Alloimmune Causes of Recurrent Pregnancy Loss: Cellular Mechanisms and Overview of Therapeutic Approaches
Abstract
:1. Introduction
2. Immune Cells at the Maternal–Fetal Interface
2.1. Extravillous Trophoblasts (EVTs)
2.2. Natural Killer (NK) Cells
2.3. Regulatory T Cells (Treg)
2.4. Other T Cell Subpopulations
2.5. B Cells
3. Limitations and Constraints
4. Therapeutic Approaches
Therapeutic Approach | Mechanism of Action | Target Population | Effectiveness |
---|---|---|---|
Intravenous immunoglobulin (IVIg) [2,103,104,105,106,107,108,109,110,111,156,157] | Modulates immune response, decreases B cell responses and NK cell activity and toxicity, and induces regulatory T cells, enhancing fetal tolerance | Women with RPL, especially with elevated NK cell activity | Moderate efficacy in reducing RPL; some variability in responses |
Glucocorticoids (prednisone, prednisolone) [111,112,158] | Reduces inflammation by suppressing T cell activation and inhibiting pro-inflammatory cytokine production, thereby improving trophoblast proliferation and invasion | Women with autoimmune-related RPL, such as lupus or APS | Effective in reducing inflammation and improving outcomes in autoimmune-related RPL; long-term use requires monitoring; currently not usually recommended due to significant adverse effects |
Low-dose aspirin [115,116] | Reduces thrombotic events, which helps in improving placental blood flow | Women with RPL and thrombotic complications or placental insufficiency | Effective in reducing RPL risk related to placental insufficiency; commonly used with heparin |
Heparin [115,116,117,118] | Prevents clot formation by inhibiting thrombin, protecting against APS-related RPL | Women with APS or clotting disorders leading to RPL | Highly effective in women with APS; standard of care for RPL related to clotting disorders; no significant effects on unexplained RPL |
TNF-α inhibitors (e.g., infliximab, etanercept, adalimumab) [66,120,121,123] | Blocks TNF-α, a pro-inflammatory cytokine involved in immune activation and inflammation | Women with high levels of TNF-α or autoimmune diseases contributing to RPL | Promising results in reducing miscarriage risk in autoimmune-related RPL, though more research is needed |
Lymphocyte immunization therapy (paternal leukocyte immunization) [127,128,130,131,159] | Induces maternal tolerance to fetal antigens by exposing the mother to paternal leukocytes | Women with unexplained RPL, often used in immunotherapy trials | Effectiveness is variable; may be beneficial in certain cases of unexplained RPL, but not widely used |
Immunosuppressants (cyclosporine, tacrolimus, sirolimus) [135,136,141,142,145] | Inhibits T cell activation by suppressing IL-2 production, reducing immune-mediated fetal rejection | Women with RPL linked to heightened T cell activity or autoimmune conditions | Shows potential effectiveness in T cell-mediated immune responses, but data are limited and more studies are needed |
Intralipid infusion [146,147,148,149,150] | Provides fatty acids that may modulate immune function and reduce NK cell activity | Women with RPL and high NK cell activity | Moderate effectiveness; some evidence supports efficacy, but results are mixed; often used in conjunction with other therapies |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2012, 98, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Bender Atik, R.; Christiansen, O.B.; Elson, J.; Elson, J.; Kolte, A.M.; Lewis, S.; Middeldorp, S.; Mcheik, S.; Peramo, B.; Quenby, S.; et al. ESHRE guideline: Recurrent pregnancy loss: An update in 2022. Hum. Reprod. Open 2023, 2023, hoad002. [Google Scholar] [CrossRef] [PubMed]
- Bender Atik, R.; Christiansen, O.B.; Elson, J.; Kolte, A.M.; Lewis, S.; Middeldorp, S.; Nelen, W.; Peramo, B.; Quenby, S.; Vermeulen, N. ESHRE guideline: Recurrent pregnancy loss. Hum. Reprod. Open 2018, 2018, hoy004. [Google Scholar] [CrossRef] [PubMed]
- Gudnadottir, U.; Du, J.; Hugerth, L.W.; Engstrand, L.; Schuppe-Koistinen, I.; Wiberg Itzel, E.; Fransson, E.; Brusselaers, N. Pre-pregnancy complications—Associated factors and wellbeing in early pregnancy: A Swedish cohort study. BMC Pregnancy Childbirth 2023, 23, 153. [Google Scholar] [CrossRef] [PubMed]
- Ganer Herman, H.; Volodarsky-Perel, A.; Nu, T.N.T.; Machado-Gedeon, A.; Cui, Y.; Shaul, J.; Dahan, M.H. Does a history of recurrent pregnancy loss affect subsequent obstetric outcomes and placental findings in in vitro fertilization? J. Assist. Reprod. Genet. 2022, 39, 2711–2718. [Google Scholar] [CrossRef]
- Hooker, A.B.; Lemmers, M.; Thurkow, A.L.; Heymans, M.W.; Opmeer, B.C.; Brölmann, H.A.; Mol, B.W.; Huirne, J.A. Systematic review and meta-analysis of intrauterine adhesions after miscarriage: Prevalence, risk factors and long-term reproductive outcome. Hum. Reprod. Update 2014, 20, 262–278. [Google Scholar] [CrossRef]
- Iordăchescu, D.A.; Paica, C.I.; Boca, A.E.; Gică, C.; Panaitescu, A.M.; Peltecu, G.; Veduță, A.; Gică, N. Anxiety, Difficulties, and Coping of Infertile Women. Healthcare 2021, 9, 466. [Google Scholar] [CrossRef]
- Kuhlmann, E.; Scharli, P.; Schick, M.; Ditzen, B.; Langer, L.; Strowitzki, T.; Wischmann, T.; Kuon, R.J. The Posttraumatic Impact of Recurrent Pregnancy Loss in Both Women and Men. Geburtshilfe Frauenheilkd 2023, 83, 88–96. [Google Scholar] [CrossRef]
- Voss, P.; Schick, M.; Langer, L.; Ainsworth, A.; Ditzen, B.; Strowitzki, T.; Wischmann, T.; Kuon, R.J. Recurrent pregnancy loss: A shared stressor-couple-orientated psychological research findings. Fertil. Steril. 2020, 114, 1288–1296. [Google Scholar] [CrossRef]
