The Role of Glial Fibrillary Acidic Protein as a Biomarker in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Eligibility Criteria
- (A)
- Published in English;
- (B)
- Peer-reviewed original studies, including case-controls, cohorts, and cross-sectional studies;
- (C)
- The study population consisted of adult people (age above 18 years) with confirmed diagnosis of MS or NMOSD;
- (D)
- Either a report of cGFAP/sGFAP or a report of the correlations between cGFAP/sGFAP with demographic, clinical, or imaging findings.
- (A)
- Non-English studies;
- (B)
- Case reports, case series, conference abstracts, and review articles;
- (C)
- In vitro and animal studies;
- (D)
- Lack of sufficient information on key elements.
2.4. Data Extraction
2.5. Risk of Bias Assessment
2.6. Data Analysis
3. Results
3.1. Literature Search and Study Selection
3.2. Characteristics of the Included Studies
3.3. Outcomes Synthesis
3.3.1. Comparison of the GFAP Level between MS and HCs
3.3.2. Comparison of the GFAP level between PMS and RRMS
3.3.3. Comparison of the GFAP Level between NMOSD and HCs
3.3.4. Correlation Coefficients between GFAP Level and Demographic, Serologic, Imaging, and Clinical Findings of PwMS
3.4. Sensitivity Analysis
3.5. Publication Bias
3.6. Risk of Bias Assessment
4. Discussion
5. Limitations and Strengths
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tafti, D.; Ehsan, M.; Xixis, K.L. Multiple Sclerosis. [Updated 2022 Sep 7]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499849/ (accessed on 1 May 2024).
- Lassmann, H. Multiple Sclerosis Pathology. Cold Spring Harb. Perspect. Med. 2018, 8, a028936. [Google Scholar] [CrossRef] [PubMed]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Carnero Contentti, E.; Correale, J. Neuromyelitis optica spectrum disorders: From pathophysiology to therapeutic strategies. J. Neuroinflamm. 2021, 18, 208. [Google Scholar] [CrossRef]
- Hor, J.Y.; Asgari, N.; Nakashima, I.; Broadley, S.A.; Leite, M.I.; Kissani, N.; Jacob, A.; Marignier, R.; Weinshenker, B.G.; Paul, F.; et al. Epidemiology of Neuromyelitis Optica Spectrum Disorder and Its Prevalence and Incidence Worldwide. Front. Neurol. 2020, 11, 501. [Google Scholar] [CrossRef] [PubMed]
- Papp, V.; Magyari, M.; Aktas, O.; Berger, T.; Broadley, S.A.; Cabre, P.; Jacob, A.; Kira, J.I.; Leite, M.I.; Marignier, R.; et al. Worldwide Incidence and Prevalence of Neuromyelitis Optica: A Systematic Review. Neurology 2021, 96, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Bagherieh, S.; Afshari-Safavi, A.; Vaheb, S.; Kiani, M.; Ghaffary, E.M.; Barzegar, M.; Shaygannejad, V.; Zabeti, A.; Mirmosayyeb, O. Worldwide prevalence of neuromyelitis optica spectrum disorder (NMOSD) and neuromyelitis optica (NMO): A systematic review and meta-analysis. Neurol. Sci. 2023, 44, 1905–1915. [Google Scholar] [CrossRef]
- Shumway, C.L.; Patel, B.C.; Tripathy, K.; De Jesus, O. Neuromyelitis Optica Spectrum Disorder (NMOSD). [Updated 2024 Jan 8]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK572108/ (accessed on 1 May 2024).
- Sellebjerg, F.; Börnsen, L.; Ammitzbøll, C.; Nielsen, J.E.; Vinther-Jensen, T.; Hjermind, L.E.; von Essen, M.; Ratzer, R.L.; Soelberg Sørensen, P.; Romme Christensen, J. Defining active progressive multiple sclerosis. Mult. Scler. 2017, 23, 1727–1735. [Google Scholar] [CrossRef] [PubMed]
- Sellebjerg, F.; Christiansen, M.; Garred, P. MBP, anti-MBP and anti-PLP antibodies, and intrathecal complement activation in multiple sclerosis. Mult. Scler. 1998, 4, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Kassubek, R.; Gorges, M.; Schocke, M.; Hagenston, V.A.; Huss, A.; Ludolph, A.C.; Kassubek, J.; Tumani, H. GFAP in early multiple sclerosis: A biomarker for inflammation. Neurosci. Lett. 2017, 657, 166–170. [Google Scholar] [CrossRef]
- Eng, L.F.; Ghirnikar, R.S.; Lee, Y.L. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem. Res. 2000, 25, 1439–1451. [Google Scholar] [CrossRef]
- Kim, H.; Lee, E.-J.; Lim, Y.-M.; Kim, K.-K. Glial Fibrillary Acidic Protein in Blood as a Disease Biomarker of Neuromyelitis Optica Spectrum Disorders. Front. Neurol. 2022, 13, 865730. [Google Scholar] [CrossRef] [PubMed]
- Abdelhak, A.; Huss, A.; Kassubek, J.; Tumani, H.; Otto, M. Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci. Rep. 2018, 8, 14798. [Google Scholar] [CrossRef] [PubMed]
- Kleerekooper, I.; Herbert, M.K.; Kuiperij, H.B.; Sato, D.K.; Fujihara, K.; Callegaro, D.; Marignier, R.; Saiz, A.; Senel, M.; Tumani, H. CSF levels of glutamine synthetase and GFAP to explore astrocytic damage in seronegative NMOSD. J. Neurol. Neurosurg. Psychiatry 2020, 91, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Lucchinetti, C.F.; Brück, W.; Rodriguez, M.; Lassmann, H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol. 1996, 6, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, K.; Suchanek, G.; Breitschopf, H.; Brück, W.; Budka, H.; Jellinger, K.; Lassmann, H. Patterns of oligodendroglia pathology in multiple sclerosis. Brain 1994, 117 Pt 6, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Petzold, A.; Eikelenboom, M.J.; Gveric, D.; Keir, G.; Chapman, M.; Lazeron, R.H.; Cuzner, M.L.; Polman, C.H.; Uitdehaag, B.M.; Thompson, E.J.; et al. Markers for different glial cell responses in multiple sclerosis: Clinical and pathological correlations. Brain 2002, 125, 1462–1473. [Google Scholar] [CrossRef]
