Comparative Effectiveness of an Autologous Dentin Matrix for Alveolar Ridge Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Evaluation Criteria for the Results
2.5. Treatment Protocol
2.6. Postoperative Care
2.7. Statistical Analysis
3. Results
3.1. Evaluation of Soft Tissue Healing after Preservation
3.2. Evaluation of the Healing of Bone Tissue after Conservation
3.3. Evaluation of the Morphological Picture of Bone Trephine Biopsy Specimens
3.4. Evaluation of the Stability of Dental Implants
3.5. Remote Evaluation of Installed Implants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADM | Autologous dentin matrix |
BMPs | Bone morphogenetic proteins |
PRGF | Plasma rich in growth factors |
ITI | International Team for Implantology |
CBCT | Cone beam computer tomography |
EHI | Watchel Early Wound Healing Index |
OPTG | Orthopantomogram |
References
- World Health Organization. Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Davis, D.M.; Fiske, J.; Scott, B.; Radford, D.R. The emotional effects of tooth loss: A preliminary quantitative study. Br. Dent. J. 2000, 188, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Petridis, H.P.; Tsiggos, N.; Michail, A.; Kafantaris, S.N.; Hatzikyriakos, A.; Kafantaris, N.M. Three-dimensional positional changes of teeth adjacent to posterior edentulous spaces in relation to age at time of tooth loss and elapsed time. Eur. J. Prosthodont. Restor. Dent. 2010, 18, 78–83. [Google Scholar] [PubMed]
- Wu, Y.; Pang, Z.; Zhang, D.; Jiang, W.; Wang, S.; Li, S.; Kruse, T.A.; Christensen, K.; Tan, Q. A cross-sectional analysis of age and sex patterns in grip strength, tooth loss, near vision and hearing levels in Chinese aged 50–74 years. Arch. Gerontol. Geriatr. 2012, 54, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Sayed, M.; Lunkad, H.; Jurado, C.A.; Tsujimoto, A.; Ahmed, W.M. Emotional, behavioral, and social effects of anterior tooth loss: A cross-sectional study. Braz. Dent. Sci. 2021, 24, 1–7. [Google Scholar] [CrossRef]
- Araujo, M.G.; Lindhe, J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J. Clin. Periodontol. 2005, 32, 212–218. [Google Scholar] [CrossRef]
- Schwimer, C.; Pette, G.A.; Gluckman, H.; Salama, M.; Du Toit, J. Human Histologic Evidence of New Bone Formation and Osseointegration between Root Dentin (Unplanned Socket-Shield) and Dental Implant: Case Report. Int. J. Oral Maxillofac. Implant. 2018, 33, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Straumann Annual Report-2019//StraumannGroup. Available online: https://www.straumann.com/content/dam/media-center/group/en/documents/annual-report/2019/2019_Straumann_annual_report.pdf (accessed on 18 February 2020).
- Alfaro, F.H. Bone Grafting in Oral Implantology; Quintessence: Balavia, IL, USA, 2006; p. 234. [Google Scholar]
- Chen, S.; Buser, D.; Wismeijer, D. Ridge Augmentation Procedures in Implant Patients—A Staged Approach. ITI Treat. Guide 2014, 7, 217. [Google Scholar]
- Kalsi, A.S.; Bassi, S. Alveolar ridge conservation: Why, when and how. Br. Dent. J. 2019, 227, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Xu, Q.; Hou, J. Effect of platelet-rich fibrin on alveolar ridge preservation: A systematic review. J. Am. Dent. Assoc. 2019, 150, 766–778. [Google Scholar] [CrossRef]
- Cardaropoli, D.; Tamagnone, L.; Roffredo, A. Socket conservation using bovine bone mineral and collagen membrane: A randomized controlled clinical trial with histological analysis. Int. J. Periodontics Restor. Dent. 2012, 32, 421–430. [Google Scholar]