- Fernández-Basanta, S.; Rodríguez-Pérez, R.; Coronado, C.; Movilla-Fernández, M.-J. Knight by force and wounded, protecting without a shield: A meta-ethnography of men’s experiences after an involuntary pregnancy loss. Midwifery 2023, 126, 103827. [Google Scholar] [CrossRef]
- Obst, K.L.; Due, C.; Oxlad, M.; Middleton, P. Men’s grief following pregnancy loss and neonatal loss: A systematic review and emerging theoretical model. BMC Pregnancy Childbirth 2020, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Obst, K.L.; Oxlad, M.; Due, C.; Middleton, P. Factors contributing to men’s grief following pregnancy loss and neonatal death: Further development of an emerging model in an Australian sample. BMC Pregnancy Childbirth 2021, 21, 29. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.J.; Temple-Smith, M.J.; Bilardi, J.E. “There was just no-one there to acknowledge that it happened to me as well”: A qualitative study of male partner’s experience of miscarriage. PLoS ONE 2019, 14, e0217395. [Google Scholar] [CrossRef]
- Sharma, A.; Shrivastava, D. Psychological Problems Related to Infertility. Cureus 2022, 14, e30320. [Google Scholar] [CrossRef]
- Flach, K.; Machado, W.D.L.; Centenaro Levandowski, D. Maternal mental health, marital adjustment, and family support in the grieving process after a pregnancy loss. Death Stud. 2024, 3, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Quenby, S.; Gallos, I.D.; Dhillon-Smith, R.K.; Podesek, M.; Stephenson, M.D.; Fisher, J.; Brosens, J.J.; Brewin, J.; Ramhorst, R.; Lucas, E.S.; et al. Miscarriage matters: The epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet 2021, 397, 1658–1667. [Google Scholar] [CrossRef]
- Sarkesh, A.; Sorkhabi, A.D.; Ahmadi, H.; Abdolmohammadi-Vahid, S.; Parhizkar, F.; Yousefi, M.; Aghebati-Maleki, L. Allogeneic lymphocytes immunotherapy in female infertility: Lessons learned and the road ahead. Life Sci. 2022, 299, 120503. [Google Scholar] [CrossRef]
- Garrido-Gimenez, C.; Alijotas-Reig, J. Recurrent miscarriage: Causes, evaluation and management. Postgrad. Med. J. 2015, 91, 151–162. [Google Scholar] [CrossRef]
- Kitazawa, J.; Kimura, F.; Nakamura, A.; Morimune, A.; Takahashi, A.; Takashima, A.; Amano, T.; Tsuji, S.; Kaku, S.; Kasahara, K.; et al. Endometrial Immunity for Embryo Implantation and Pregnancy Establishment. Tohoku J. Exp. Med. 2020, 250, 49–60. [Google Scholar] [CrossRef]
- Günther, V.; Alkatout, I.; Meyerholz, L.; Maass, N.; Görg, S.; von Otte, S.; Ziemann, M. Live Birth Rates after Active Immunization with Partner Lymphocytes. Biomedicines 2021, 9, 1350. [Google Scholar] [CrossRef]
- Hussain, T.; Murtaza, G.; Kalhoro, D.H.; Yin, Y.; Chughtai, M.I.; Tan, B.; Yaseen, A.; Rehman, Z.U. Understanding the Immune System in Fetal Protection and Maternal Infections during Pregnancy. J. Immunol. Res. 2022, 2022, 7567708. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Couture, C.; Girard, S. Innate and Adaptive Immune Systems in Physiological and Pathological Pregnancy. Biology 2023, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Genest, G.; Almasri, W.; Banjar, S.; Beauchamp, C.; Buckett, W.; Dzineku, F.; Demirtas, E.; Gold, P.; Dahan, M.H.; Jamal, W.; et al. Immunotherapy for recurrent pregnancy loss: A reappraisal. F&S Rev. 2022, 3, 24–41. [Google Scholar] [CrossRef]
- Rager, J.E.; Bangma, J.; Carberry, C.; Chao, A.; Grossman, J.; Lu, K.; Manuck, T.A.; Sobus, J.R.; Szilagyi, J.; Fry, R.C. Review of the environmental prenatal exposome and its relationship to maternal and fetal health. Reprod. Toxicol. 2020, 98, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mor, G.; Aldo, P.; Alvero, A.B. The unique immunological and microbial aspects of pregnancy. Nat. Rev. Immunol. 2017, 17, 469–482. [Google Scholar] [CrossRef]
- Brosens, J.J.; Bennett, P.R.; Abrahams, V.M.; Ramhorst, R.; Coomarasamy, A.; Quenby, S.; Lucas, E.S.; McCoy, R.C. Maternal selection of human embryos in early gestation: Insights from recurrent miscarriage. Semin. Cell Dev. Biol. 2022, 131, 14–24. [Google Scholar] [CrossRef]
- Ochoa-Bernal, M.A.; Fazleabas, A.T. Physiologic Events of Embryo Implantation and Decidualization in Human and Non-Human Primates. Int. J. Mol. Sci. 2020, 21, 1973. [Google Scholar] [CrossRef]
- Tsuda, S.; Nakashima, A.; Shima, T.; Saito, S. New Paradigm in the Role of Regulatory T Cells During Pregnancy. Front. Immunol. 2019, 10, 573. [Google Scholar] [CrossRef]
- Monti, M.; Lupoli, R.; Sosa Fernandez, L.M.; Cirillo, F.; Di Minno, M.N.D. Association of human leukocyte antigen-G 14 bp polymorphism with recurrent pregnancy loss in European countries: A meta-analysis of literature studies. Fertil. Steril. 2019, 112, 577–585.e3. [Google Scholar] [CrossRef]
- Habets, D.H.J.; Al-Nasiry, S.; Nagelkerke, S.Q.; Voorter, C.E.; Spaanderman, M.E.; Kuijpers, T.W.; Wieten, L. Analysis of, FCGR3A-p.176Val variants in women with recurrent pregnancy loss and the association with CD16a expression and anti-HLA antibody status. Sci. Rep. 2023, 13, 5232. [Google Scholar] [CrossRef]
- Liu, B.; Lu, X.; Jiang, A.; Lv, Y.; Zhang, H.; Xu, B. Influence of maternal endocrine disrupting chemicals exposure on adverse pregnancy outcomes: A systematic review and meta-analysis. Ecotoxicol. Environ. Saf. 2024, 270, 115851. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, Y.; Zheng, Q. The regulated cell death at the maternal-fetal interface: Beneficial or detrimental? Cell Death Discov. 2024, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Z.; Sun, H. Fetal-maternal interactions during pregnancy: A “three-in-one” perspective. Front. Immunol. 2023, 14, 1198430. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Sang, Y.; Li, D.-J.; Du, M. Crosstalk Between Trophoblasts and Decidual Immune Cells: The Cornerstone of Maternal-Fetal Immunotolerance. Front. Immunol. 2021, 12, 642392. [Google Scholar] [CrossRef]
