Biomechanical Examination of Wrist Flexors and Extensors with Biodex System Dynamometer—Isometric, Isokinetic and Isotonic Protocol Options
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Pilot Study
2.4. Data Analysis
3. Results
3.1. Pain
3.2. Difficulty
3.3. Fatigue
4. Discussion
4.1. Clinical Relevance
4.2. Limitation of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roy, J.-S.; Ma, B.; Macdermid, J.C.; Woodhouse, L.J. Shoulder muscle endurance: The development of a standardized and reliable protocol. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2011, 3, 1. [Google Scholar] [CrossRef]
- Wittstein, J.; Queen, R.; Abbey, A.; Moorman, C.T. Isokinetic testing of biceps strength and endurance in dominant versus nondominant upper extremities. J. Shoulder. Elb. Surg. 2010, 19, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Edouard, P.; Codine, P.; Samozino, P.; Bernard, P.L.; Hérisson, C.; Gremeaux, V. Reliability of shoulder rotators isokinetic strength imbalance measured using the Biodex dynamometer. J. Sci. Med. Sport 2013, 16, 162–165. [Google Scholar] [CrossRef]
- Stark, B.; Emanuelsson, P.; Gunnarsson, U.L.F.; Strigård, K. Validation of Biodex system 4 for measuring the strength of muscles in patients with rectus diastasis. J. Plast. Surg. Hand. Surg. 2012, 46, 102–105. [Google Scholar] [CrossRef]
- Drouin, J.M.; Valovich-mcLeod, T.C.; Shultz, S.J.; Gansneder, B.M.; Perrin, D.H. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur. J. Appl. Physiol. 2004, 91, 22–29. [Google Scholar]
- Zawadzki, J.; Bober, T.; Siemieński, A. Validity analysis of the Biodex System 3 dynamometer under static and isokinetic conditions. Acta Bioeng. Biomech. 2010, 12, 25–32. [Google Scholar] [PubMed]
- Alvares, J.B.D.A.R.; Rodrigues, R.; de Azevedo Franke, R.; da Silva, B.G.C.; Pinto, R.S.; Vaz, M.A.; Baroni, B.M. Inter-machine reliability of the Biodex and Cybex isokinetic dynamometers for knee flexor/extensor isometric, concentric and eccentric tests. Phys. Ther. Sport 2015, 16, 59–65. [Google Scholar] [CrossRef]
- Mcgillivray, J.A. A Comparison of the Effects of Isotonic and Isokinetic Exercises on Leg Power. Master’s Thesis, Cedarville University, Cedarville, OH, USA, 1976. [Google Scholar]
- Taylor, N.A.S.; Sanders, R.H.; Howick, E.I.; Stanley, S.N. Static and dynamic assessment of the Biodex dynamometer. Eur. J. Appl. Physiol. Occup. Physiol. 1991, 62, 180–188. [Google Scholar] [CrossRef]
- Cardinal, B.; Carvalho, C.; Petrella, M.; Regina, P.; Serr, S. Test-retest reliability of isometric and isokinetic wrist strength. J. Orthop. Sci. 2023, 28, 138–142. [Google Scholar]
- Pua, Y.; Ho, J.; Chan, S.A.; Khoo, S.; Chong, H. The Knee Associations of isokinetic and isotonic knee strength with knee function and activity level after anterior cruciate ligament reconstruction: A prospective cohort study. Knee 2019, 24, 1067–1074. [Google Scholar] [CrossRef]
- Tsiros, M.D.; Grimshaw, P.N.; Shield, A.J.; Buckley, J.D. The Biodex Isokinetic Dynamometer for knee strength assessment in children: Advantages and limitations. Work 2011, 39, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Sin, M.; Kim, W.; Cho, K.; Cho, S.; Paik, N. Improving the test-retest and inter-rater reliability for stretch reflex measurements using an isokinetic device in stroke patients with mild to moderate elbow spasticity. J. Electromyogr. Kinesiol. 