- Aktas, O.; Smith, M.A.; Rees, W.A.; Bennett, J.L.; She, D.; Katz, E.; Cree, B.A.C. Serum Glial Fibrillary Acidic Protein: A Neuromyelitis Optica Spectrum Disorder Biomarker. Ann. Neurol. 2021, 89, 895–910. [Google Scholar] [CrossRef] [PubMed]
- Storoni, M.; Verbeek, M.M.; Illes, Z.; Marignier, R.; Teunissen, C.E.; Grabowska, M.; Confavreux, C.; Plant, G.T.; Petzold, A. Serum GFAP levels in optic neuropathies. J. Neurol. Sci. 2012, 317, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Petzold, A. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease. Brain Res. 2015, 1600, 17–31. [Google Scholar] [CrossRef]
- Hyun, J.-W.; Kim, Y.; Kim, K.H.; Kim, S.-H.; Olesen, M.N.; Asgari, N.; Siritho, S.; Paul, F.; Kim, H.J. CSF GFAP levels in double seronegative neuromyelitis optica spectrum disorder: No evidence of astrocyte damage. J. Neuroinflamm. 2022, 19, 86. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Aloe, A.M. Evaluation of various estimators for standardized mean difference in meta-analysis. Stat Med 2021, 40, 403–426. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V. Interpreting estimates of treatment effects: Implications for managed care. Pharm. Ther. 2008, 33, 700. [Google Scholar]
- Laliberté, E.; Laliberté, M. Package ‘Metacor’; Version 1.0-2.1; The R Foundation: Vienna, Austria, 2009. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Hardy, R.J.; Thompson, S.G. Detecting and describing heterogeneity in meta-analysis. Stat. Med. 1998, 17, 841–856. [Google Scholar] [CrossRef]
- Lau, J.; Ioannidis, J.P.; Terrin, N.; Schmid, C.H.; Olkin, I. The case of the misleading funnel plot. BMJ 2006, 333, 597–600. [Google Scholar] [CrossRef]
- Sterne, J.A.; Egger, M. Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. J. Clin. Epidemiol. 2001, 54, 1046–1055. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Azzolini, F.; Gilio, L.; Pavone, L.; Iezzi, E.; Dolcetti, E.; Bruno, A.; Buttari, F.; Musella, A.; Mandolesi, G.; Guadalupi, L.; et al. Neuroinflammation Is Associated with GFAP and sTREM2 Levels in Multiple Sclerosis. Biomolecules 2022, 12, 222. [Google Scholar] [CrossRef] [PubMed]
- Novakova, L.; Axelsson, M.; Malmeström, C.; Imberg, H.; Elias, O.; Zetterberg, H.; Nerman, O.; Lycke, J. Searching for neurodegeneration in multiple sclerosis at clinical onset: Diagnostic value of biomarkers. PLoS ONE 2018, 13, e0194828. [Google Scholar] [CrossRef] [PubMed]
- Novakova, L.; Axelsson, M.; Khademi, M.; Zetterberg, H.; Blennow, K.; Malmeström, C.; Piehl, F.; Olsson, T.; Lycke, J. Cerebrospinal fluid biomarkers as a measure of disease activity and treatment efficacy in relapsing-remitting multiple sclerosis. J. Neurochem. 2017, 141, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Håkansson, I.; Tisell, A.; Cassel, P.; Blennow, K.; Zetterberg, H.; Lundberg, P.; Dahle, C.; Vrethem, M.; Ernerudh, J. Neurofilament light chain in cerebrospinal fluid and prediction of disease activity in clinically isolated syndrome and relapsing-remitting multiple sclerosis. Eur. J. Neurol. 2017, 24, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Burman, J.; Zetterberg, H.; Fransson, M.; Loskog, A.S.; Raininko, R.; Fagius, J. Assessing tissue damage in multiple sclerosis: A biomarker approach. Acta Neurol. Scand. 2014, 130, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, M.; Malmeström, C.; Gunnarsson, M.; Zetterberg, H.; Sundström, P.; Lycke, J.; Svenningsson, A. Immunosuppressive therapy reduces axonal damage in progressive multiple sclerosis. Mult. Scler. 2014, 20, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Madeddu, R.; Farace, C.; Tolu, P.; Solinas, G.; Asara, Y.; Sotgiu, M.A.; Delogu, L.G.; Carlos Prados, J.; Sotgiu, S.; Montella, A. Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis. Neurol. Sci. 2013, 34, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, M.; Malmeström, C.; Axelsson, M.; Sundström, P.; Dahle, C.; Vrethem, M.; Olsson, T.; Piehl, F.; Norgren, N.; Rosengren, L.; et al. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann. Neurol. 2011, 69, 83–89. [Google Scholar] [CrossRef]
- Axelsson, M.; Malmeström, C.; Nilsson, S.; Haghighi, S.; Rosengren, L.; Lycke, J. Glial fibrillary acidic protein: A potential biomarker for progression in multiple sclerosis. J. Neurol. 2011, 258, 882–888. [Google Scholar] [CrossRef]
- Misu, T.; Takano, R.; Fujihara, K.; Takahashi, T.; Sato, S.; Itoyama, Y. Marked increase in cerebrospinal fluid glial fibrillar acidic protein in neuromyelitis optica: An astrocytic damage marker. J. Neurol. Neurosurg. Psychiatry 2009, 80, 575–577. [Google Scholar] [CrossRef]
- Norgren, N.; Sundström, P.; Svenningsson, A.; Rosengren, L.; Stigbrand, T.; Gunnarsson, M. Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 2004, 63, 1586–1590. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, S.; Andersen, O.; Odén, A.; Rosengren, L. Cerebrospinal fluid markers in MS patients and their healthy siblings. Acta Neurol. Scand. 2004, 109, 97–99. [Google Scholar] [CrossRef]