- Mao, J.; Feng, Y.; Zhu, X.; Ma, F. The Molecular Mechanisms of HLA-G Regulatory Function on Immune Cells during Early Pregnancy. Biomolecules 2023, 13, 1213. [Google Scholar] [CrossRef]
- Wang, P.; Greenland, J.R. HLA-G/ILT2 signaling on the path to tolerance. J. Heart Lung Transpl. Publ. Int. Soc. Heart Transpl. 2022, 41, 852–853. [Google Scholar] [CrossRef]
- Khan, M.; Arooj, S.; Wang, H. NK Cell-Based Immune Checkpoint Inhibition. Front. Immunol. 2020, 11, 167. [Google Scholar] [CrossRef]
- Zheng, G.; Guo, Z.; Li, W.; Xi, W.; Zuo, B.; Zhang, R.; Wen, W.; Yang, A.G.; Jia, L. Interaction between HLA-G and NK cell receptor KIR2DL4 orchestrates HER2-positive breast cancer resistance to trastuzumab. Signal Transduct. Target Ther. 2021, 6, 236. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Qian, Y.; Jiang, H.; Meng, H.; Wang, Y.; Yang, Y. Combined maternal KIR2DL4 and fetal HLA-G polymorphisms were associated with preeclampsia in a Han Chinese population. Front. Genet. 2024, 15, 1442938. [Google Scholar] [CrossRef]
- Hu, L.; He, D.; Zeng, H. Association of parental HLA-G polymorphisms with soluble HLA-G expressions and their roles on recurrent implantation failure: A systematic review and meta-analysis. Front. Immunol. 2022, 13, 988370. [Google Scholar] [CrossRef]
- Dębska-Zielkowska, J.; Moszkowska, G.; Zieliński, M.; Zielińska, H.; Dukat-Mazurek, A.; Trzonkowski, P.; Stefańska, K. KIR Receptors as Key Regulators of NK Cells Activity in Health and Disease. Cells 2021, 10, 1777. [Google Scholar] [CrossRef]
- Gaynor, L.M.; Colucci, F. Uterine Natural Killer Cells: Functional Distinctions and Influence on Pregnancy in Humans and Mice. Front. Immunol. 2017, 8, 467. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Li, Y.; Meng, Y.-Z.; Xu, P.; Yang, Y.G.; Dong, S.; He, J.; Hu, Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front. Immunol. 2022, 13, 918550. [Google Scholar] [CrossRef] [PubMed]
- Kanter, J.R.; Mani, S.; Gordon, S.M.; Mainigi, M. Uterine natural killer cell biology and role in early pregnancy establishment and outcomes. F&S Rev. 2021, 2, 265–286. [Google Scholar] [CrossRef]
- Chen, X.; Mariee, N.; Jiang, L.; Liu, Y.; Wang, C.C.; Li, T.C.; Laird, S. Measurement of uterine natural killer cell percentage in the periimplantation endometrium from fertile women and women with recurrent reproductive failure: Establishment of a reference range. Am. J. Obstet. Gynecol. 2017, 217, 680.e1–680.e6. [Google Scholar] [CrossRef]
- Sfakianoudis, K.; Rapani, A.; Grigoriadis, S.; Pantou, A.; Maziotis, E.; Kokkini, G.; Tsirligkani, C.; Bolaris, S.; Nikolettos, K.; Chronopoulou, M.; et al. The Role of Uterine Natural Killer Cells on Recurrent Miscarriage and Recurrent Implantation Failure: From Pathophysiology to Treatment. Biomedicines 2021, 9, 1425. [Google Scholar] [CrossRef]
- Sharkey, A.M.; Xiong, S.; Kennedy, P.R.; Gardner, L.; Farrell, L.E.; Chazara, O.; Ivarsson, M.A.; Hiby, S.E.; Colucci, F.; Moffett, A. Tissue-Specific Education of Decidual NK Cells. J. Immunol. 2015, 195, 3026–3032. [Google Scholar] [CrossRef]
- Wei, X.; Yang, X. The central role of natural killer cells in preeclampsia. Front. Immunol. 2023, 14, 1009867. [Google Scholar] [CrossRef]
- Cuadrado-Torroglosa, I.; García-Velasco, J.A.; Alecsandru, D. Maternal–Fetal Compatibility in Recurrent Pregnancy Loss. J. Clin. Med. 2024, 13, 2379. [Google Scholar] [CrossRef]
- Wasilewska, A.; Grabowska, M.; Moskalik-Kierat, D.; Brzoza, M.; Laudański, P.; Garley, M. Immunological Aspects of Infertility—The Role of KIR Receptors and HLA-C Antigen. Cells 2024, 13, 53. [Google Scholar] [CrossRef]
- Von Woon, E.; Nikolaou, D.; MacLaran, K.; Norman-Taylor, J.; Bhagwat, P.; Cuff, A.O.; Johnson, M.R.; Male, V. Uterine NK cells underexpress KIR2DL1/S1 and LILRB1 in reproductive failure. Front. Immunol. 2022, 13, 1108163. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.I. Relative expression of receptors in uterine natural killer cells compared to peripheral blood natural killer cells. Front. Immunol. 2023, 14, 1166451. [Google Scholar] [CrossRef] [PubMed]
- Moffett, A.; Shreeve, N. Local immune recognition of trophoblast in early human pregnancy: Controversies and questions. Nat. Rev. Immunol. 2023, 23, 222–235. [Google Scholar] [CrossRef]
- Meuleman, T.; Haasnoot, G.W.; van Lith, J.M.M.; Verduijn, W.; Bloemenkamp, K.W.M.; Claas, F.H.J. Paternal HLA-C is a risk factor in unexplained recurrent miscarriage. Am. J. Reprod. Immunol. 2018, 79, 12797. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Soler, R.I.; Chen, P.; Nair, L.; Ata, A.; Patel, S.; Conti, D.J. Sirolimus use improves cancer-free survival following transplantation: A single center 12-year analysis. Transpl. Rep. 2020, 5, 100040. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Y.; Yuan, Y.; Liu, L.; Meng, T. The Roles of Uterine Natural Killer (NK) Cells and KIR/HLA-C Combination in the Development of Preeclampsia: A Systematic Review. Biomed. Res. Int. 2020, 2020, 4808072. [Google Scholar] [CrossRef]
- Oparaugo, N.C.; Ouyang, K.; Nguyen, N.P.N.; Nelson, A.M.; Agak, G.W. Human Regulatory T Cells: Understanding the Role of Tregs in Select Autoimmune Skin Diseases and Post-Transplant Nonmelanoma Skin Cancers. Int. J. Mol. Sci. 2023, 24, 1527. [Google Scholar] [CrossRef]
