Is Raman Spectroscopy of Fingernails a Promising Tool for Diagnosing Systemic and Dermatological Diseases in Adult and Pediatric Populations?
Abstract
:1. Introduction
2. Structure of Healthy Nails in Adults and Children
3. Raman Spectroscopy
4. The Use of Raman Spectroscopy to Evaluate Various Diseases
4.1. Osteoporosis
4.2. Onychomycosis
4.3. Psoriasis
4.4. Malignant Melanoma
4.5. Diabetes Mellitus
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tully, A.S.; Trayes, K.P.; Studdiford, J.S. Evaluation of Nail Abnormalities. Am. Fam. Physician 2012, 85, 779–787. [Google Scholar] [PubMed]
- Wen, W.; Meng, Y.; Xiao, J.; Zhang, P.; Zhang, H. Comparative Study on Keratin Structural Changes in Onychomycosis and Normal Human Finger Nail Specimens by Raman Spectroscopy. J. Mol. Struct. 2013, 1038, 35–39. [Google Scholar] [CrossRef]
- Akbaş, A.; Kilinç, F.; Yakut, H.I.; Metin, A. Nail Disorders in Children, a Clinical Study. Our Dermatol. Online 2016, 7, 149–154. [Google Scholar] [CrossRef]
- Starace, M.; Alessandrini, A.; Piraccini, B.M. Nail Disorders in Children. Skin. Appendage Disord. 2018, 4, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Bersani, D.; Lottici, P.P. Applications of Raman Spectroscopy to Gemology. Anal. Bioanal. Chem. 2010, 397, 2631–2646. [Google Scholar] [CrossRef] [PubMed]
- Doty, K.C.; Muro, C.K.; Bueno, J.; Halámková, L.; Lednev, I.K. What Can Raman Spectroscopy Do for Criminalistics? J. Raman Spectrosc. 2016, 47, 39–50. [Google Scholar] [CrossRef]
- D’Acunto, M.; Gaeta, R.; Capanna, R.; Franchi, A. Contribution of Raman Spectroscopy to Diagnosis and Grading of Chondrogenic Tumors. Sci. Rep. 2020, 10, 2155. [Google Scholar] [CrossRef] [PubMed]
- Sbroscia, M.; Di Gioacchino, M.; Ascenzi, P.; Crucitti, P.; di Masi, A.; Giovannoni, I.; Longo, F.; Mariotti, D.; Naciu, A.M.; Palermo, A.; et al. Thyroid Cancer Diagnosis by Raman Spectroscopy. Sci. Rep. 2020, 10, 13342. [Google Scholar] [CrossRef] [PubMed]
- Ke, Z.-Y.; Ning, Y.-J.; Jiang, Z.-F.; Zhu, Y.; Guo, J.; Fan, X.-Y.; Zhang, Y.-B. The Efficacy of Raman Spectroscopy in Lung Cancer Diagnosis: The First Diagnostic Meta-Analysis. Lasers Med. Sci. 2022, 37, 425–434. [Google Scholar] [CrossRef]
- Giamougiannis, P.; Morais, C.L.M.; Grabowska, R.; Ashton, K.M.; Wood, N.J.; Martin-Hirsch, P.L.; Martin, F.L. A Comparative Analysis of Different Biofluids towards Ovarian Cancer Diagnosis Using Raman Microspectroscopy. Anal. Bioanal. Chem. 2021, 413, 911–922. [Google Scholar] [CrossRef]
- Shang, L.-W.; Ma, D.-Y.; Fu, J.-J.; Lu, Y.-F.; Zhao, Y.; Xu, X.-Y.; Yin, J.-H. Fluorescence Imaging and Raman Spectroscopy Applied for the Accurate Diagnosis of Breast Cancer with Deep Learning Algorithms. Biomed. Opt. Express 2020, 11, 3673. [Google Scholar] [CrossRef]
- Hong, Y.; Li, Y.; Huang, L.; He, W.; Wang, S.; Wang, C.; Zhou, G.; Chen, Y.; Zhou, X.; Huang, Y.; et al. Label-free Diagnosis for Colorectal Cancer through Coffee Ring-assisted Surface-enhanced Raman Spectroscopy on Blood Serum. J. Biophotonics 2020, 13, e201960176. [Google Scholar] [CrossRef]
- Correia, N.A.; Batista, L.T.A.; Nascimento, R.J.M.; Cangussú, M.C.T.; Crugeira, P.J.L.; Soares, L.G.P.; Silveira, L., Jr.; Pinheiro, A.L.B. Detection of Prostate Cancer by Raman Spectroscopy: A Multivariate Study on Patients with Normal and Altered PSA Values. J. Photochem. Photobiol. B 2020, 204, 111801. [Google Scholar] [CrossRef] [PubMed]
- Téllez-Plancarte, A.; Haro-Poniatowski, E.; Picquart, M.; Morales-Méndez, J.G.; Lara-Cruz, C.; Jiménez-Salazar, J.E.; Damián-Matsumura, P.; Escobar-Alarcón, L.; Batina, N. Development of a Nanostructured Platform for Identifying HER2-Heterogeneity of Breast Cancer Cells by Surface-Enhanced Raman Scattering. Nanomaterials 2018, 8, 549. [Google Scholar] [CrossRef]