- Malmeström, C.; Haghighi, S.; Rosengren, L.; Andersen, O.; Lycke, J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 2003, 61, 1720–1725. [Google Scholar] [CrossRef] [PubMed]
- Midaglia, L.; Rovira, A.; Miro, B.; Rio, J.; Fissolo, N.; Castillo, J.; Sanchez, A.; Montalban, X.; Comabella, M. Association of magnetic resonance imaging phenotypes and serum biomarker levels with treatment response and long-term disease outcomes in multiple sclerosis patients. Eur. J. Neurol. 2023, 31, e16077. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, J.H.; Schaller-Paule, M.A.; Wenger, K.; Mayer, C.; Mann, U.; Bickert, A.; Steffen, F.; Bittner, S.; Yalachkov, Y.; Foerch, C. Relevance of dedicated multiple sclerosis serum biomarkers in predicting contrast enhancement with gadolinium: Results from the REDUCE-GAD trial. Eur. J. Neurol. 2023, 30, 2393–2400. [Google Scholar] [CrossRef]
- Loonstra, F.C.; de Ruiter, L.R.J.; Koel-Simmelink, M.J.A.; Schoonheim, M.M.; Strijbis, E.M.M.; Moraal, B.; Barkhof, F.; Uitdehaag, B.M.J.; Teunissen, C.; Killestein, J. Neuroaxonal and Glial Markers in Patients of the Same Age with Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200078. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Zhao, W.; An, X.; Zhang, F.; Zhang, T.X.; Liu, Y.; Du, C.; Zeng, P.; Yuan, M.; et al. Serum neurofilament light chain predicts spinal cord atrophy in neuromyelitis optica spectrum disorder. J. Neuroimmunol. 2023, 384, 578218. [Google Scholar] [CrossRef]
- Jakimovski, D.; Qureshi, F.; Ramanathan, M.; Gehman, V.; Keshavan, A.; Leyden, K.; Dwyer, M.G.; Bergsland, N.; Weinstock-Guttman, B.; Zivadinov, R. Proteomics and relationship with axonal pathology in multiple sclerosis: 5-year diffusion tensor imaging study. Brain Commun. 2023, 5, fcad183. [Google Scholar] [CrossRef]
- Bose, G.; Healy, B.C.; Saxena, S.; Saleh, F.; Paul, A.; Barro, C.; Lokhande, H.A.; Polgar-Turcsanyi, M.; Anderson, M.; Glanz, B.I.; et al. Early neurofilament light and glial fibrillary acidic protein levels improve predictive models of multiple sclerosis outcomes. Mult. Scler. Relat. Disord. 2023, 74, 104695. [Google Scholar] [CrossRef]
- Barro, C.; Healy, B.C.; Liu, Y.; Saxena, S.; Paul, A.; Polgar-Turcsanyi, M.; Guttmann, C.R.G.; Bakshi, R.; Kropshofer, H.; Weiner, H.L.; et al. Serum GFAP and NfL Levels Differentiate Subsequent Progression and Disease Activity in Patients with Progressive Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200052. [Google Scholar] [CrossRef]
- Arroyo Pereiro, P.; Muñoz-Vendrell, A.; León Moreno, I.; Bau, L.; Matas, E.; Romero-Pinel, L.; Martínez Yélamos, A.; Martínez Yélamos, S.; Andrés-Benito, P. Baseline serum neurofilament light chain levels differentiate aggressive from benign forms of relapsing–remitting multiple sclerosis: A 20-year follow-up cohort. J. Neurol. 2023, 271, 1599–1609. [Google Scholar] [CrossRef] [PubMed]
- Abdelhak, A.; Antweiler, K.; Kowarik, M.C.; Senel, M.; Havla, J.; Zettl, U.K.; Kleiter, I.; Skripuletz, T.; Haarmann, A.; Stahmann, A.; et al. Serum glial fibrillary acidic protein and disability progression in progressive multiple sclerosis. Ann. Clin. Transl. Neurol. 2023, 11, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Thebault, S.; Reaume, M.; Marrie, R.A.; Marriott, J.J.; Furlan, R.; Laroni, A.; Booth, R.A.; Uccelli, A.; Freedman, M.S. High or increasing serum NfL is predictive of impending multiple sclerosis relapses. Mult. Scler. Relat. Disord. 2022, 59, 103535. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, A.; Van Schependom, J.; Devolder, L.; Van Remoortel, A.; Nagels, G.; Bjerke, M.; D’hooghe, M.B. Plasma glial fibrillary acidic protein and neurofilament light chain in relation to disability worsening in multiple sclerosis. Mult. Scler. J. 2022, 28, 1685–1696. [Google Scholar] [CrossRef]
- Kim, H.; Lee, E.J.; Kim, S.; Choi, L.K.; Kim, H.J.; Kim, H.W.; Chung, K.; Seo, D.; Moon, S.; Kim, K.K.; et al. Longitudinal follow-up of serum biomarkers in patients with neuromyelitis optica spectrum disorder. Mult. Scler. 2022, 28, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Aly, L.; Strauß, E.M.; Feucht, N.; Weiß, I.; Berthele, A.; Mitsdoerffer, M.; Haass, C.; Hemmer, B.; Maier, M.; Korn, T.; et al. Optical coherence tomography angiography indicates subclinical retinal disease in neuromyelitis optica spectrum disorders. Mult. Scler. 2022, 28, 522–531. [Google Scholar] [CrossRef]
- Zhang, T.X.; Chen, J.S.; Du, C.; Zeng, P.; Zhang, H.; Wang, X.; Liu, Y.; Huang, Z.; Yuan, M.; Li, Y.L.; et al. Longitudinal treatment responsiveness on plasma neurofilament light chain and glial fibrillary acidic protein levels in neuromyelitis optica spectrum disorder. Ther. Adv. Neurol. Disord. 2021, 14, 17562864211054952. [Google Scholar] [CrossRef] [PubMed]
- Schindler, P.; Grittner, U.; Oechtering, J.; Leppert, D.; Siebert, N.; Duchow, A.S.; Oertel, F.C.; Asseyer, S.; Kuchling, J.; Zimmermann, H.G.; et al. Serum GFAP and NfL as disease severity and prognostic biomarkers in patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder. J. Neuroinflamm. 2021, 18, 105. [Google Scholar] [CrossRef]
- Saraste, M.; Bezukladova, S.; Matilainen, M.; Sucksdorff, M.; Kuhle, J.; Leppert, D.; Airas, L. Increased serum glial fibrillary acidic protein associates with microstructural white matter damage in multiple sclerosis: GFAP and DTI. Mult. Scler. Relat. Disord. 2021, 50, 102810. [Google Scholar] [CrossRef]