- Goldmann, O.; Nwofor, O.V.; Chen, Q.; Medina, E. Mechanisms underlying immunosuppression by regulatory cells. Front. Immunol. 2024, 15, 1328193. [Google Scholar] [CrossRef]
- Robertson, S.A.; Care, A.S.; Moldenhauer, L.M. Regulatory T cells in embryo implantation and the immune response to pregnancy. J. Clin. Investig. 2018, 128, 4224–4235. [Google Scholar] [CrossRef]
- Robertson, S.A.; Green, E.S.; Care, A.S.; Moldenhauer, L.M.; Prins, J.R.; Hull, M.L.; Barry, S.C.; Dekker, G. Therapeutic Potential of Regulatory T Cells in Preeclampsia-Opportunities and Challenges. Front. Immunol. 2019, 10, 478. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, Z.; Sharma, S. Inviting regulatory T cells to pregnant endometrium: Friends or foes in adverse pregnancy outcomes? Explor. Immunol. 2022, 2, 363–382. [Google Scholar] [CrossRef]
- Günther, V.; Alkatout, I.; Junkers, W.; Maass, N.; Ziemann, M.; Görg, S.; von Otte, S. Active Immunisation with Partner Lymphocytes in Female Patients Who Want to Become Pregnant—Current Status. Geburtshilfe Frauenheilkd. 2018, 78, 260–273. [Google Scholar] [CrossRef] [PubMed]
- Astarita, J.L.; Dominguez, C.X.; Tan, C.; Guillen, J.; Pauli, M.L.; Labastida, R.; Valle, J.; Kleinschek, M.; Lyons, J.; Zarrin, A.A. Treg specialization and functions beyond immune suppression. Clin. Exp. Immunol. 2023, 211, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Rowshanravan, B.; Halliday, N.; Sansom, D.M. CTLA-4: A moving target in immunotherapy. Blood 2018, 131, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Meggyes, M.; Miko, E.; Szigeti, B.; Farkas, N.; Szereday, L. The importance of the PD-1/PD-L1 pathway at the maternal-fetal interface. BMC Pregnancy Childbirth 2019, 19, 74. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Wang, Y.; Wang, G.; Zhou, F. Case Report: TNF-Alpha Inhibitors to Rescue Pregnancy in Women With Potential Pregnancy Loss: A Report of Ten Cases. Front. Immunol. 2022, 13, 900537. [Google Scholar] [CrossRef]
- Huang, N.; Chi, H.; Qiao, J. Role of Regulatory T Cells in Regulating Fetal-Maternal Immune Tolerance in Healthy Pregnancies and Reproductive Diseases. Front. Immunol. 2020, 11, 1023. [Google Scholar] [CrossRef]
- Headen, K.; Jakaite, V.; Mesaric, V.A.; Scotta, C.; Lombardi, G.; Nicolaides, K.H.; Shangaris, P. The Role of Regulatory T Cells and Their Therapeutic Potential in Hypertensive Disease of Pregnancy: A Literature Review. Int. J. Mol. Sci. 2024, 25, 4884. [Google Scholar] [CrossRef]
- Liu, P.-C.; Li, J.-B.; Huang, Y.-P.; Zhang, M.; Yu, S.-J.; Wu, R. Overexpression of regulatory T cells in patients with unexplained recurrent pregnancy loss: Friend or foe? Front. Med. 2023, 10, 1244424. [Google Scholar] [CrossRef]
- Rowe, J.H.; Ertelt, J.M.; Aguilera, M.N.; Farrar, M.A.; Way, S.S. Foxp3+ regulatory T cell expansion required for sustaining pregnancy compromises host defense against prenatal bacterial pathogens. Cell Host Microbe 2011, 10, 54–64. [Google Scholar] [CrossRef]
- Yi, H.J.; Kim, J.H.; Koo, H.S.; Bae, J.Y.; Cha, S.W.; Yang, K.M. Elevated natural killer cell levels and autoimmunity synergistically decrease uterine blood flow during early pregnancy. Obstet. Gynecol. Sci. 2014, 57, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, X.; Wan, Y.Y. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol. Immunol. 2023, 20, 1002–1022. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.; Zhou, L.; Ma, Y.; Zhou, L.; Liang, T.; Shi, L.; Long, J.; Yuan, D. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Clin. Rev. Allergy Immunol. 2020, 58, 52–70. [Google Scholar] [CrossRef] [PubMed]
- Travis, O.K.; White, D.; Pierce, W.A.; Ge, Y.; Stubbs, C.Y.; Spradley, F.T.; Williams, J.M.; Cornelius, D.C. Chronic infusion of interleukin-17 promotes hypertension, activation of cytolytic natural killer cells, and vascular dysfunction in pregnant rats. Physiol. Rep. 2019, 7, e14038. [Google Scholar] [CrossRef] [PubMed]
- Niafar, M.; Samaie, V.; Soltani-Zangbar, M.S.; Motavalli, R.; Dolati, S.; Danaii, S.; Mehdizadeh, A.; Yousefi, M. The association of Treg and Th17 cells development factors and anti-TPO autoantibodies in patients with recurrent pregnancy loss. BMC Res. Notes 2023, 16, 302. [Google Scholar] [CrossRef]
- Abu-Raya, B.; Michalski, C.; Sadarangani, M.; Lavoie, P.M. Maternal Immunological Adaptation During Normal Pregnancy. Front. Immunol. 2020, 11, 575197. [Google Scholar] [CrossRef]
- Wang, W.; Sung, N.; Gilman-Sachs, A.; Kwak-Kim, J. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front. Immunol. 2020, 11, 2025. [Google Scholar] [CrossRef]
- Littlejohn, E.A. Pregnancy and rheumatoid arthritis. Best Pract. Res. Clin. Obstet. Gynaecol. 2020, 64, 52–58. [Google Scholar] [CrossRef]
- Dao, K.H.; Bermas, B.L. Systemic Lupus Erythematosus Management in Pregnancy. Int. J. Women’s Health 2022, 14, 199–211. [Google Scholar] [CrossRef]
- Min, Y.; Wang, X.; Chen, H.; Yin, G. The exploration of Hashimoto’s Thyroiditis related miscarriage for better treatment modalities. Int. J. Med. Sci. 2020, 17, 2402–2415. [Google Scholar] [CrossRef]
- Wind, M.; Fierro, J.J.; Bloemenkamp, K.W.M.; de Leeuw, K.; Lely, A.T.; Limper, M.; Sueters, M.; Teng, Y.O.; Walter, I.J.; Kooiman, J. Pregnancy outcome predictors in systemic lupus erythematosus: A systematic review and meta-analysis. Lancet Rheumatol. 2024, 6, e667–e683. [Google Scholar] [CrossRef] [PubMed]