- Valdec, S.; Pasic, P.; Soltermann, A. Alveolar ridge preservation with autologous particulated dentin—A case series. Int. J. Implant Dent. 2017, 3, 12. [Google Scholar] [CrossRef]
- Um, U.W.; Kim, Y.K.; Mitsugi, M. Demineralized dentin matrix scaffolds for alveolar bone engineering. J. Indian Prosthodont. Soc. 2017, 17, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S. Autogenous fresh demineralized teeth graft prepared at chairside for dental implant. Maxillofac. Plast. Reconstr. Surg. 2015, 47, 125–132. [Google Scholar]
- Yung, R.; Neumayer, S.; Marins da Rosa, J.C. Innovations for alveolar ridge preservation—Clinical strateigies outside the box. Int. J. Esthet. Dent. 2017, 12, 5–8. [Google Scholar]
- Becker, K.; Jandik, K.; Stauber, M.; Mihatovic, I.; Drescher, D.; Schwarz, F. Microstructural volumetric analysis of lateral ridge augmentation using differently conditioned tooth roots. Clin. Oral Investig. 2019, 23, 3063–3071. [Google Scholar] [CrossRef] [PubMed]
- Minetti, E. Bone Regeneration in Implantology: Tooth as a Graft; Edra: Milano, Italy, 2021; p. 208. [Google Scholar]
- Urist, M.R.; Strates, B.S. Bone morphogenetic protein. J. Dent. Res. 1971, 50, 1392–1406. [Google Scholar] [CrossRef]
- Misch, C.E. Keys to bone grafting and bone grafting materials. In Contemporary Implant Dentistry, 3rd ed.; Mosby: St. Louis, MO, USA, 2008; pp. 839–863. [Google Scholar]
- Ge, J.; Yang, C.; Zheng, J.; Hu, Y. Autogenous bone grafting for treatment of osseous defect after impacted mandibular third molar extraction: A randomized controlled trial. Clin. Implant. Dent. Relat. Res. 2017, 19, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Le, T.H.; Drobyshev, A.Y.; Redko, N.A.; Tsarev, V.N.; Podporin, M.S. Efficiency of antiseptic agents for treatment of autogenous dentinal blocks. Russ. J. Dent. 2023, 27, 219–228. [Google Scholar] [CrossRef]
- Binderman, I.; Hallel, G.; Nardy, C. A novel procedure to process extracted teeth for immediate grafting of autogenous dentin. J. Interdiscip. Med. Dent. Sci. 2014, 2, 6–11. [Google Scholar]
- Chen, S.; Buser, D. Implant Placement in Post-Extraction Sites—Treatment Options; Quintessence: Berlin, Germany, 2008; Volume 3, p. 198. [Google Scholar]
- Li, S.; Gao, M.; Zhou, M.; Zhu, Y. Bone augmentation with autologous tooth shell in the esthetic zone for dental implant restoration: A pilot study. Int. J. Implant Dent. 2021, 7, 108. [Google Scholar] [CrossRef]
- Couso-Queiruga, E.; Mansouri, C.J.; Alade, A.A.; Allareddy, T.V.; Galindo-Moreno, P.; Avila-Ortiz, G. Alveolar ridge preservation reduces the need for ancillary bone augmentation in the context of implant therapy. J. Periodontol. 2022, 93, 847–856. [Google Scholar] [CrossRef] [PubMed]
- González, D.; Cabello, G.; Olmos, G.; López Hernández, E.; Niñoles, C.L. The three-layer technique for immediate implants on teeth without a buccal bone wall: A case report. Int. J. Esthet. Dent. 2018, 13, 358–376. [Google Scholar] [PubMed]
- Mardas, N.; Trullenque-Eriksson, A.; MacBeth, N. Does ridge preservation following tooth extraction improve implant treatment outcomes: A systematic review: Group 4: Therapeutic concepts & methods. Clin. Oral Implant. Res. 2015, 26, 180–201. [Google Scholar]