- Niiranen, M.; Kontkanen, A.; Jääskeläinen, O.; Tertsunen, H.M.; Selander, T.; Hartikainen, P.; Huber, N.; Solje, E.; Haapasalo, A.; Kokkola, T.; et al. Serum GFAP and NfL levels in benign relapsing-remitting multiple sclerosis. Mult. Scler. Relat. Disord. 2021, 56, 103280. [Google Scholar] [CrossRef]
- Liu, C.; Lu, Y.; Wang, J.; Chang, Y.; Wang, Y.; Chen, C.; Liu, Z.; Kermode, A.G.; Zhang, Y.; Qiu, W. Serum neurofilament light chain and glial fibrillary acidic protein in AQP4-IgG-seropositive neuromyelitis optica spectrum disorders and multiple sclerosis: A cohort study. J. Neurochem. 2021, 159, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Giarraputo, J.; Giamberardino, S.; Arvai, S.; Maichle, S.; Eckstein, C.; Newby, L.K.; Gregory, S. Profiling serum neurofilament light chain and glial fibrillary acidic protein in primary progressive multiple sclerosis. J. Neuroimmunol. 2021, 354, 577541. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Huang, W.; Wang, L.; ZhangBao, J.; Zhou, L.; Lu, C.; Wang, M.; Yu, J.; Li, H.; Li, Y.; et al. Serum Neurofilament Light and GFAP Are Associated With Disease Severity in Inflammatory Disorders With Aquaporin-4 or Myelin Oligodendrocyte Glycoprotein Antibodies. Front. Immunol. 2021, 12, 647618. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, E.-J.; Kim, S.; Choi, L.-K.; Kim, K.; Kim, H.W.; Kim, K.-K.; Lim, Y.-M. Serum biomarkers in myelin oligodendrocyte glycoprotein antibody-associated disease. Neurol.-Neuroimmunol. Neuroinflamm. 2020, 7, e708. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Lim, Y.M.; Kim, S.; Choi, L.; Kim, H.; Kim, K.; Kim, H.W.; Lee, J.S.; Kim, K.K. Clinical implication of serum biomarkers and patient age in inflammatory demyelinating diseases. Ann. Clin. Transl. Neurol. 2020, 7, 992–1001. [Google Scholar] [CrossRef]
- Sharquie, I.K.; Gawwam, G.A.L. Serum glial fibrillary acidic protein is a good marker for the diagnosis of devic’s disease. Int. J. Pharm. Res. 2020, 12, 2492–2496. [Google Scholar] [CrossRef]
- Ayrignac, X.; Le Bars, E.; Duflos, C.; Hirtz, C.; Maceski, A.M.; Carra-Dalliere, C.; Charif, M.; Pinna, F.; Prin, P.; de Champfleur, N.M.; et al. Serum GFAP in multiple sclerosis: Correlation with disease type and MRI markers of disease severity. Sci. Rep. 2020, 10, 10923. [Google Scholar] [CrossRef] [PubMed]
- Oguz, E.F.; Mungan, S.; Yilmaz, F.M.; Ercan, M.; Uysal, S. The Predictive Role of Neurobiochemical Markers in Multiple Sclerosis. Istanb. Med. J. 2020, 21, 23–27. [Google Scholar] [CrossRef]
- Edwards, K.R.; Kamath, A.; Button, J.; Kamath, V.; Mendoza, J.P.; Zhu, B.; Plavina, T.; Woodward, C.; Penner, N. A pharmacokinetic and biomarker study of delayed-release dimethyl fumarate in subjects with secondary progressive multiple sclerosis: Evaluation of cerebrospinal fluid penetration and the effects on exploratory biomarkers. Mult. Scler. Relat. Disord. 2021, 51, 102861. [Google Scholar] [CrossRef]
- Huss, A.; Otto, M.; Senel, M.; Ludolph, A.C.; Abdelhak, A.; Tumani, H. A Score Based on NfL and Glial Markers May Differentiate Between Relapsing-Remitting and Progressive MS Course. Front. Neurol. 2020, 11, 608. [Google Scholar] [CrossRef]
- Kalatha, T.; Hatzifilippou, E.; Arnaoutoglou, M.; Balogiannis, S.; Koutsouraki, E. Glial and neuroaxonal biomarkers in a multiple sclerosis (MS) cohort. Hell. J. Nucl. Med. 2019, 22 (Suppl. S2), 113–121. [Google Scholar] [PubMed]
- Abdelhak, A.; Hottenrott, T.; Morenas-Rodríguez, E.; Suárez-Calvet, M.; Zettl, U.K.; Haass, C.; Meuth, S.G.; Rauer, S.; Otto, M.; Tumani, H.; et al. Glial Activation Markers in CSF and Serum From Patients With Primary Progressive Multiple Sclerosis: Potential of Serum GFAP as Disease Severity Marker? Front. Neurol. 2019, 10, 280. [Google Scholar] [CrossRef] [PubMed]
- Takano, R.; Misu, T.; Takahashi, T.; Sato, S.; Fujihara, K.; Itoyama, Y. Astrocytic damage is far more severe than demyelination in NMO: A clinical CSF biomarker study. Neurology 2010, 75, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Nakamura, Y.; Michalak, Z.; Isobe, N.; Barro, C.; Leppert, D.; Matsushita, T.; Hayashi, F.; Yamasaki, R.; Kuhle, J.; et al. Serum GFAP and neurofilament light as biomarkers of disease activity and disability in NMOSD. Neurology 2019, 93, e1299–e1311. [Google Scholar] [CrossRef] [PubMed]
- Momtazmanesh, S.; Shobeiri, P.; Saghazadeh, A.; Teunissen, C.E.; Burman, J.; Szalardy, L.; Klivenyi, P.; Bartos, A.; Fernandes, A.; Rezaei, N. Neuronal and glial CSF biomarkers in multiple sclerosis: A systematic review and meta-analysis. Rev. Neurosci. 2021, 32, 573–595. [Google Scholar] [CrossRef]
- Linker, R.A.; Brechlin, P.; Jesse, S.; Steinacker, P.; Lee, D.H.; Asif, A.R.; Jahn, O.; Tumani, H.; Gold, R.; Otto, M. Proteome profiling in murine models of multiple sclerosis: Identification of stage specific markers and culprits for tissue damage. PLoS ONE 2009, 4, e7624. [Google Scholar] [CrossRef]