- Barilaro, G.; Castellanos, A.; Gomez-Ferreira, I.; ledó, G.M.; Della Rocca, C.; Fernandez-Blanco, L.; Cervera, R.; Baños, N.; Figueras, F.; Espinosa, G. Systemic sclerosis and pregnancy outcomes: A retrospective study from a single center. Arthritis Res. Ther. 2022, 24, 91. [Google Scholar] [CrossRef] [PubMed]
- Upala, S.; Yong, W.C.; Sanguankeo, A. Association between primary Sjögren’s syndrome and pregnancy complications: A systematic review and meta-analysis. Clin. Rheumatol. 2016, 35, 1949–1955. [Google Scholar] [CrossRef] [PubMed]
- Geng, B.; Zhang, K.; Huang, X.; Chen, Y. A meta-analysis of the effect of Sjögren’s syndrome on adverse pregnancy outcomes. Clinics 2022, 77, 100140. [Google Scholar] [CrossRef] [PubMed]
- Deer, E.; Herrock, O.; Campbell, N.; Cornelius, D.; Fitzgerald, S.; Amaral, L.M.; LaMarca, B. The role of immune cells and mediators in preeclampsia. Nat. Rev. Nephrol. 2023, 19, 257–270. [Google Scholar] [CrossRef]
- Bates, M.D.; Quenby, S.; Takakuwa, K.; Johnson, P.M.; Vince, G.S. Aberrant cytokine production by peripheral blood mononuclear cells in recurrent pregnancy loss? Hum. Reprod. 2002, 17, 2439–2444. [Google Scholar] [CrossRef]
- Ângelo-Dias, M.; Martins, C.; Dias, S.S.; Borrego, L.M.; Lima, J. Association of B Cells with Idiopathic Recurrent Pregnancy Loss: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 15200. [Google Scholar] [CrossRef]
- Kövér, Á.; Lampé, R.; Szabó, K.; Tarr, T.; Papp, G. A Comprehensive Investigation into the Distribution of Circulating B Cell Subsets in the Third Trimester of Pregnancy. J. Clin. Med. 2022, 11, 3006. [Google Scholar] [CrossRef]
- Danaii, S.; Ghorbani, F.; Ahmadi, M.; Abbaszadeh, H.; Koushaeian, L.; Soltani-Zangbar, M.S.; Mehdizadeh, A.; Hojjat-Farsangi, M.; Kafil, H.S.; Aghebati-Maleki, L.; et al. IL-10-producing B cells play important role in the pathogenesis of recurrent pregnancy loss. Int. Immunopharmacol. 2020, 87, 106806. [Google Scholar] [CrossRef]
- Guzman-Genuino, R.M.; Diener, K.R. Chapter 4—B cell pathology and recurrent pregnancy loss. In Reproductive Immunology; Kwak-Kim, J., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 55–70. [Google Scholar] [CrossRef]
- Guzman-Genuino, R.M.; Eldi, P.; Garcia-Valtanen, P.; Hayball, J.D.; Diener, K.R. Uterine B Cells Exhibit Regulatory Properties During the Peri-Implantation Stage of Murine Pregnancy. Front. Immunol. 2019, 10, 2899. [Google Scholar] [CrossRef]
- Schumacher, A.; Ehrentraut, S.; Scharm, M.; Wang, H.; Hartig, R.; Morse, H.C., III; Zenclussen, A.C. Plasma Cell Alloantigen 1 and IL-10 Secretion Define Two Distinct Peritoneal B1a B Cell Subsets With Opposite Functions, PC1(high) Cells Being Protective and PC1(low) Cells Harmful for the Growing Fetus. Front. Immunol. 2018, 9, 1045. [Google Scholar] [CrossRef] [PubMed]
- Kaislasuo, J.; Simpson, S.; Petersen, J.F.; Peng, G.; Aldo, P.; Lokkegaard, E.; Paidas, M.; Pal, L.; Guller, S.; Mor, G. IL-10 to TNFα ratios throughout early first trimester can discriminate healthy pregnancies from pregnancy losses. Am. J. Reprod. Immunol. 2020, 83, e13195. [Google Scholar] [CrossRef] [PubMed]
- Van den Hoogen, L.L.; Bisoendial, R.J. B-Cells and BAFF in Primary Antiphospholipid Syndrome, Targets for Therapy? J. Clin. Med. 2022, 12, 18. [Google Scholar] [CrossRef]
- Iordache, O.; Anastasiu-Popov, D.M.; Anastasiu, D.M.; Craina, M.; Dahma, G.; Sacarin, G.; Silaghi, C.; Citu, C.; Daniluc, R.; Hinoveanu, D.; et al. A Retrospective Assessment of Thrombophilia in Pregnant Women with First and Second Trimester Pregnancy Loss. Int. J. Environ. Res. Public Health 2022, 19, 16500. [Google Scholar] [CrossRef]
- Deshmukh, H.; Way, S.S. Immunological Basis for Recurrent Fetal Loss and Pregnancy Complications. Annu. Rev. Pathol. 2019, 14, 185–210. [Google Scholar] [CrossRef]
- Sonehara, K.; Yano, Y.; Naito, T.; Goto, S.; Yoshihara, H.; Otani, T.; Ozawa, F.; Kitaori, T.; Matsuda, K.; Nishiyama, T. Common and rare genetic variants predisposing females to unexplained recurrent pregnancy loss. Nat. Commun. 2024, 15, 5744. [Google Scholar] [CrossRef]
- Turesheva, A.; Aimagambetova, G.; Ukybassova, T.; Marat, A.; Kanabekova, P.; Kaldygulova, L.; Amanzholkyzy, A.; Ryzhkova, S.; Nogay, A.; Khamidullina, Z.; et al. Recurrent Pregnancy Loss Etiology, Risk Factors, Diagnosis, and Management. Fresh Look into a Full Box. J. Clin. Med. 2023, 12, 4074. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Ding, J.; Cheng, Y.; Diao, L.; Li, L.; Zhang, Y.; Yin, T. Multiomics Studies Investigating Recurrent Pregnancy Loss: An Effective Tool for Mechanism Exploration. Front. Immunol. 2022, 13, 826198. [Google Scholar] [CrossRef] [PubMed]
- Laijawala, R.A. Recurrent Pregnancy Loss: Immunological aetiologies and associations with mental health. Brain Behav. Immun. Heal. 2024, 41, 100868. [Google Scholar] [CrossRef]
- Jahan, F.; Vasam, G.; Cariaco, Y.; Nik-Akhtar, A.; Green, A.; Menzies, K.J.; Bainbridge, S.A. A comparison of rat models that best mimic immune-driven preeclampsia in humans. Front. Endocrinol. 2023, 14, 1219205. [Google Scholar] [CrossRef]
- Chau, K.; Welsh, M.; Makris, A.; Hennessy, A. Progress in preeclampsia: The contribution of animal models. J. Hum. Hypertens 2022, 36, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, O.B.; Larsen, E.C.; Egerup, P.; Lunoee, L.; Egestad, L.; Nielsen, H.S. Intravenous immunoglobulin treatment for secondary recurrent miscarriage: A randomised, double-blind, placebo-controlled trial. Int. J. Obstet. Gynaecol. 2015, 122, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-W.; Zhong, S.-Y.; Lou, L.-J.; Hu, Z.-F.; Sun, H.-Y.; Zhu, H.-Y. The effect of intravenous immunoglobulin passive immunotherapy on unexplained recurrent spontaneous abortion: A meta-analysis. Reprod. Biomed. Online 2016, 33, 720–736. [Google Scholar] [CrossRef] [PubMed]