- Acri, G.; Venuti, V.; Costa, S.; Testagrossa, B.; Pellegrino, S.; Crupi, V.; Majolino, D. Raman Spectroscopy as Noninvasive Method of Diagnosis of Pediatric Onset Inflammatory Bowel Disease. Appl. Sci. 2020, 10, 6974. [Google Scholar] [CrossRef]
- Chen, C.; Yang, L.; Zhao, J.; Yuan, Y.; Chen, C.; Tang, J.; Yang, H.; Yan, Z.; Wang, H.; Lv, X. Urine Raman Spectroscopy for Rapid and Inexpensive Diagnosis of Chronic Renal Failure (CRF) Using Multiple Classification Algorithms. Optik 2020, 203, 164043. [Google Scholar] [CrossRef]
- Kaewseekhao, B.; Nuntawong, N.; Eiamchai, P.; Roytrakul, S.; Reechaipichitkul, W.; Faksri, K. Diagnosis of Active Tuberculosis and Latent Tuberculosis Infection Based on Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy. Tuberculosis 2020, 121, 101916. [Google Scholar] [CrossRef]
- Gniadecka, M.; Nielsen, O.F.; Christensen, D.H.; Wulf, H.C. Structure of Water, Proteins, and Lipids in Intact Human Skin, Hair, and Nail. J. Investig. Dermatol. 1998, 110, 393–398. [Google Scholar] [CrossRef] [PubMed]
- De Berker, D.A.R.; André, J.; Baran, R. Nail Biology and Nail Science. Int. J. Cosmet. Sci. 2007, 29, 241–275. [Google Scholar] [CrossRef]
- Brzózka, P.; Kolodziejski, W. Sex-Related Chemical Differences in Keratin from Fingernail Plates: A Solid-State Carbon-13 NMR Study. RSC Adv. 2017, 7, 28213–28223. [Google Scholar] [CrossRef]
- Ohgitani, S.; Fujita, T.; Fujii, Y.; Hayashi, C.; Nishio, H. Nail Calcium and Magnesium Content in Relation to Age and Bone Mineral Density. J. Bone Miner. Metab. 2005, 23, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.B.; Terada, H.; Mestler, G.E. Studies of Growth Throughout the Lifespan in Japanese: Growth And Size of Nails and Their Relationship to Age, Sex, Heredity, and Other Factors. J. Gerontol. 1955, 10, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Marks, R.M.; Barton, S.P.; Edwards, C. The Physical Nature of the Skin; Springer: Dordrecht, Netherlands, 1988; ISBN 978-94-010-7074-4. [Google Scholar]
- Saeedi, P.; Shavandi, A.; Meredith-Jones, K. Nail Properties and Bone Health: A Review. J. Funct. Biomater. 2018, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Vellar, O.D. Composition of Human Nail Substance. Am. J. Clin. Nutr. 1970, 23, 1272–1274. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Ohhira, S.; Matsui, H. Trace Element Concentrations in Human Fingernail. Nippon Eiseigaku Zasshi (Jpn. J. Hyg.) 1986, 41, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Martin-Moreno, J.M.; Gorgojo, L.; Riemersma, R.A.; Gomez-Aracen, J.; Kark, J.D.; Guillen, J.; Jimenez, J.; Ringstad, J.J.; Fernandez-Crehuet, J.; Bode, P.; et al. Myocardial Infarction Risk in Relation to Zinc Concentration in Toenails. Br. J. Nutr. 2003, 89, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Kardinaal, A.F.M.; Kok, F.J.; Kohlmeier, L.; Martin-Moreno, J.M.; Ringstad, J.; GOmez-Aracena, J.; Mazaev, V.P.; Thamm, M.; Martin, B.C.; Aro, A.; et al. Association Between Toenail Selenium and Risk of Acute Myocardial Infarction in European Men: The Euramic Study. Am. J. Epidemiol. 1997, 145, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Aracena, J.; Riemersma, R.A.; Gutiérrez-Bedmar, M.; Bode, P.; Kark, J.D.; Garcia-Rodríguez, A.; Gorgojo, L.; van’t Veer, P.; Fernández-Crehuet, J.; Kok, F.J.; et al. Toenail Cerium Levels and Risk of a First Acute Myocardial Infarction: The Euramic and Heavy Metals Study. Chemosphere 2006, 64, 112–120. [Google Scholar] [CrossRef]
- Karita, K.; Takano, T.; Nakamura, S.; Haga, N.; Iwaya, T. A Search for Calcium, Magnesium and Zinc Levels in Fingernails of 135 Patients with Osteogenesis Imperfecta. J. Trace Elem. Med. Biol. 2001, 15, 36–39. [Google Scholar] [CrossRef]