2019, 39, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Testerman, C.; Griend RVander, D.M. Evaluation of Ankle Instability Using the Biodex Stability System. Foot Ankle Int. 1999, 20, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Tankevicius, G.; Lankaite, D.; Krisciunas, A. Test—Retest Reliability of Biodex System 4 Pro for Isometric Ankle-Eversion and -Inversion Measurement. J. Sport Rehabil. 2013, 22, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Id, A.M.; Desailly, E.; Id, N.V.; Id, V.V. A biofeedback-enhanced therapeutic exercise video game intervention for young people with cerebral palsy: A randomized single-case experimental design feasibility study. PLoS ONE 2020, 15, e0234767. [Google Scholar] [CrossRef]
- Id, M.H.; Prince, M.S.; Zarrouk, N.; Id, M.T. Dynamic stretching alone can impair slower velocity isokinetic performance of young male handball players for at least 24 hours. PLoS ONE 2019, 14, e0210318. [Google Scholar]
- Lim, J.; Cho, J.; Kim, T.; Yoon, B. Isokinetic knee strength and proprioception before and after anterior cruciate ligament reconstruction: A comparison between home-based and supervised rehabilitation. J. Back Musculoskelet. Rehabil. 2019, 32, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Pakosz, P.; Domaszewski, P. Muscle activation time and free—Throw effectiveness in basketball. Sci. Rep. 2021, 11, 7489. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, R.; Jacobsen, P.; Prior, S.; Skazalski, C.; Otten, R.; Johnson, A. Correlation of isokinetic and novel hand-held dynamometry measures of knee flexion and extension strength testing. J. Sci. Med. Sport 2019, 15, 444–450. [Google Scholar] [CrossRef]
- Orand, A.; Miyasaka, H.; Takeda, K.; Tanino, G. ScienceDirect Reliability of stiffness measurement device during passive isokinetic spastic wrist movements of healthy subjects and hemiplegics. Integr. Med. Res. 2019, 37, 114–123. [Google Scholar] [CrossRef]
- De Smedt, T.; De Jong, A.; Van Leemput, W.; Lieven, D.; Van Glabbeek, F. Lateral epicondylitis in tennis: Update on aetiology, biomechanics and treatment. Br. J. Sports Med. 2007, 41, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Shiri, R.; Viikari-Juntura, E. Lateral and medial epicondylitis: Role of occupational factors. Best Pract. Res. Clin. Rheumatol. 2011, 25, 43–57. [Google Scholar] [CrossRef]
- Alizadehkhaiyat, O.; Frostick, S.P. Electromyographic assessment of forearm muscle function in tennis players with and without Lateral Epicondylitis. J. Electromyogr. Kinesiol. 2015, 25, 876–886. [Google Scholar] [CrossRef]
- Tyler, T.F.; Thomas, G.C.; Nicholas, S.J.; McHugh, M.P. Addition of isolated wrist extensor eccentric exercise to standard treatment for chronic lateral epicondylosis: A prospective randomized trial. J. Shoulder Elbow Surg. 2010, 19, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Harbo, T.; Brincks, J.; Andersen, H. Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. Eur. J. Appl. Physiol. 2012, 112, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Webber, S.C.; Porter, M.M.; Webber, S.C.; Porter, M.M. Research Report Reliability of Ankle Isometric, Isotonic, Testing in Older Women. Phys. Ther. 2010, 90, 1165–1175. [Google Scholar] [CrossRef]
- Valdes, K.; Naughton, N.; Algar, L. Sensorimotor interventions and assessments for the hand and wrist: A scoping review. J. Hand Ther. 2014, 27, 272–286. [Google Scholar] [CrossRef]
- Unyó, C.; Chaler Vilaseca, J.L.; Rojas Martínez, M.; Pujol Medina, E.; Müller, B.; Garreta, R.; Mañanas Villanueva, M.Á. A cross-sectional study comparing strength profile of dorsal and palmar flexor muscles of the wrist in epicondylitis and healthy men. Eur. J. Phys. Rehabil. Med. 2013, 49, 507–515. [Google Scholar]