- Brahmachari, S.; Fung, Y.K.; Pahan, K. Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J. Neurosci. 2006, 26, 4930–4939. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, K.K. Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015, 38, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Gulbransen, B.D.; Sharkey, K.A. Novel functional roles for enteric glia in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 625–632. [Google Scholar] [CrossRef]
- Whitaker, J.N. Myelin encephalitogenic protein fragments in cerebrospinal fluid of persons with multiple sclerosis. Neurology 1977, 27, 911. [Google Scholar] [CrossRef]
- Brosnan, C.F.; Raine, C.S. The astrocyte in multiple sclerosis revisited. Glia 2013, 61, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Aharoni, R.; Eilam, R.; Arnon, R. Astrocytes in Multiple Sclerosis—Essential Constituents with Diverse Multifaceted Functions. Int. J. Mol. Sci. 2021, 22, 5904. [Google Scholar] [CrossRef] [PubMed]
- Verkhratsky, A.; Butt, A.; Li, B.; Illes, P.; Zorec, R.; Semyanov, A.; Tang, Y.; Sofroniew, M.V. Astrocytes in human central nervous system diseases: A frontier for new therapies. Signal Transduct. Target. Ther. 2023, 8, 396. [Google Scholar] [CrossRef]
- Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009, 32, 638–647. [Google Scholar] [CrossRef]
- Ponath, G.; Park, C.; Pitt, D. The Role of Astrocytes in Multiple Sclerosis. Front. Immunol. 2018, 9, 217. [Google Scholar] [CrossRef]
- Tzeng, S.-F.; Hsiao, H.-Y.; Mak, O.-T. Prostaglandins and cyclooxygenases in glial cells during brain inflammation. Curr. Drug Targets-Inflamm. Allergy 2005, 4, 335–340. [Google Scholar] [CrossRef]
- Eng, L.F.; Vanderhaeghen, J.; Bignami, A.; Gerstl, B. An acidic protein isolated from fibrous astrocytes. Brain Res. 1971, 28, 351–354. [Google Scholar] [CrossRef]
- Lei, J.; Gao, G.; Feng, J.; Jin, Y.; Wang, C.; Mao, Q.; Jiang, J. Glial fibrillary acidic protein as a biomarker in severe traumatic brain injury patients: A prospective cohort study. Crit. Care 2015, 19, 362. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Ou, R.; Li, C.; Hou, Y.; Zhang, L.; Wei, Q.; Pang, D.; Liu, K.; Jiang, Q.; Yang, T. Plasma glial fibrillary acidic protein as a biomarker of disease progression in Parkinson’s disease: A prospective cohort study. BMC Med. 2023, 21, 420. [Google Scholar] [CrossRef]
- Sun, M.; Liu, N.; Xie, Q.; Li, X.; Sun, J.; Wang, H.; Wang, M. A candidate biomarker of glial fibrillary acidic protein in CSF and blood in differentiating multiple sclerosis and its subtypes: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2021, 51, 102870. [Google Scholar] [CrossRef]
- Abdelhak, A.; Junker, A.; Brettschneider, J.; Kassubek, J.; Ludolph, A.C.; Otto, M.; Tumani, H. Brain-specific cytoskeletal damage markers in cerebrospinal fluid: Is there a common pattern between amyotrophic lateral sclerosis and primary progressive multiple sclerosis? Int. J. Mol. Sci. 2015, 16, 17565–17588. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, T.; Lingfeld, G.; Bitsch, A.; Schuchardt, J.; Brück, W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 2002, 125, 2202–2212. [Google Scholar] [CrossRef] [PubMed]
- Högel, H.; Rissanen, E.; Barro, C.; Matilainen, M.; Nylund, M.; Kuhle, J.; Airas, L. Serum glial fibrillary acidic protein correlates with multiple sclerosis disease severity. Mult. Scler. J. 2020, 26, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Lennon, V.A.; Wingerchuk, D.M.; Kryzer, T.J.; Pittock, S.J.; Lucchinetti, C.F.; Fujihara, K.; Nakashima, I.; Weinshenker, B.G. A serum autoantibody marker of neuromyelitis optica: Distinction from multiple sclerosis. Lancet 2004, 364, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Zekeridou, A.; Lennon, V.A. Aquaporin-4 autoimmunity. Neuroimmunol. Neuroinflamm. 2015, 2, e110. [Google Scholar] [CrossRef] [PubMed]
- Liem, R.K.; Messing, A. Dysfunctions of neuronal and glial intermediate filaments in disease. J. Clin. Investig. 2009, 119, 1814–1824. [Google Scholar] [CrossRef] [PubMed]
- Marchi, N.; Rasmussen, P.; Kapural, M.; Fazio, V.; Kight, K.; Mayberg, M.R.; Kanner, A.; Ayumar, B.; Albensi, B.; Cavaglia, M. Peripheral markers of brain damage and blood-brain barrier dysfunction. Restor. Neurol. Neurosci. 2003, 21, 109–121. [Google Scholar] [PubMed]
- Martínez, M.A.M.; Olsson, B.; Bau, L.; Matas, E.; Calvo, Á.C.; Andreasson, U.; Blennow, K.; Romero-Pinel, L.; Martínez-Yélamos, S.; Zetterberg, H. Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis. Mult. Scler. J. 2015, 21, 550–561. [Google Scholar] [CrossRef]
- Ferreira-Atuesta, C.; Reyes, S.; Giovanonni, G.; Gnanapavan, S. The Evolution of Neurofilament Light Chain in Multiple Sclerosis. Front. Neurosci. 2021, 15, 642384. [Google Scholar] [CrossRef]
First Author, Country, Year | Study Design | PwMS | PwNMOSD | Healthy Controls | Assay Type | MRI Strength MRI Device | Key Findings | QA | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Size, F to M Ratio Age; Mean (SD) | MS Type (n) | Disease Duration (Years); Mean (SD) | EDSS | Sample Size, F to M Ratio, Age; Mean (SD) | Disease Duration (Years); Mean (SD) | EDSS | Sample Size, F to M Ratio, Age; Mean (SD) | ||||||
L. Midaglia Spain 2023 [47] | Cohort | 80 3 34.1 (8.4) | RRMS: 80 | 4.8 (5.2) | 2 (1.5–2.5) ** | NR | - | - | NR | Serum ELISA | 1.5T NR | MRI correlated with GFAP, and both have prognostic implications in treatment response and long-term disease outcomes. | 7 |