- Saab, W.; Seshadri, S.; Huang, C.; Alsubki, L.; Sung, N.; Kwak-Kim, J. A systemic review of intravenous immunoglobulin G treatment in women with recurrent implantation failures and recurrent pregnancy losses. Am. J. Reprod. Immunol. 2021, 85, e13395. [Google Scholar] [CrossRef] [PubMed]
- Mu, F.; Huo, H.; Wang, M.; Liu, L.; Wang, F. Intravenous immunoglobulin improves live birth rates in patients with unexplained recurrent pregnancy loss. J. Reprod. Immunol. 2024, 166, 104322. [Google Scholar] [CrossRef]
- Christiansen, O.B.; Kolte, A.M.; Krog, M.C.; Nielsen, H.S.; Egerup, P. Treatment with intravenous immunoglobulin in patients with recurrent pregnancy loss: An update. J. Reprod. Immunol. 2019, 133, 37–42. [Google Scholar] [CrossRef]
- Yamada, H.; Deguchi, M.; Saito, S.; Takeshita, T.; Mitsui, M.; Saito, T.; Nagamatsu, T.; Takakuwa, K.; Nakatsuka, M.; Yoneda, S.; et al. Intravenous immunoglobulin treatment in women with four or more recurrent pregnancy losses: A double-blind, randomised, placebo-controlled trial. Clin. Med. 2022, 50, 101527. [Google Scholar] [CrossRef]
- Parhizkar, F.; Parhizkar, Z.; Mojahedi, M.; Chakari-Khiavi, A.; Salehnia, F.; Chakari-Khiavi, F.; Danaii, S.; Yousefi, M. The impact of IVIG therapy on live birth rates in women with RPL: A systematic review and meta-analysis. Gene Rep. 2022, 26, 101490. [Google Scholar] [CrossRef]
- Habets, D.H.J.; Pelzner, K.; Wieten, L.; Spaanderman, M.E.A.; Villamor, E.; Al-Nasiry, S. Intravenous immunoglobulins improve live birth rate among women with underlying immune conditions and recurrent pregnancy loss: A systematic review and meta-analysis. Allergy Asthma Clin. Immunol. J. Can. Soc. Allergy Clin. Immunol. 2022, 18, 23. [Google Scholar] [CrossRef]
- Egerup, P.; Nielsen, H.S.; Andersen, A.N.; Christiansen, O.B. Live Birth Rate in Women with Recurrent Pregnancy Loss after In Vitro Fertilization with Concomitant Intravenous Immunoglobulin and Prednisone. J. Clin. Med. 2022, 11, 1894. [Google Scholar] [CrossRef]
- Li, T.; Yuan, Y.; Liu, H.; Lu, Q.; Mu, R. Glucocorticoids Improve the Pregnancy Rate and Outcome in Women With Unexplained Positive Autoantibodies: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 819406. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Qin, R.; Qin, W.; Liao, M.; Zhao, Y.; Hang, F.; Qin, A. Oral immunosuppressants improve pregnancy outcomes in women with idiopathic recurrent miscarriage: A meta-analysis. J. Clin. Pharm. Ther. 2022, 47, 870–878. [Google Scholar] [CrossRef]
- Gomaa, M.F.; Elkholy, A.G.; El-Said, M.M.; Abdel-Salam, N.E. Combined oral prednisolone and heparin versus heparin: The effect on peripheral NK cells and clinical outcome in patients with unexplained recurrent miscarriage. A double-blind placebo randomized controlled trial. Arch. Gynecol. Obstet. 2014, 290, 757–762. [Google Scholar] [CrossRef]
- Han, A.R.; Ahn, H.; Vu, P.; Park, J.C.; Gilman-Sachs, A.; Beaman, K.; Kwak-Kim, J. Obstetrical outcome of anti-inflammatory and anticoagulation therapy in women with recurrent pregnancy loss or unexplained infertility. Am. J. Reprod. Immunol. 2012, 68, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Tanimura, K.; Saito, S.; Tsuda, S.; Ono, Y.; Deguchi, M.; Nagamatsu, T.; Fujii, T.; Nakatsuka, M.; Kobashi, G.; Arase, H.; et al. Low-dose aspirin and heparin treatment improves pregnancy outcome in recurrent pregnancy loss women with anti-β2-glycoprotein I/HLA-DR autoantibodies: A prospective, multicenter, observational study. Front. Immunol. 2024, 15, 1445852. [Google Scholar] [CrossRef] [PubMed]
- Mohammad-Akbari, A.; Mohazzab, A.; Tavakoli, M.; Karimi, A.; Zafardoust, S.; Zolghadri, Z.; Shahali, S.; Tokhmechi, R.; Ansaripour, S. The effect of low-molecular-weight heparin on live birth rate of patients with unexplained early recurrent pregnancy loss: A two-arm randomized clinical trial. J. Res. Med. Sci. J. Isfahan Univ. Med. Sci. 2022, 27, 78. [Google Scholar] [CrossRef] [PubMed]
- Scarrone, M.; Salmeri, N.; Buzzaccarini, G.; Canti, V.; Pasi, F.; Papaleo, E.; Rovere-Querini, P.; Candiani, M.; Alteri, A.; Busnelli, A.; et al. Low-molecular-weight heparin in the prevention of unexplained recurrent miscarriage: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 14168. [Google Scholar] [CrossRef]
- Dai, F.-F.; Hu, M.; Zhang, Y.-W.; Zhu, R.H.; Chen, L.P.; Li, Z.D.; Huang, Y.J.; Hu, W.; Cheng, Y.X. TNF-α/anti-TNF-α drugs and its effect on pregnancy outcomes. Expert Rev. Mol. Med. 2022, 24, e26. [Google Scholar] [CrossRef]
- Cai, Z.; Guo, X.; Zheng, G.; Xiang, J.; Liu, L.; Lin, D.; Deng, X. TNF-α-positive patients with recurrent pregnancy loss: The etiology and management. Technol. Health Care J. Eur. Soc. Eng. Med. 2024, 32, 4581–4591. [Google Scholar] [CrossRef]
- Mekinian, A.; Houfflin-Debarge, V.; Kolanska, K.; Cohen, J.; Abisror, N.; Bornes, M.; Kayem, G.; Fain, O. Antagonists of TNFα for recurrent miscarriages: 2 Illustrative cases. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 236, 263–264. [Google Scholar] [CrossRef]