- Borg-Stein, J.; Zaremski, J.L.; Hanford, M.A. New Concepts in the Assessment and Treatment of Regional Musculoskeletal Pain and Sports Injury. PM R 2009, 1, 744–754. [Google Scholar] [CrossRef]
- Lee, S.E.K.; de Lira, C.A.B.; Nouailhetas, V.L.A.; Vancini, R.L.; Andrade, M.S. Journal of Bodywork & Movement Therapies Do isometric, isotonic and/or isokinetic strength trainings produce different strength outcomes? J. Bodyw. Mov. Ther. 2018, 22, 430–437. [Google Scholar] [CrossRef]
- Chen, C.L.; Chang, K.J.; Wu, P.Y.; Chi, C.H.; Chang, S.T.; Cheng, Y.Y. Comparison of the effects between isokinetic and isotonic strength training in subacute stroke patients. J. Stroke Cerebrovasc. Dis. 2015, 24, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Aimonetti, J.M.; Vedel, J.P.; Schmied, A.; Pagni, S. Changes in the tonic activity of wrist extensor motor units induced by stimulating antagonistic group I afferents in humans. Exp. Brain. Res. 2001, 141, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Van Driessche, S.; Van Roie, E.; Vanwanseele, B.; Delecluse, C. Test-retest reliability of knee extensor rate of velocity and power development in older adults using the isotonic mode on a Biodex System 3 dynamometer. PLoS ONE 2018, 13, e0196838. [Google Scholar] [CrossRef] [PubMed]
- Konieczny, M.; Pakosz, P. Asymmetrical fatiguing of the gluteus maximus muscles in the elite short-track female skaters. BMC Sports Sci. Med. Rehabil. 2020, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Eid, M.A.; Aly, S.M.; Huneif, M.A.; Ismail, D.K. Effect of isokinetic training on muscle strength and postural balance in children with Down’s syndrome. Int. J. Rehabil. Res. 2017, 40, 127–133. [Google Scholar] [CrossRef]
- Lienhard, K.; Lauermann, S.P.; Schneider, D.; Item-Glatthorn, J.F.; Casartelli, N.C.; Maffiuletti, N.A. Validity and reliability of isometric, isokinetic and isoinertial modalities for the assessment of quadriceps muscle strength in patients with total knee arthroplasty. J. Electromyogr. Kinesiol. 2013, 23, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Strigård, U.G.M.J.K. Assessment of abdominal muscle function using the Biodex System-4. Validity and reliability in healthy volunteers and patients with giant ventral hernia. Hernia 2011, 15, 417–421. [Google Scholar]
- Ellenbecker, T.S.; Roetert, E.P.; Riewald, S. Isokinetic profile of wrist and forearm strength in elite female junior tennis players. Br. J. Sports Med. 2006, 40, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Kaymak, B.; Inanici, F.; Akinci, A. Hand Strengths in Carpal Tunnel Syndrome. J. Hand Surg. 2008, 33, 327–331. [Google Scholar] [CrossRef]
- Aben, A.; De Wilde, L.; Hollevoet, N.; Henriquez, C.; Vandeweerdt, M.; Ponnet, K.; Van Tongel, A. Tennis elbow: Associated psychological factors. J. Shoulder. Elb. Surg. 2018, 27, 387–392. [Google Scholar] [CrossRef]
- Murgia, A.; Harwin, W.; Prakoonwit, S.; Brownlow, H. Preliminary observations on the presence of sustained tendon strain and eccentric contractions of the wrist extensors during a common manual task: Implications for lateral epicondylitis. Med. Eng. Phys. 2011, 33, 793–797. [Google Scholar] [CrossRef]
- Sonne, M.W.; Hodder, J.N.; Wells, R.; Potvin, J.R. Force time-history affects fatigue accumulation during repetitive handgrip tasks. J. Electromyogr. Kinesiol. 2015, 25, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Nagle, D.J. Evaluation of chronic wrist pain. J. Am. Acad. Orthop. Surg. 2000, 8, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Folchert, M.; Mph, C.B.; Steinman, S. Impact of Biofeedback in the Treatment of Nonspecific Persistent Wrist and Forearm Pain in Adolescents. J. Hand. Surg. Am. 2020, 46, e1–e152. [Google Scholar] [CrossRef]