J. Schaefer Germany 2023 [48] | Cross-sectional | 102 2.8 36 (11.3) | RRMS: 76 SPMS: 8 PPMS: 4 CIS: 10 RIS: 2 | NR | NR | 2 NR | NR | NR | NR | Serum ELISA | 3T Siemens | Biomarkers may help stratify the application of contrast agents for brain imaging in MS patients. | 10 |
F. Loonstra Netherlands 2023 [49] | Case- control | 288 2.5 53.1 (1) | RRMS: 171 SPMS: 79 PPMS: 37 | 12 (5.5–18.6) ** | 3.5 (2.5–4.5) ** | NR | - | - | 125 2.8 53 (1.2) | Serum ELISA | 3T Milwaukee | This demonstrates the potential of sGFAP as a complementary biomarker of neurodegeneration, reflected by disability, in progressive MS. | 8 |
Y. Li China 2023 [50] | Cohort | NR | - | - | - | 15 14 43 (31.8–57.2) ** | 2.5 (1.5–3.9) ** | 4.5 (3.7–6.1) ** | NR | Serum ELISA | 3T General Electric | Found a trend for sGFAP level predicting spinal cord atrophy in patients with NMOSD. | 6 |
D. Jakimovski USA 2023 [51] | Cohort | 202 3 47.1 (11.1) | RRMS: 148 PMS: 54 | 13.4 (10.2) | 2.5 (1.5–5) ** | NR | - | - | NR | Serum ELISA | 3T Milwaukee | Baseline serum GFAP level can predict future disability progression. | 8 |
G. Bose USA 2023 [52] | Cohort | 144 1.7 37.4 (29.4–45.4) ** | NR | 1.1 (0.7–1.5) ** | 1.2 (0–2) ** | NR | - | - | NR | Serum ELISA | 1.5T General Electric | Worse clinical outcomes, SPMS and EDSS, are associated with higher sGFAP level. | 7 |
C. Barro Switzerland 2023 [53] | Cohort | 257 1.9 49 (11.3) | PPMS: 22 PMS: 235 | 14.7 (10.5) | 4 (1.2) | NR | - | - | NR | Serum ELISA | 3T NR | sGFAP level may be used to stratify patients with progressive MS. | 9 |
P. Pereiro Spain 2023 [54] | Case- control | 50 1.8 36.6 (9) | RRMS: 50 | 20.4 (18–23.5) ** | 2 (1.5–7.5) ** | NR | - | - | 10 1 40.5 | Serum ELISA | NR | sGFAP level demonstrated a lower or no ability to differentiate between the long-term outcomes of RRMS. | 7 |
A. Abdelhak Germany 2023 [55] | Cohort | 243 1.2 55.5 (49.7–61.2) ** | PPMS: 135 SPMS: 108 | 12 (6–21)** | 4.5 (3.5–6)** | NR | - | - | NR | Serum ELISA | NR | A high GFAP level could distinguish non-active pwPMS with particularly high progression risk. | 8 |
S. Thebault Canada 2022 [56] | Cohort | 58 1.3 37.7 (6.7) | RRMS: 32 SPMS: 14 PPMS: 12 | 6.2 (3) | 4 (2.5) | NR | - | - | NR | Serum ELISA | 1.5T NR | Both baseline and longitudinal change in GFAP may help identify patients who would benefit from early treatment. | 6 |
A. Pauwels Belgium 2022 [57] | Case- control | 115 1.7 47 (13) | RRMS: 87 PPMS: 28 | 12 (14) | 3 (3) | NR | - | - | 30 1.7 52.5 (13.7) | Serum ELISA | NR | Both pGFAP and pNfL were related to worsening in PwMS. | 7 |
F. Azzolini Italy 2022 [34] | Cross-sectional | 51 2 36.5 (27.3–45.3) ** | RRMS: 51 | 5 (1.7–29) ** | 1.5 (1–2) ** | NR | - | - | NR | CSF ELISA | 3T Milwaukee | Expression of CSF GFAP may characterize patients with a higher risk of progression. | 7 |
H. Kim South Korea 2022 [58] | Case- control | NR | - | - | - | 64 9.6 51 (45–60) ** | 6.7 (2–12.3) ** | 3 (2–4) ** | 22 3.4 51 (33–63) ** | Serum ELISA | NR | sGFAP might be the most appropriate for monitoring NMOSD longitudinally, which warrants future confirming studies. | 8 |
L. Aly Germany 2022 [59] | Case- control | 21 3.2 38 (11.4) | RRMS: 21 | 5.6 (4.1) | 1.4 (1.2) | 16 4.3 46.6 (10) | 6.1 (2.6) | 3.4 (2.4) | 21 3.2 42 (9.5) | Serum ELISA | NR | sGFAP have been introduced as new biomarkers for disease activity and disability in RRMS and NMOSD. | 7 |
T. Zhang China 2021 [60] | Case- control | NR | - | - | - | 72 8 49 (33.3–59) ** | 2.7 (1.8–7.2) ** | 3.3 (2–7) ** | 38 5.3 41 (29.8–55.3) ** | Serum ELISA | NR | pGFAP may serve as a biomarker for NMOSD disease activity and treatment effects. | 7 |
P. Schindler Germany 2021 [61] | Case- control | NR | - | - | - | 33 10 50 (14) | 6.5 (4.3–9) ** | 4 (2–5) ** | 38 4.4 42 (13) | Serum ELISA | NR | sGFAP has a potential role in disease severity and future disease activity in patients with NMOSD | 6 |
M. Saraste Finland 2021 [62] | Cross-sectional | 62 2.6 49.2 (43.7–54.5) ** | RRMS: 39 SPMS: 23 | 13.7 (10.1–20) ** | 3 (2–4) ** | NR | - | - | NR | Serum ELISA | 3T Phillips | sGFAP is a biomarker for MS pathology-related astrocytopathy and related diffuse white matter damage. | 7 |
M. Niiranen Finland 2021 [63] | Case- control | 63 2.7 50.3 (21–78) β | RRMS: 63 | 16.6 (3–43) β | 2.2 (1–3) β | NR | - | - | 14 1 47.4 (31–63) β | Serum ELISA | NR | sGFAP measurement cannot separate RRMS patients with and without treatment after a long history of the disease. | 7 |
C. Liu China 2021 [64] | Case- control | 98 2 31 (27–38) ** | NR | 5 (2–9) ** | 2 (1.5–3) ** | 102 8.3 39.5 (29.2–53) ** | 5 (2.6–9) ** | 3 (2–3.5) ** | 84 1.8 28 (26–34) ** | Serum ELISA | NR | sGFAP and sNfL are potential blood biomarkers for diagnosing and monitoring NMOSD and MS. | 9 |
J. Giarraputo USA 2021 [65] | Cohort | 25 2.6 62 (53–67) ** | PPMS: 25 | NR | NR | NR | - | - | NR | Serum ELISA | NR | Results suggest a limited role for GFAP in primary progressive disease management. | 5 |
K. Edwards USA 2021 [72] | Case- control | 16 7 55.4 (8.9) | SPMS: 16 | NR | 4.3 (1.5) | NR | - | - | 4 1 39 (11) | Serum CSF ELISA | 3T Siemens | GFAP level showed a correlation to disease activity in pwSPMS. | 5 |