- Mehra, R.; Juneja, M. Variation of Concentration of Heavy Metals, Calcium and Magnesium with Sex as Determined by Atomic Absorption Spectrophotometry. Indian. J. Environ. Health 2003, 45, 317–324. [Google Scholar]
- Djaldetti, M.; Djaldetti, M.; Fishman, P.; Hart, J. The Iron Content of Finger-Nails in Iron Deficient Patients. Clin. Sci. 1987, 72, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.-R.; Zhang, S.-Q.; Xiong, Y.; Zhao, Y.; Fu, H.; Zhang, H.-P.; Xiong, K.-M. Studies of Five Microelement Contents in Human Serum, Hair, and Fingernails Correlated with Aged Hypertension and Coronary Heart Disease. Biol. Trace Elem. Res. 2003, 92, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi Priya, M.D.; Geetha, A. Level of Trace Elements (Copper, Zinc, Magnesium and Selenium) and Toxic Elements (Lead and Mercury) in the Hair and Nail of Children with Autism. Biol. Trace Elem. Res. 2011, 142, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Moresco, M.B.; da Fleck, A.S.; Carneiro, M.F.H.; Barbosa Júnior, F.; Amantea, S.L.; Rhoden, C.R. Trace Elements Concentration in Nails and Association with Airway Inflammation in Adolescents. Biol. Trace Elem. Res. 2014, 161, 161–166. [Google Scholar] [CrossRef]
- Carneiro, M.F.H.; Rhoden, C.R.; Amantéa, S.L.; Barbosa, F. Low Concentrations of Selenium and Zinc in Nails Are Associated with Childhood Asthma. Biol. Trace Elem. Res. 2011, 144, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Chen, C.; Zhou, Y.; Zhang, X.; Wan, Y. Fingernail Selenium Levels in Relation to the Risk of Obesity in Chinese Children. Medicine 2018, 97, e0027. [Google Scholar] [CrossRef]
- He, K. Trace Elements in Nails as Biomarkers in Clinical Research. Eur. J. Clin. Invest. 2011, 41, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Runne, U.; Orfanos, C.E. The Human Nail: Structure, Growth and Pathological Changes. Curr. Probl. Dermatol. 1981, 9, 102–149. [Google Scholar] [PubMed]
- Canetta, E. Current and Future Advancements of Raman Spectroscopy Techniques in Cancer Nanomedicine. Int. J. Mol. Sci. 2021, 22, 13141. [Google Scholar] [CrossRef]
- Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.J.; Gardner, B.; Martin-Hirsch, P.L.; et al. Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 2016, 11, 664–687. [Google Scholar] [CrossRef]
- Serebrennikova, K.V.; Berlina, A.N.; Sotnikov, D.V.; Zherdev, A.V.; Dzantiev, B.B. Raman Scattering-Based Biosensing: New Prospects and Opportunities. Biosens. 2021, 11, 512. [Google Scholar] [CrossRef] [PubMed]
- Devitt, G.; Howard, K.; Mudher, A.; Mahajan, S. Raman Spectroscopy: An Emerging Tool in Neurodegenerative Disease Research and Diagnosis. ACS Chem. Neurosci. 2018, 9, 404–420. [Google Scholar] [CrossRef] [PubMed]
- Khristoforova, Y.; Bratchenko, L.; Bratchenko, I. Raman-Based Techniques in Medical Applications for Diagnostic Tasks: A Review. Int. J. Mol. Sci. 2023, 24, 15605. [Google Scholar] [CrossRef] [PubMed]
- Ebeling, P.R.; Nguyen, H.H.; Aleksova, J.; Vincent, A.J.; Wong, P.; Milat, F. Secondary Osteoporosis. Endocr. Rev. 2022, 43, 240–313. [Google Scholar] [CrossRef]
- Lorentzon, M.; Cummings, S.R. Osteoporosis: The Evolution of a Diagnosis. J. Intern. Med. 2015, 277, 650–661. [Google Scholar] [CrossRef] [PubMed]
- NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis Prevention, Diagnosis, and Therapy. J. Am. Med. Assoc. 2001, 285, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A. Assessment of Osteoporosis at the Primary Health-Care Level; Technical Report; WHO: Geneva, Switzerland, 2007; Available online: https://frax.shef.ac.uk/FRAX/ (accessed on 12 March 2024).