- Romanowska-Próchnicka, K.; Felis-Giemza, A.; Olesińska, M.; Wojdasiewicz, P.; Paradowska-Gorycka, A.; Szukiewicz, D. The Role of TNF-α and Anti-TNF-α Agents during Preconception, Pregnancy, and Breastfeeding. Int. J. Mol. Sci. 2021, 22, 2922. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Li, L.; Qi, L.; Zhao, L. A randomized controlled trial of etanercept in the treatment of refractory recurrent spontaneous abortion with innate immune disorders. Taiwan. J. Obstet. Gynecol. 2019, 58, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Soh, M.C.; Moretto, M. The use of biologics for autoimmune rheumatic diseases in fertility and pregnancy. Obstet. Med. 2020, 13, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Barenbrug, L.; Groen, M.T.; Hoentjen, F.; van Drongelen, J.; van den Reek, J.M.; Joosten, I.; de Jong, E.M.; van der Molen, R.G. Pregnancy and neonatal outcomes in women with immune mediated inflammatory diseases exposed to anti-tumor necrosis factor-α during pregnancy: A systemic review and meta-analysis. J. Autoimmun. 2021, 122, 102676. [Google Scholar] [CrossRef]
- Aslanian-Kalkhoran, L.; Kamrani, A.; Alipourfard, I.; Chakari-Khiavi, F.; Chakari-Khiavi, A.; Aghebati-Maleki, L.; Shekarchi, A.A.; Mehdizadeh, A.; Mojahedi, M.; Danaii, S.; et al. The effect of lymphocyte immunotherapy (LIT) in modulating immune responses in patients with recurrent pregnancy loss (RPL). Int. Immunopharmacol. 2023, 121, 110326. [Google Scholar] [CrossRef]
- Hajipour, H.; Nejabati, H.R.; Latifi, Z.; Hamdi, K.; Bahrami-asl, Z.; Fattahi, A.; Nouri, M. Lymphocytes immunotherapy for preserving pregnancy: Mechanisms and Challenges. Am. J. Reprod. Immunol. 2018, 80, e12853. [Google Scholar] [CrossRef]
- Li, J.; Gu, Y.; Zhang, S.; Ju, B.; Wang, J. Effect of Prepregnancy Lymphocyte Active Immunotherapy on Unexplained Recurrent Miscarriage, Pregnancy Success Rate, and Maternal-Infant Outcome. Biomed. Res. Int. 2021, 2021, 7878752. [Google Scholar] [CrossRef] [PubMed]
- Gunasheela, D.; Nagaraj, A.; Akhila, M.V.; Shetty, S.; Shetty, S. The Effectiveness of Paternal Lymphocyte Immunotherapy for Recurrent Miscarriage in Couples with Human Leukocyte Antigen Sharing: A Novel Approach. Med. Res. Arch. 2023, 11, 4061. [Google Scholar] [CrossRef]
- Francisco, P.D.; Tan-Lim, C.S.C.; Agcaoili-De Jesus, M.S.L. Efficacy of lymphocyte immunotherapy in the treatment of recurrent pregnancy loss from alloimmunity: A systematic review and meta-analysis. Am. J. Reprod. Immunol. 2022, 88, e13605. [Google Scholar] [CrossRef]
- Cavalcante, M.B.; Alcântara da Silva, P.H.; Sampaio, O.G.M.; Câmara, F.E.A.; de Melo Bezerra Cavalcante, C.T.; Barini, R. The use of immunotherapies for recurrent miscarriage: An overview of systematic reviews and meta-analysis. J. Reprod. Immunol. 2023, 158, 103986. [Google Scholar] [CrossRef]
- Eidizadeh, A.; Papert, S.; Valk, J.; Pollok-Kopp, B.; Goldmann, M.; Riggert, J.; Moltrecht, R.; Legler, T.J. Adverse drug reactions following lymphocyte immunotherapy for the treatment of infertility: A retrospective study. J. Obstet. Gynaecol. Res. 2022, 48, 2571–2582. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Y.; Khan, H. Immunosuppressive Drugs. Encycl. Infect. Immun. 2022, 4, 726–740. [Google Scholar] [CrossRef]
- Du, M.-R.; Li, M.-Q.; Zhou, W.-J.; Li, D.-J. Short-term cyclosporin A treatment improves pregnancy outcomes in patients with unexplained pregnancy loss: A prospective, open-label, observational study. Clin. Transl. Discov. 2022, 2, e135. [Google Scholar] [CrossRef]
- Azizi, R.; Ahmadi, M.; Danaii, S.; Abdollahi-Fard, S.; Mosapour, P.; Eghbal-Fard, S.; Dolati, S.; Kamrani, A.; Rahnama, B.; Mehdizadeh, A.; et al. Cyclosporine A improves pregnancy outcomes in women with recurrent pregnancy loss and elevated Th1/Th2 ratio. J. Cell Physiol. 2019, 234, 19039–19047. [Google Scholar] [CrossRef] [PubMed]
- Qu, D.; Tian, X.; Ding, L.; Li, Y.; Zhou, W. Impacts of Cyclosporin A on clinical pregnancy outcomes of patients with a history of unexplained transfer failure: A retrospective cohort study. Reprod. Biol. Endocrinol. 2021, 19, 44. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Moroni, G. Fetal Toxicity of Immunosuppressive Drugs in Pregnancy. J. Clin. Med. 2018, 7, 552. [Google Scholar] [CrossRef]
- Groth, K.; Brännström, M.; Mölne, J.; Wranning, C.A. Cyclosporine A exposure during pregnancy in mice: Effects on reproductive performance in mothers and offspring. Hum. Reprod. 2010, 25, 697–704. [Google Scholar] [CrossRef]
- Liu, J.; Li, M.; Fu, J.; Yuan, G.; Li, N.; Fu, Y.; Zhao, L. Tacrolimus improved the pregnancy outcomes of patients with refractory recurrent spontaneous abortion and immune bias disorders: A randomized controlled trial. Eur. J. Clin. Pharmacol. 2023, 79, 627–634. [Google Scholar] [CrossRef]
- Irani, R.A.; Coscia, L.A.; Chang, E.; Lappen, J.R. Society for Maternal-Fetal Medicine Consult Series #66: Prepregnancy evaluation and pregnancy management of patients with solid organ transplants. Am. J. Obstet. Gynecol. 2023, 229, B10–B32. [Google Scholar] [CrossRef]
- Hisano, M.; Nakagawa, K.; Kwak-Kim, J.; Sugiyama, R.; Sago, H.; Yamaguchi, K. Changes in the T-helper 1 and 2 cell populations during pregnancy in tacrolimus-treated women with repeated implantation failure and recurrent pregnancy loss. Hum. Fertil. 2022, 25, 975–982. [Google Scholar] [CrossRef]
- Nakagawa, K.; Kwak-Kim, J.; Hisano, M.; Kasahara, Y.; Kuroda, K.; Sugiyama, R.; Yamaguchi, K. Obstetric and perinatal outcome of the women with repeated implantation failures or recurrent pregnancy losses who received pre- and post-conception tacrolimus treatment. Am. J. Reprod. Immunol. 2019, 82, e13142. [Google Scholar] [CrossRef] [PubMed]