- Czarnecki, P.; Falis, M.; Bonczar, M.; Ostrowski, P.; Wcisłek, J.; Romanowski, L. Assessing complications and functional outcomes in proximal humerus fracture management: A retrospective comparison between conservative and intramedullary nailing treatments. Eur. J. Orthop. Surg. Traumatol. 2024, 34, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Skorupska, E.; Lisinski, P.; Samborski, W. The effectiveness of the conservative vs myofascial pain physiotherapy in tennis elbow patients: Double-blind randomized trial of 80 patients. J. Musculoskel. Pain 2012, 20, 41–50. [Google Scholar] [CrossRef]
- Czarnecki, P.; Jokiel, M. What is the best treatment for lateral epicondylitis based on evidence? Issue Rehabil. Orthop. Neurophysiol. Sport Promot. 2017, 21, 89–95. [Google Scholar] [CrossRef]
- Albanese, G.A.; Falzarano, V.; Holmes, M.W.R.; Morasso, P.; Zenzeri, J. A Dynamic Submaximal Fatigue Protocol Alters Wrist Biomechanical Properties and Proprioception. Front. Hum. Neurosci. 2022, 16, 887270. [Google Scholar] [CrossRef]
- Hill, C.E.; Heales, L.J.; Stanton, R.; Kean, C.O. Effects of multidirectional elastic tape on pain and function in individuals with lateral elbow tendinopathy: A randomised crossover trial. Clin. Rehabil. 2023, 37, 1041–1051. [Google Scholar] [CrossRef]
PS (n = 10) | TE (n = 20) | CG (n = 26) | p (TE vs. CG) | |
---|---|---|---|---|
Age | 0.18 ## | |||
Mean ± SD | 41 ± 7 | 46 ± 13 | 39 ± 17 | |
Med (Q1:Q4) | 36 (31–47) | 48 (38.5–57) | 26 (25–55) | |
Height | 1.65 ± 8.9 | 1.62 ± 10.7 | 1.69 ± 8.9 | 0.56 # |
Weight | 69.8 ± 12.3 | 74.3 ± 11.2 | 79.7 ± 9.9 | 0.34 # |
Gender | 5F/5M | 13F/7M | 14F/12M | − |
Isokinetic (IK) | Isometric (IM) | Isotonic (IT) | |
---|---|---|---|
I | 210 deg/s | 30 deg extension | 0.5 Nm |
II | 90 deg/s | Neutral wrist position | 1 Nm |
III | 150 deg/s | 30 deg flexion | 0.5 Nm |
Repetitions | 3 | 3 | 3 |
Mean ± SD | Med (Q1–Q4) | CI | p | ||
---|---|---|---|---|---|
Isokinetic | TE (n = 20) | 4.7 ± 2.72 | 5 (3.5–6.5) | 2.07–3.97 | 0.003 # |
CG (n = 26) | 1.48 ± 2.1 | 0 (0–3) | 1.65–2.88 | ||
Isometric | TE (n = 20) | 6.55 ± 2.73 | 7 (4.5–9.5) | 2.23–4.28 | 0.0005 # |
CG (n = 26) | 1.96 ± 2.24 | 1 (0–4) | 1.77–3.08 | ||
Isotonic | TE (n = 20) | 2,05 ± 1.9 | 2 (0–4) | 1.45–2.78 | 0.02 # |
CG (n = 26) | 0.85 ± 1.73 | 0–0 | 1.36–2.36 | ||
TE ^ p < 0.00002 | IK vs. IM 0.06 IK vs. IT 0.0051 IM vs. IT 0.00012 | ||||
CG ^ p = 0.061 | NS |
Mean ± SD | Med (Q1–Q4) | CI | p | ||
---|---|---|---|---|---|
Isokinetic | TE (n = 20) | 4.35 ± 2.46 | 4 (2–5.5) | 2.46–4.72 | 0.96 ## |
CG (n = 26) | 4.63 ± 4.7 | 4 (2–7) | 3.7–6.44 | ||
Isometric | TE (n = 20) | 7.2 ± 2.4 | 7 (6–9.5) | 1.82–3.5 | 0.002 ## |
CG (n = 26) | 4.48 ± 2.61 | 5 (2–7) | 2.08–3.67 | ||
Isotonic | TE (n = 20) | 3.3 ± 1.53 | 4 (2–4.5) | 1.16–2.23 | 0.378 ## |
CG (n = 26) | 2.89 ± 2.28 | 2 (1–5) | 1.79–3.12 | ||
TE ^^ p < 0.0006 | IK vs. IM 0.0019 IK vs. IT 0.00014 IM vs. IT 0.00013 | ||||
CG ^^ p = 0.07 | NS |
Mean ± SD | Med (Q1–Q4) | CI | p | ||
---|---|---|---|---|---|
Isokinetic | TE (n = 20) | 3.9 ± 2.1 | 3.5 (2–5.5) | 1.6–3.07 | 0.033 ## |
CG (n = 26) | 2.67 ± 2.17 | 2 (2–4) | 1.71–2.97 | ||
Isometric | TE (n = 20) | 6 ± 2.2 | 7 (5–7.5) | 1.67–3.21 | 0.0001 ## |
CG (n = 26) | 3.41 ± 2.08 | 3 (2–5) | 1.64–2.85 | ||
Isotonic | TE (n = 20) | 1.75 ± 1.86 | 1 (0–3) | 1.41–2.72 | 0.64 ## |
CG (n = 26) | 1.85 ± 1.56 | 2 (1–3) | 1.23–2.14 | ||
TE ^ p < 0.00001 | IK vs. IM 0.0059 IK vs. IT 0.0048 IM vs. IT 0.0012 | ||||