- Cummins, N.M.; Day, J.C.C.; Wren, A.; Carroll, P.; Murphy, N.; Jakeman, P.M.; Towler, M.R. Raman Spectroscopy of Fingernails: A Novel Tool for Evaluation of Bone Quality? J. Spectrosc. 2010, 24, 820580. [Google Scholar] [CrossRef]
- Mussatto, J.C.; Perez, M.C.; de Souza, R.A.; Pacheco, M.T.T.; Zângaro, R.A.; Silveira, L. Could the Bone Mineral Density (T-Score) Be Correlated with the Raman Spectral Features of Keratin from Women’s Nails and Be Used to Predict Osteoporosis? Lasers Med. Sci. 2015, 30, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Beattie, J.R.; Cummins, N.M.; Caraher, C.; O’Driscoll, O.M.; Bansal, A.T.; Eastell, R.; Ralston, S.H.; Stone, M.D.; Pearson, G.; Towler, M.R. Raman Spectroscopic Analysis of Fingernail Clippings Can Help Differentiate between Postmenopausal Women Who Have and Have Not Suffered a Fracture. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2016, 9, CMAMD-S38493. [Google Scholar] [CrossRef]
- Towler, M.R.; Wren, A.; Rushe, N.; Saunders, J.; Cummins, N.M.; Jakeman, P.M. Raman Spectroscopy of the Human Nail: A Potential Tool for Evaluating Bone Health? J. Mater. Sci. Mater. Med. 2007, 18, 759–763. [Google Scholar] [CrossRef]
- Beattie, J.R.; Feskanich, D.; Caraher, M.C.; Towler, M.R. A Preliminary Evaluation of the Ability of Keratotic Tissue to Act as a Prognostic Indicator of Hip Fracture Risk. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2018, 11, 117954411775405. [Google Scholar] [CrossRef] [PubMed]
- Pillay, I.; Lyons, D.; German, M.J.; Lawson, N.S.; Pollock, H.M.; Saunders, J.; Chowdhury, S.; Moran, P.; Towler, M.R. The Use of Fingernails as a Means of Assessing Bone Health: A Pilot Study. J. Womens Health 2005, 14, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Moran, P.; Towler, M.R.; Chowdhury, S.; Saunders, J.; German, M.J.; Lawson, N.S.; Pollock, H.M.; Pillay, I.; Lyons, D. Preliminary Work on the Development of a Novel Detection Method for Osteoporosis. J. Mater. Sci. Mater. Med. 2007, 18, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Beattie, J.R.; Caraher, M.C.; Cummins, N.M.; O’Driscoll, O.M.; Eastell, R.; Ralston, S.H.; Towler, M.R. Raman Spectral Variation for Human Fingernails of Postmenopausal Women Is Dependent on Fracture Risk and Osteoporosis Status. J. Raman Spectrosc. 2017, 48, 813–821. [Google Scholar] [CrossRef]
- Gamsjaeger, S.; Hofstetter, B.; Fratzl-Zelman, N.; Roschger, P.; Roschger, A.; Fratzl, P.; Brozek, W.; Masic, A.; Misof, B.M.; Glorieux, F.H.; et al. Pediatric Reference Raman Data for Material Characteristics of Iliac Trabecular Bone. Bone 2014, 69, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Goldhirsch, A.; Price, K.N.; Colleoni, M.; Ravaioli, A.; Simoncini, E.; Campbell, I.; Gelber, R.D.; Towler, M. Bone Quality Test (BQT) Scores of Fingernails in Postmenopausal Patients Treated with Adjuvant Letrozole or Tamoxifen for Early Breast Cancer. Breast 2009, 18, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Grover, C.; Khurana, A. Onychomycosis: Newer Insights in Pathogenesis and Diagnosis. Indian J. Dermatol. Venereol. Leprol. 2012, 78, 263. [Google Scholar] [CrossRef] [PubMed]