- Avila-Ortiz, G.; Chambrone, L.; Vignoletti, F. Effect of alveolar ridge preservation interventions following tooth extraction: A systematic review and meta–analysis. J. Clin. Periodontol. 2019, 46, 195–223. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Del Fabbro, M.; Khijmatgar, S.; Panda, S.; Ravidà, A.; Tommasato, G.; Sculean, A.; Pesce, P. Dimensional and histomorphometric evaluation of biomaterials used for alveolar ridge preservation: A systematic review and network meta-analysis. Clin. Oral Investig. 2022, 26, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Juodzbalys, G.; Stumbras, A.; Goyushov, S.; Duruel, O.; Tözüm, T.F. Morphological Classification of Extraction Sockets and Clinical Decision Tree for Socket Preservation/Augmentation after Tooth Extraction: A Systematic Review. J. Oral Maxillofac. Res. 2019, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Younger, E.M.; Chapman, M.W. Morbidity at bone graft donor sites. J. Orthop. Trauma. 1989, 3, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Pisani, F.; Zahid, F.M. Adjunctive platelet-rich plasma (PRP) in infrabony regenerative treatment: A systematic review and RCT’s meta-analysis. Stem Cells Int. 2018, 2018, 9594235. [Google Scholar] [CrossRef] [PubMed]
- Célio-Mariano, R.; de Melo, W.M.; Carneiro-Avelino, C. Comparative radiographic evaluation of alveolar bone healing associated with autologous platelet-rich plasma after impacted mandibular third molar surgery. J. Oral Maxillofac. Surg. 2012, 70, 19–24. [Google Scholar] [CrossRef]
- Mendoza-Azpur, G.; de la Fuente, A.; Chavez, E.; Valdivia, E.; Khouly, I. Horizontal ridge augmentation with guided bone regeneration using particulate xenogenic bone substitutes with or without autogenous block grafts: A randomized controlled trial. Clin. Implant Dent. Relat. Res. 2019, 21, 521–530. [Google Scholar] [CrossRef]
- Işık, G.; Özden Yüce, M.; Koçak-Topbaş, N.; Günbay, T. Guided bone regeneration simultaneous with implant placement using bovine-derived xenograft with and without liquid platelet-rich fibrin: A randomized controlled clinical trial. Clin. Oral Investig. 2021, 25, 5563–5575. [Google Scholar] [CrossRef] [PubMed]
- Block, M.S. The Processing of Xenografts Will Result in Different Clinical Responses. J. Oral Maxillofac Surg. 2019, 77, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, E.; Schneeberger, S.; Bellini, M.I.; Berglund, E.; Böhmig, G.; Fowler, K.; Hoogduijn, M.; Jochmans, I.; Marckmann, G.; Marson, L.; et al. Organ transplants of the future: Planning for innovations including xenotransplantation. Transpl. Int. 2021, 34, 2006–2018. [Google Scholar] [CrossRef] [PubMed]
- Ramírez Fernández, M.P.; Gehrke, S.A.; Pérez Albacete Martinez, C.; Calvo Guirado, J.L.; de Aza, P.N. SEM-EDX Study of the Degradation Process of Two Xenograft Materials Used in Sinus Lift Procedures. Materials 2017, 10, 542. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.C. Comparison of Clinical Parameters in Dental Implant Therapy between Implant Site Development Using Porcine- and Bovine-Derived Xenografts. Technologies 2021, 9, 72. [Google Scholar] [CrossRef]
- Kannoeva, M.V.; Ushakov, A.I.; Zorian, E.V. Clinical and morphological evaluation of the quality of the jaw bone when using osteoplastic materials in preparation for dental implantation. Russ. Stomatol. 2015, 8, 26–28. [Google Scholar] [CrossRef]
- Abellán, D.; Barallat, L.; Vilarrasa, J.; Cabezas, M.; Pascual La Rocca, A.; Valles, C.; Nart, J. Ridge preservation in molar sites comparing xenograft versus mineralized freeze-dried bone allograft: A randomized clinical trial. Clin. Oral Implant. Res. 2022, 33, 511–523. [Google Scholar] [CrossRef]