CG ^^ p = 0.02 | IK vs. IM 0.35 IK vs. IT 0.28 IM vs. IT 0.013 |
Isokinetic (IK) | Isometric (IM) | Isotonic (IT) | ||||
---|---|---|---|---|---|---|
TE n = 20 | CG n = 26 | TE n = 20 | CG n = 26 | TE n = 20 | CG n = 26 | |
Examination completion (%) | 17 (85) | 26 (100) | 10 (50) | 26 (100) | 20 (100) | 26 (100) |
Preferences (%) | 1 (5) | 6 (23) | 1 (5) | 0 | 18 (90) | 20 (77) |
Advantages | Limitations | |
---|---|---|
Isokinetic | Dynamic examination, quick biomechanical evaluation of patients’ forearm muscle condition | Low constant speed, high machine resistance Low machine resistance, high speed values (often unattainable for patients) |
Isometric | Easy to perform even for patients with pain and ROM restrictions | Static measurement |
Isotonic | Dynamic examination, quick biomechanical evaluation of patients’ forearm muscle condition | No muscle strength measurement |
Isokinetic | Isometric | Isotonic | |
---|---|---|---|
Peak Velocity [deg/s] | − | − | + |
Peak Velocity/Body Weight [%] | − | − | + |
Average Peak Velocity [deg/s] | − | − | + |
Time to Peak Velocity [ms] | − | − | + |
Angle of Peak Velocity [deg] | − | − | + |
Velocity at 30.0° [deg/s] | − | − | + |
Velocity at 0.18 sec [deg/s] | − | − | + |
Peak Torque [Nm] | + | + | − |
Peak Torque/Body Weight [%] | + | + | − |
Average Peak Torque [Nm] | + | + | − |
Acceleration Time [ms] | + | − | + |
Deceleration Time [ms] | + | − | + |
Relaxation Time [s] | − | + | − |
Contraction Time [s] | − | + | − |
Coefficiency of Variation | + | + | + |
Total Work [J] | + | − | + |
Maximal Repetition Total Work [J] | + | − | + |
Maximal Work Repetition | − | − | + |
Work/Body Weight [%] | − | − | + |
Work First Third [J] | − | − | + |
Work Last Third [J] | − | − | + |
Work Fatigue [%] | − | − | + |
Average Power [W] | + | − | + |
ROM | + | − | + |
Impulse [N-M] | − | + | − |
Agonist/Antagonist Ratio [%] | + | +/− (only for dominant limb) | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jokiel, M.; Kazmierczak, K.; Czarnecki, P.; Bartkowiak-Graczyk, A.; Madziewicz, A.; Breborowicz, E.; Miedzyblocka, M.; Adamski, M.; Kaczmarek, K.; Kaczmarek, L.; et al. Biomechanical Examination of Wrist Flexors and Extensors with Biodex System Dynamometer—Isometric, Isokinetic and Isotonic Protocol Options. Medicina 2024, 60, 1184. https://doi.org/10.3390/medicina60071184
Jokiel M, Kazmierczak K, Czarnecki P, Bartkowiak-Graczyk A, Madziewicz A, Breborowicz E, Miedzyblocka M, Adamski M, Kaczmarek K, Kaczmarek L, et al. Biomechanical Examination of Wrist Flexors and Extensors with Biodex System Dynamometer—Isometric, Isokinetic and Isotonic Protocol Options. Medicina. 2024; 60(7):1184. https://doi.org/10.3390/medicina60071184
Chicago/Turabian StyleJokiel, Marta, Katarzyna Kazmierczak, Piotr Czarnecki, Aleksandra Bartkowiak-Graczyk, Anna Madziewicz, Ewa Breborowicz, Malgorzata Miedzyblocka, Michal Adamski, Krystian Kaczmarek, Leszek Kaczmarek, and et al. 2024. "Biomechanical Examination of Wrist Flexors and Extensors with Biodex System Dynamometer—Isometric, Isokinetic and Isotonic Protocol Options" Medicina 60, no. 7: 1184. https://doi.org/10.3390/medicina60071184
APA StyleJokiel, M., Kazmierczak, K., Czarnecki, P., Bartkowiak-Graczyk, A., Madziewicz, A., Breborowicz, E., Miedzyblocka, M., Adamski, M., Kaczmarek, K., Kaczmarek, L., & Romanowski, L. (2024). Biomechanical Examination of Wrist Flexors and Extensors with Biodex System Dynamometer—Isometric, Isokinetic and Isotonic Protocol Options. Medicina, 60(7), 1184. https://doi.org/10.3390/medicina60071184