X. Chang China 2021 [66] | Case- control | 31 1.2 31 (25–38) ** | RRMS: 31 | 17 (5–76) ** | 2 (1.5–3) ** | 51 6.3 37 (24–48) ** | 17 (5–66) ** | 3 (1.5–4) ** | 28 1.3 35 (24–47) ** | Serum ELISA | NR | sGFAP level is associated with disease severity in NMOSD patients. | 7 |
O. Aktas Germany 2021 [19] | Case- control | NR | - | - | - | 215 9.2 43.1 (11.8) | 2.5 (3.3) | 3.9 (1.8) | 85 9.6 43.4 (12.9) | Serum ELISA | NR | sGFAP may serve as a biomarker of NMOSD activity, attack risk, and treatment effects. | 9 |
A. Huss Germany 2020 [73] | Case-control | 86 1.4 42.9 (27–59) β | PMS: 39 RRMS: 47 | NR | NR | NR | - | - | NR | Serum CSF ELISA | NR | GFAP mechanisms in differentiating between PMS and RMS in the CSF and monitoring disease progression are useful. | 7 |
H. Kim South Korea 2020 [67] | Cross-sectional | NR | - | - | - | 33 10 51 (43–59) ** | 4 (1.5–8) ** | 3 (2–4.2) ** | NR | Serum ELISA | NR | NfL and GFAP are considered to represent neuroaxonal and astrocyte damage | 6 |
I. Kleerekooper UK 2020 [15] | Case-control | 69 3.1 42.1 (10.6) | NR | - | - | 39 2.8 45.2 (16.8) | NR | NR | 37 1 43.2 (11.1) | CSF ELISA | NR | Elevated GFAP level identify NMOSD patients suitable to undergo in-depth autoimmune screening for astrocytic antibodies. | 7 |
E. Lee South Korea 2020 [68] | Cohort | 117 2.7 45 (34–54) ** | NR | - | 2 (1–4) ** | 63 9.5 54 (46–60) ** | NR | 3.5 (2–5) ** | NR | Serum ELISA | NR | sGFAP level reflects disease severity and varies significantly with NMOSD patients. | 8 |
I. Sharquie Iraq 2020 [69] | Case- control | NR | - | - | - | 24 2 30.2 (6.9) | NR | NR | 24 1.8 31.7 (5.5) | Serum ELISA | NR | Measuring sGFAP in NMOSD is helpful in the diagnosis of the condition. | 5 |
X. Ayrignac France 2020 [70] | Cross-sectional | 129 3 41.5 (11) | RRMS: 111 PPMS: 18 | 6.7 (7.1) | 1.7 (0–3) ** | NR | - | - | NR | Serum ELISA | 3T Skyra Siemens | s-GFAP was correlated with white matter lesion load and inversely correlated with white and grey matter volume. | 7 |
E. Oguz Turkey 2019 [71] | Case- control | 51 0.3 36.4 (9.8) | CIS: 4 RRMS: 36 SPMS: 8 PPMS: 3 | NR | 5.2 (1.9) | NR | - | - | 37 0.48 40.4 (12.4) | Serum ELISA | MRI | There was no difference between patient and control groups in terms of GFAP level. | 7 |
T. Kalatha Greece 2019 [74] | Case-control | 87 3.2 41.1 (12) | RRMS: 56 SPMS: 8 PPMS: 4 CIS: 19 | 7.2 (8.8) | 2.6 (1.7) | NR | - | - | 21 0.7 44.2 (12.8) | Serum CSF ELISA | NR | Biomarkers may help evaluate neuronal damage in active MS and reflect secondary pathogenetic mechanisms of repair or progression. | 6 |
A. Abdelhak Germany 2019 [75] | Cross-sectional | 93 1.1 49 (44–57) ** | PPMS: 93 | 4.5 (2–12) ** | 4.5 (3.5–6.5) ** | NR | - | - | NR | Serum CSF ELISA | NR | Results highlight a particular role of the astrocytes in PPMS and mark the potential of GFAP as a disease severity marker. | 7 |
L. Novakova Sweden 2018 [35] | Case-control | 159 2.3 37.4 (18–67) β | RRMS: 136 PMS: 51 | 4.2 (0–39) β | 2.2 (1) | NR | - | - | 51 0.9 27 (20–49) β | CSF ELISA | 3T NR | GFAP level had diagnostic value, and these biomarkers could be included in diagnostic work-ups for multiple sclerosis. | 8 |
A. Abdelhak Germany 2018 [14] | Case-control | 80 NR 43.2 (13.3) | RRMS: 42 SPMS: 13 PPMS: 25 | 8.7 (21.5) | 3.7 (1.9) | NR | - | - | 20 NR 40.7 (19.9) | Serum CSF ELISA | 1.5T Siemens | GFAP might indicate a possible role of astrocytes in the neuroaxonal demise of MS. | 7 |
L. Novakova Sweden 2017 [36] | Case-control | 59 1.5 37 (17–59) β | RRMS: 59 | 8.4 (0–23) β | 2.5 (0–7.5) * | NR | - | - | 39 0.5 34 (21–56) β | CSF ELISA | 3T NR | The results indicate that the CSF level of GFAP correlates with the clinical and radiological disease activity. | 6 |
R. Kassubek Germany 2017 [11] | Case-control | 18 1.5 26 (23–29) ** | RRMS: 18 | NR | NR | NR | - | - | 35 3.3 43 (30–52) ** | CSF ELISA | 1.5T Siemens | GFAP seems to be a useful biomarker for highly active acute inflammation in patients with RRMS. | 5 |
I. Hakansson Sweden 2017 [37] | Case-control | 41 3.5 30.2 (9.2) | RRMS: 22 CIS: 19 | 0.6 (0.9) | 2 (1) | NR | - | - | 22 3.4 32 (26–41) ** | CSF ELISA | 1.5T Philips | The study demonstrates the potential prognostic value of GFAP in baseline CSF in RRMS. | 6 |
J. Burman Sweden 2014 [38] | Case-control | 64 1.6 43.9 (9.6) | RRMS: 44 SPMS: 20 | 13.2 (8.3) | 3.2 (1.3) | NR | - | - | 15 2 40 (15) | CSF ELISA | 1.5T NR | GFAP provides a direct means to measure tissue damage and is a useful addition to our methods for evaluating MS. | 7 |
M. Axelsson Sweden 2013 [39] | Case control | 35 0.7 48 (22–65) β | SPMS: 30 PPMS: 5 | 15 (2–29) * | 6 (3–8) * | NR | - | - | 14 0.5 42 (31–61) β | CSF ELISA | 3T NR | The determination of GFAP levels in CSF is a potential surrogate marker for treatment efficacy. | 7 |
R. Madeddu Italy 2013 [40] | Cross-sectional | 33 2.3 39.3 (13.2) | RRMS: 24 SPMS: 7 PPMS: 1 | NR | NR | NR | - | - | NR | CSF ELISA | NR | Higher levels of b-Tub II and GFAP were found in remitting MS forms. | 5 |
M. Storoni UK 2012 [20] | Cross-sectional | 47 2.8 41 (21–66) * | RRMS: 47 | NR | NR | 77 6.4 41 (14–66) * | NR | NR | NR | Serum ELISA | NR | Serum GFAP levels were not a diagnostic value for the laboratory differential diagnosis of NMO. | 8 |