- Panwar, V.; Singh, A.; Bhatt, M.; Tonk, R.K.; Azizov, S.; Raza, A.S.; Sengupta, S.; Kumar, D.; Garg, M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct. Target Ther. 2023, 8, 375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jin, H.; Xu, Y.; Shan, J. Rapamycin Modulate Treg/Th17 Balance via Regulating Metabolic Pathways: A Study in Mice. Transplant. Proc. 2019, 51, 2136–2140. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Abdolmohamadi-Vahid, S.; Ghaebi, M.; Dolati, S.; Abbaspour-Aghdam, S.; Danaii, S.; Berjis, K.; Madadi-Javid, R.; Nouri, Z.; Siahmansouri, H.; et al. Sirolimus as a new drug to treat RIF patients with elevated Th17/Treg ratio: A double-blind, phase II randomized clinical trial. Int. Immunopharmacol. 2019, 74, 105730. [Google Scholar] [CrossRef]
- Kumar, P.; Marron, K.; Harrity, C. Intralipid therapy and adverse reproductive outcome: Is there any evidence? Reprod. Fertil. 2021, 2, 173–186. [Google Scholar] [CrossRef]
- Martini, A.E.; Jasulaitis, S.; Fogg, L.F.; Uhler, M.L.; Hirshfeld-Cytron, J.E. Evaluating the Utility of Intralipid Infusion to Improve Live Birth Rates in Patients with Recurrent Pregnancy Loss or Recurrent Implantation Failure. J. Hum. Reprod. Sci. 2018, 11, 261–268. [Google Scholar] [CrossRef]
- Rogenhofer, N.; Mahner, S.; von Hasselbach, Y.L.; Thaler, C.J. Effects of intralipid infusions on anti-trophoblast antibody (ATAb)-activities in patients with recurrent pregnancy loss: An observational report. Am. J. Reprod. Immunol. 2022, 87, e13506. [Google Scholar] [CrossRef]
- Plaçais, L.; Kolanska, K.; Kraiem, Y.B.; Cohen, J.; Suner, L.; Bornes, M.; Sedille, L.; Rosefort, A.; D’argent, E.M.; Selleret, L.; et al. Intralipid therapy for unexplained recurrent miscarriage and implantation failure: Case-series and literature review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 252, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Marchand, G.J.; Masoud, A.T.; Ulibarri, H.; Arroyo, A.; Coriell, C.; Goetz, S.; Moir, C.; Moberly, A.; Gonzalez, D.; Blanco, M.; et al. Effect of a 20% intravenous fat emulsion therapy on pregnancy outcomes in women with RPL or RIF undergoing IVF/ICSI: A systematic review and meta-analysis. J. Clin. Transl. Res. 2023, 9, 236–245. [Google Scholar]
- Wei, Y.; Deng, Z.; Yin, T. Are we closer to robust predictors of recurrent pregnancy loss by means of integrating different types of omics data? Expert Rev. Mol. Diagn. 2024, 24, 561–563. [Google Scholar] [CrossRef]
- Zhao, H.; Wei, X.; Yang, X. A novel update on vitamin D in recurrent pregnancy loss (Review). Mol. Med. Rep. 2021, 23, 12021. [Google Scholar] [CrossRef] [PubMed]
- Tamblyn, J.A.; Pilarski, N.S.P.; Markland, A.D.; Marson, E.J.; Devall, A.; Hewison, M.; Morris, R.K.; Coomarasamy, A. Vitamin D and miscarriage: A systematic review and meta-analysis. Fertil. Steril. 2022, 118, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-H.; Zhang, D.; Du, M.-R. Advances and challenges of mesenchymal stem cells for pregnancy-related diseases. Cell Mol. Immunol. 2021, 18, 2075–2077. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zeng, F.; Sun, J. The improvement of inflammatory infiltration and pregnancy outcome in mice with recurrent spontaneous abortion by human amniotic mesenchymal stem cells. Biol. Reprod. 2024, 111, 351–360. [Google Scholar] [CrossRef]
- Banjar, S.; Kadour, E.; Khoudja, R.; Ton-leclerc, S.; Beauchamp, C.; Beltempo, M.; Dahan, M.H.; Gold, P.; Jacques Kadoch, I.; Jamal, W.; et al. Intravenous immunoglobulin use in patients with unexplained recurrent pregnancy loss. Am. J. Reprod. Immunol. 2023, 90, e13737. [Google Scholar] [CrossRef]
- Yamada, H.; Deguchi, M.; Saito, S.; Takeshita, T.; Mitsui, M.; Saito, T.; Nagamatsu, T.; Takakuwa, K.; Nakatsuka, M.; Yoneda, S.; et al. High doses of intravenous immunoglobulin stimulate regulatory T cell and suppress natural killer cell in women with recurrent pregnancy loss. J. Reprod. Immunol. 2023, 158, 103977. [Google Scholar] [CrossRef]
- Sung, N.; Khan, S.A.; Yiu, M.E.; Jubiz, G.; Salazar, M.D.; Skariah, A.; Dambaeva, S.; Kwak-Kim, J. Reproductive outcomes of women with recurrent pregnancy losses and repeated implantation failures are significantly improved with immunomodulatory treatment. J. Reprod. Immunol. 2021, 148, 103369. [Google Scholar] [CrossRef]
- Chen, J.-L.; Yang, J.-M.; Huang, Y.-Z.; Li, Y. Clinical observation of lymphocyte active immunotherapy in 380 patients with unexplained recurrent spontaneous abortion. Int. Immunopharmacol. 2016, 40, 347–350. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uța, C.; Tîrziu, A.; Zimbru, E.-L.; Zimbru, R.-I.; Georgescu, M.; Haidar, L.; Panaitescu, C. Alloimmune Causes of Recurrent Pregnancy Loss: Cellular Mechanisms and Overview of Therapeutic Approaches. Medicina 2024, 60, 1896. https://doi.org/10.3390/medicina60111896
Uța C, Tîrziu A, Zimbru E-L, Zimbru R-I, Georgescu M, Haidar L, Panaitescu C. Alloimmune Causes of Recurrent Pregnancy Loss: Cellular Mechanisms and Overview of Therapeutic Approaches. Medicina. 2024; 60(11):1896. https://doi.org/10.3390/medicina60111896
Chicago/Turabian StyleUța, Cristina, Alexandru Tîrziu, Elena-Larisa Zimbru, Răzvan-Ionuț Zimbru, Marius Georgescu, Laura Haidar, and Carmen Panaitescu. 2024. "Alloimmune Causes of Recurrent Pregnancy Loss: Cellular Mechanisms and Overview of Therapeutic Approaches" Medicina 60, no. 11: 1896. https://doi.org/10.3390/medicina60111896
APA StyleUța, C., Tîrziu, A., Zimbru, E. -L., Zimbru, R. -I., Georgescu, M., Haidar, L., & Panaitescu, C. (2024). Alloimmune Causes of Recurrent Pregnancy Loss: Cellular Mechanisms and Overview of Therapeutic Approaches. Medicina, 60(11), 1896. https://doi.org/10.3390/medicina60111896