- Soardi, C.M.; Barootchi, S.; Soardi, B.; Tavelli, L.; Zaffe, D.; Wang, H.L. Cortical Versus Cancellous Solvent-Dehydrated Bone Allograft for Alveolar Ridge Preservation: A Histologic Study. Int. J. Periodontics Restor. Dent. 2022, 42, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, J.; Schlee, M.; Al-Maawi, S.; Chia, P.; Sader, R.A.; Ghanaati, S. Variant Purification of an Allogeneic Bone Block. Acta Stomatol. Croat. 2017, 51, 141–147. [Google Scholar] [CrossRef]
- Barone, A.; Aldini, N.N.; Fini, M.; Giardino, R.; Calvo Guirado, J.L.; Covani, U. Xenograft versus extraction alone for ridge preservation after tooth removal: A clinical and histomorphometric study. J. Periodontol. 2008, 79, 1370–1377. [Google Scholar] [CrossRef]
- Cardaropoli, D.; Cardaropoli, G. Preservation of the postextraction alveolar ridge: A clinical and histologic study. Int. J. Periodontics Restor. Dent. 2008, 28, 469–477. [Google Scholar]
- Jung, R.E.; Philipp, A.; Annen, B.M.; Signorelli, L.; Thoma, D.S.; Hämmerle, C.H.; Attin, T.; Schmidlin, P. Radiographic evaluation of different techniques for ridge preservation after tooth extraction: A randomized controlled clinical trial. J. Clin. Periodontol. 2013, 40, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, W.; Guo, H.; Ge, S.; Huang, H.; Yang, P. Alveolar ridge preservation with fibroblast growth factor-2 modified acellular dermal matrix membrane and a bovine-derived xenograft: An experimental in vivo study. Clin. Oral Implant. Res. 2021, 32, 808–817. [Google Scholar] [CrossRef] [PubMed]
The Early Wound Healing Index (EHI) | Xenograft n = 40 | PRGF n = 35 | ADM n = 42 | HaP n = 34 |
---|---|---|---|---|
EHI 1: Complete flap closure without a fibrin line in the interproximal area | 24 (60.0%) | 28 (80.0%) | 25 (59.5%) | 19 (55.9%) |
EHI 2: Complete flap closure with a fine fibrin line in the interproximal area | 14 (35.0%) | 6 (17.2%) | 16 (38.1%) | 11 (32.4%) |
EHI 3: Complete flap closure with fibrin cloth in the interproximal area | 2 (5.0%) | 1 (2.8%) | 1 (2.4%) | 3 (8.8%) |
EHI 4: Incomplete flap closure with partial necrosis of the interproximal tissue | - | - | - | 1 (2.9%) |
EHI 5: Incomplete flap closure with complete necrosis of the interproximal tissue | - | - | - | - |
Time of Measurement | Xenograft n = 40 | PRGF n = 35 | ADM n = 42 | HaP n = 34 |
---|---|---|---|---|
T1 | ||||
Mean buccal-vestibular height (mm), SD | 8.4 [8.2; 9.1] | 9.1 [8.7; 9.7] | 9.2 [9.0; 9.3] | 9.6 [9.3; 10.2] |
Mean palatal-lingual height (mm), SD | 8.2 [8.0; 8.5] | 8.9 ± 0.8 | 8.9 [8.5; 9.1] | 9.5 ± 0.7 |
Mean width of the base of the alveolar ridge (mm), SD | 7.6 ± 0.4 | 7.6 ± 0.3 | 7.9 ± 0.4 | 7.3 ± 0.9 |
Mean width of the top of the alveolar ridge (mm), SD | 7.7 ± 0.3 | 7.7 [7.6; 8.0] | 7.7 ± 0.4 | 7.9 ± 1.2 |
T2 | ||||
Mean buccal-vestibular height (mm), SD | 8.1 [7.9; 8.7] | 6.9 [6.8; 7.5] | 8.65 [8.55; 8.84] | 7.8 [7.6; 8.5] |
Mean palatal-lingual height (mm), SD | 8.0 [7.8; 8.2] | 6.8 [6.7; 7.0] | 8.5 [7.9; 8.7] | 7.9 ± 0.6 |
Mean width of the base of the alveolar ridge (mm), SD | 7.4 ± 0.4 | 5.89 [5.79; 5.93] | 7.5 ± 0.4 | 6.0 ± 0.7 |
Mean width of the top of the alveolar ridge (mm), SD | 7.5 [7.3; 7.6] | 5.93 [5.89; 5.99] | 7.3 ± 0.3 | 6.9 [5.7; 7.5] |
Time of Measurement | Xenograft n = 40 | PRGF n = 35 | ADM n = 42 | HaP n = 34 |