M. Gunnarsson Sweden 2011 [41] | Case-control | 92 1.4 37.3 (14–59) β | RRMS: 92 | 9.6 (0.5–28) β | 3.8 (2.3) | NR | - | - | 28 0.4 43 (27–62) β | CSF ELISA | NR | GFAP anticipated that highly effective anti-inflammatory treatment can reduce axonal loss. | 7 |
M. Axelsson Sweden 2011 [42] | Case-control | 25 0.5 41 (21–59) β | RRMS: 15 SPMS: 10 | 11 (1–40) β | 3.9 (2.2) | NR | - | - | 28 2.5 33 (18–53) β | CSF ELISA | NR | GFAP is a potential biomarker for MS progression and may have a role in clinical trials for assessing the impact of therapies on MS progression. | 7 |
R. Takano Japan 2010 [76] | Cross-sectional | 27 4.4 34.9 (11.7) | NR | 5.2 (4.6) | 3.8 (1.7) | 33 33:0 43.8 (13.4) | 6.2 (5.2) | 5.4 (1.9) | NR | Serum CSF ELISA | NR | Astrocytic damage reflected by elevated GFAP is clinically relevant. | 8 |
T. Misu Japan 2009 [43] | Cross-sectional | 10 1 31 (26–51) * | NR | 4.9 (2.2–13) * | 3 (2–8) * | 10 10:0 42 (33–59) * | 3.3 (0–14.3) * | 6.3 (3–8.5) * | NR | CSF ELISA | NR | CSF-GFAP may be a clinically useful biomarker in NMO, and astrocytic damage is strongly suggested in the acute phase of NMO. | 5 |
N. Norgren Sweden 2004 [44] | Case-control | 99 1.8 38 (29.5–44) ** | RRMS: 58 SPMS: 21 PPMS: 15 PRMS: 5 | 5 (3–8) ** | 2 (1.5–3.5) ** | NR | - | - | 25 2.1 35 (28–44.5) ** | CSF ELISA | NR | CSF level of GFAP may have prognostic value in multiple sclerosis. | 8 |
S. Haghighi Sweden 2004 [45] | Case-control | 47 NR 44 | NR | NR | NR | NR | - | - | 50 NR 33 | CSF ELISA | NR | Our main finding was the normal CSF concentration of GFAP in the MS individuals. | 5 |
C. Malmestrom Sweden 2003 [46] | Case-control | 66 1.64 39.6 (8.2) | RRMS: 41 SPMS: 25 | 14.9 (5.6) | 4.1 (1.1) | NR | - | - | 50 0.4 36.2 (8.4) | CSF ELISA | NR | GFAP may serve as a biomarker for disease progression, probably reflecting the increasing rate of astrogliosis. | 7 |
A. Petzold UK 2002 [18] | Case-control | 51 0.8 46 (8.4) | RRMS: 20 SPMS: 21 PPMS: 10 | 20.4 (7.9) | 3.5 (0–8) * | NR | - | - | 51 0.4 41.6 (7.9) | CSF ELISA | NR | GFAP correlated with disability scale and may, therefore, be a marker for irreversible damage. | 6 |
Participants | Sample | Model | N. of Studies | Pooled SMD | 95% CI | p-Value | I2 | P-Heterogeneity | Publication Bias | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Begg | Egger | |||||||||||
Score | p-Value | Bias | p-Value | |||||||||
MS vs. HCs | CSF | Random | 13 | 0.7 | 0.54 to 0.86 | <0.001 | 29% | 0.16 | −2 | 0.9 | 0.8 | 0.7 |
Serum | Random | 8 | 0.54 | 0.1 to 0.99 | 0.02 | 90% | <0.01 | 4 | 0.62 | −0.59 | 0.86 | |
PMS vs. RRMS | CSF | Random | 7 | 0.45 | 0.22 to 0.69 | <0.001 | 34% | 0.17 | −9 | 0.17 | −3.2 | 0.25 |
Serum | Random | 6 | 0.5 | 0.25 to 0.75 | <0.001 | 53% | 0.06 | −1 | 0.85 | 0.7 | 0.77 | |
NMOSD vs. HCs | Serum | Random | 7 | 0.9 | 0.73 to 1.07 | <0.001 | 10% | 0.35 | −7 | 0.29 | −2.1 | 0.17 |
Characteristics | Disorder | Sample | Model | N. of Studies | N. of Patients | Pooled Correlation Coefficients | 95% CI | p-Value | I2 | P-Heterogeneity | Publication Bias | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Begg | Egger | |||||||||||||
Score | p-Value | Bias | p-Value | |||||||||||
Disease Duration | MS | Serum | Random | 5 | 403 | 0.28 | 0.15 to 0.41 | <0.001 | 53% | 0.07 | −4 | 0.33 | −11 | 0.26 |
EDSS | MS | CSF | Random | 11 | 676 | 0.43 | 0.26 to 0.59 | <0.001 | 91% | <0.01 | −19 | 0.14 | −8.7 | 0.017 |
Serum | Random | 7 | 687 | 0.36 | 0.23 to 0.49 | <0.001 | 78% | <0.01 | −13 | 0.051 | −7.6 | 0.011 | ||
NMOSD | Serum | Random | 4 | 326 | 0.35 | 0.26 to 0.45 | <0.001 | 0% | 0.7 | 2 | 0.5 | 0.58 | 0.57 | |
Nfl | MS | CSF | Random | 6 | 495 | 0.39 | 0.29 to 0.49 | <0.001 | 38% | 0.15 | −3 | 0.57 | −1.6 | 0.45 |
Serum | Random | 8 | 968 | 0.42 | 0.32 to 0.52 | <0.001 | 76% | <0.01 | −6 | 0.45 | −4.6 | 0.06 | ||
T2LV | MS | CSF + Serum | Random | 3 | 410 | 0.37 | 0.29 to 0.46 | <0.001 | 0% | 0.57 | −1 | 0.6 | −1.7 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaygannejad, A.; Rafiei, N.; Vaheb, S.; Yazdan Panah, M.; Shaygannejad, V.; Mirmosayyeb, O. The Role of Glial Fibrillary Acidic Protein as a Biomarker in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Systematic Review and Meta-Analysis. Medicina 2024, 60, 1050. https://doi.org/10.3390/medicina60071050
Shaygannejad A, Rafiei N, Vaheb S, Yazdan Panah M, Shaygannejad V, Mirmosayyeb O. The Role of Glial Fibrillary Acidic Protein as a Biomarker in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Systematic Review and Meta-Analysis. Medicina. 2024; 60(7):1050. https://doi.org/10.3390/medicina60071050
Chicago/Turabian StyleShaygannejad, Aysa, Nazanin Rafiei, Saeed Vaheb, Mohammad Yazdan Panah, Vahid Shaygannejad, and Omid Mirmosayyeb. 2024. "The Role of Glial Fibrillary Acidic Protein as a Biomarker in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Systematic Review and Meta-Analysis" Medicina 60, no. 7: 1050. https://doi.org/10.3390/medicina60071050
APA StyleShaygannejad, A., Rafiei, N., Vaheb, S., Yazdan Panah, M., Shaygannejad, V., & Mirmosayyeb, O. (2024). The Role of Glial Fibrillary Acidic Protein as a Biomarker in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Systematic Review and Meta-Analysis. Medicina, 60(7), 1050. https://doi.org/10.3390/medicina60071050