.00 | 0.654 | 0.901 |
B | p | Odds Ratio | 95% C.I. for Odds Ratio | ||
---|---|---|---|---|---|
Lower | Upper | ||||
Age (years) | 0.122 | 0.017 | 1.13 | 1.022 | 1.249 |
Sex | −0.095 | 0.917 | 0.90 | 0.151 | 5.469 |
Fragility score | 0.106 | 0.731 | 1.11 | 0.608 | 2.032 |
Energy (kcal/day) | 0.009 | 0.901 | 1.00 | 0.872 | 1.168 |
Protein (g) | −0.016 | 0.958 | 0.98 | 0.539 | 1.798 |
Fat (g) | −0.077 | 0.907 | 0.92 | 0.252 | 3.402 |
Carbohydrate (g) | −0.046 | 0.882 | 0.95 | 0.523 | 1.745 |
Chronic illness presence | 0.587 | 0.569 | 1.79 | 0.239 | 13.542 |
Beta-2 microglobulin (risk < 2.26 mcg/mL) | 2.375 | 0.039 | 10.75 | 1.133 | 101.993 |
Constant | −12.550 | 0.009 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanat Sahin, C.; Mete, B.; Demirhindi, H.; Yaşa Öztürk, G.; Ateş Bulut, E.; Kozanoğlu, E.; Dağlıoğlu, G.; Kaya, B.; Bayram, E. Low Serum Beta-2 Microglobulin Level: A Possible Biomarker for Sarcopenia in the Elderly Population. Medicina 2024, 60, 1879. https://doi.org/10.3390/medicina60111879
Kanat Sahin C, Mete B, Demirhindi H, Yaşa Öztürk G, Ateş Bulut E, Kozanoğlu E, Dağlıoğlu G, Kaya B, Bayram E. Low Serum Beta-2 Microglobulin Level: A Possible Biomarker for Sarcopenia in the Elderly Population. Medicina. 2024; 60(11):1879. https://doi.org/10.3390/medicina60111879
Chicago/Turabian StyleKanat Sahin, Ceren, Burak Mete, Hakan Demirhindi, Gülşah Yaşa Öztürk, Esra Ateş Bulut, Erkan Kozanoğlu, Gülçin Dağlıoğlu, Bülent Kaya, and Ertuğrul Bayram. 2024. "Low Serum Beta-2 Microglobulin Level: A Possible Biomarker for Sarcopenia in the Elderly Population" Medicina 60, no. 11: 1879. https://doi.org/10.3390/medicina60111879
APA StyleKanat Sahin, C., Mete, B., Demirhindi, H., Yaşa Öztürk, G., Ateş Bulut, E., Kozanoğlu, E., Dağlıoğlu, G., Kaya, B., & Bayram, E. (2024). Low Serum Beta-2 Microglobulin Level: A Possible Biomarker for Sarcopenia in the Elderly Population. Medicina, 60(11), 1879. https://doi.org/10.3390/medicina60111879