---|---|---|---|---|
T1 | ||||
Mean buccal-vestibular height (mm), SD | 9.05 [8.8; 9.7] | 9.6 [8.8; 9.97] | 9.6 [9.4; 9.9] | 10.1 [9.7; 10.6] |
Mean palatal-lingual height (mm), SD | 8.8 [8.6; 9.1] | 9.2 [8.6; 9.5] | 9.3 [8.8; 9.6] | 10.0 ± 0.7 |
Mean width of the base of the alveolar ridge (mm), SD | 8.2 ± 0.4 | 8.1 ± 0.3 | 8.2 ± 0.5 | 7.6 ± 0.95 |
Mean width of the top of the alveolar ridge (mm), SD | 8.3 ± 0.4 | 8.1 [8.0; 8.4] | 8.1 ± 0.4 | 8.3 ± 1.3 |
T2 | ||||
Mean buccal-vestibular height (mm), SD | 8.63 [8.4; 9.3] | 7.3 [7.1; 7.9] | 9.1 [9.0; 9.2] | 8.3 [8.0; 9.0] |
Mean palatal-lingual height (mm), SD | 8.5 [8.3; 8.7] | 7.1 [6.9; 7.3] | 8.9 [8.3; 9.1] | 8.3 ± 0.6 |
Mean width of the base of the alveolar ridge (mm), SD | 7.9 ± 0.4 | 6.2 [6.1; 6.24] | 7.9 ± 0.4 | 6.4 ± 0.8 |
Mean width of the top of the alveolar ridge (mm), SD | 7.97 ± 0.3 | 6.24 [6.2; 6.3] | 7.7 ± 0.4 | 7.0 ± 0.6 |
Materials | Xenograft n = 40 | PRGF n = 35 | ADM n = 42 | HaP n = 34 |
---|---|---|---|---|
Area of coarse fibrous bone tissue (%) | 27.1 ± 2.6 | 19.1 ± 1.8 | 39.46 ± 3.5 | 23.8 ± 2.9 |
Area of lamellar bone tissue (%) | 9.6 ± 3.4 | 11.2 ± 2.2 | 69.7 ± 3.7 | 0 |
Area of connective tissue (%) | 39.46 ± 3.5 | 20.6 ± 1.7 | 23.2 ± 3.9 | 14.2 ± 1.2 |
Area occupied by the material (%) | 23.8 ± 2.9 | 34.3 ± 2.4 | 21.3 ± 1.94 | 6.0 ± 0.7 |
Stages of Assessing the Stability of Dental Implants | Xenograft n = 40 | PRGF n = 35 | ADM n = 42 | HaP n = 34 |
---|---|---|---|---|
During the installation phase (ISQ), SD | 57.4 ± 2.9 | 52.4 ± 2.0 | 56.7 ± 1.9 | 58 [57; 59] |
At the stage of prosthetics (ISQ), SD | 72.2 ± 2.6 | 63 [62; 65] | 70 [69; 72] | 71.6 ± 2.2 |
p-Value | p < 0.001 | p > 0.001 | p < 0.001 | p < 0.001 |
Criteria for Evaluation | Xenograft n = 40 | PRGF n = 35 | ADM n = 42 | HaP n = 34 |
---|---|---|---|---|
The dental implant is stable (%) | 100% | 100% | 100% | 100% |
Absence of peri-implantation changes according to OPTG (%) | 100% | 100% | 100% | 100% |
The amount of vertical bone loss (mm) | 0.04 ± 0.03 | 0.06 ± 0.03 | 0.02 ± 0.04 | 0.07 ± 0.02 |
No pain in the implant area | 100% | 98% | 100% | 100% |
Absence of mucositis | 100% | 100% | 100% | 97% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redko, N.; Drobyshev, A.; Le, T.H.; Lezhnev, D.; Deev, R.; Bozo, I.; Miterev, A.; Shamrin, S.; Skakunov, Y.; Meliev, D. Comparative Effectiveness of an Autologous Dentin Matrix for Alveolar Ridge Preservation. Medicina 2024, 60, 1280. https://doi.org/10.3390/medicina60081280
Redko N, Drobyshev A, Le TH, Lezhnev D, Deev R, Bozo I, Miterev A, Shamrin S, Skakunov Y, Meliev D. Comparative Effectiveness of an Autologous Dentin Matrix for Alveolar Ridge Preservation. Medicina. 2024; 60(8):1280. https://doi.org/10.3390/medicina60081280
Chicago/Turabian StyleRedko, Nikolai, Alexey Drobyshev, Thanh Hieu Le, Dmitry Lezhnev, Roman Deev, Ilya Bozo, Andrey Miterev, Sergey Shamrin, Yaroslav Skakunov, and Davronbek Meliev. 2024. "Comparative Effectiveness of an Autologous Dentin Matrix for Alveolar Ridge Preservation" Medicina 60, no. 8: 1280. https://doi.org/10.3390/medicina60081280
APA StyleRedko, N., Drobyshev, A., Le, T. H., Lezhnev, D., Deev, R., Bozo, I., Miterev, A., Shamrin, S., Skakunov, Y., & Meliev, D. (2024). Comparative Effectiveness of an Autologous Dentin Matrix for Alveolar Ridge Preservation. Medicina, 60(8), 1280. https://doi.org/10.3390/medicina60081280