- Baran, R.; Kaoukhov, A. Topical Antifungal Drugs for the Treatment of Onychomycosis: An Overview of Current Strategies for Monotherapy and Combination Therapy. J. Eur. Acad. Dermatol. Venereol. 2005, 19, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Sibbald, R.G.; Lynde, C.W.; Hull, P.R.; Prussick, R.; Shear, N.H.; De Doncker, P.; Daniel, C.R.; Elewski, B.E. Onychomycosis in Children: Prevalence and Treatment Strategies. J. Am. Acad. Dermatol. 1997, 36, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Reichert-Pénétrat, S.; Contet-Audonneau, N.; Barbaud, A.; Schurra, J.P.; Fortier, B.; Schmutz, J.L. Epidemiology of Dermatophytoses in Children Living in Northeast France: A 5-Year Study. Pediatr. Dermatol. 2002, 19, 103–105. [Google Scholar] [CrossRef]
- Bonifaz, A.; Saúl, A.; Mena, C.; Valencia, A.; Paredes, V.; Fierro, L.; Araiza, J. Dermatophyte Onychomycosis in Children under 2 Years of Age: Experience of 16 Cases. J. Eur. Acad. Dermatol. Venereol. 2007, 21, 115–117. [Google Scholar] [CrossRef]
- Romano, C.; Papini, M.; Ghilardi, A.; Gianni, C. Onychomycosis in Children: A Survey of 46 Cases. Mycoses 2005, 48, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Peña-Penabad, C.; García-Silva, J.; Almagro, M.; Del Pozo, J.; Fonseca, E. Superficial White Onychomycosis in a 3-year-old Human Immunodeficiency Virus-infected Child. J. Eur. Acad. Dermatol. Venereol. 2001, 15, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Solís-Arias, M.P.; García-Romero, M.T. Onychomycosis in Children. A Review. Int. J. Dermatol. 2017, 56, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Petrokilidou, C.; Gaitanis, G.; Bassukas, I.D.; Velegraki, A.; Guevara, E.; Vardaki, M.Z.; Kourkoumelis, N. Emerging Optical Techniques for the Diagnosis of Onychomycosis. Appl. Sci. 2020, 10, 2340. [Google Scholar] [CrossRef]
- Weinberg, J.M.; Koestenblatt, E.K.; Tutrone, W.D.; Tishler, H.R.; Najarian, L. Comparison of Diagnostic Methods in the Evaluation of Onychomycosis. J. Am. Acad. Dermatol. 2003, 49, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.; Khanna, D. Onychomycosis: Diagnosis and Management. Indian J. Dermatol. Venereol. Leprol. 2011, 77, 659. [Google Scholar] [CrossRef] [PubMed]
- Smijs, T.G.; Jachtenberg, J.W.; Pavel, S.; Bakker-Schut, T.C.; Willemse-Erix, D.; de Haas, E.R.M.; Sterenborg, H. Detection and Differentiation of Causative Organisms of Onychomycosis in an Ex Vivo Nail Model by Means of Raman Spectroscopy. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 1492–1499. [Google Scholar] [CrossRef]
- Kourkoumelis, N.; Gaitanis, G.; Velegraki, A.; Bassukas, I.D. Nail Raman Spectroscopy: A Promising Method for the Diagnosis of Onychomycosis. An Ex Vivo Pilot Study. Med. Mycol. 2018, 56, 551–558. [Google Scholar] [CrossRef]
- Petrokilidou, C.; Gaitanis, G.; Velegraki, A.; Bassukas, I.D.; Kourkoumelis, N. Treatment of Nail Clippings with Ethyl Alcohol Improves the Efficacy of Raman Spectroscopy in the Diagnosis of Trichophyton Rubrum Onychomycosis. J. Biophotonics 2023, 16, e202300040. [Google Scholar] [CrossRef]
- Shin, M.K.; Kim, T.I.; Kim, W.S.; Park, H.; Kim, K.S. Changes in Nail Keratin Observed by Raman Spectroscopy after Nd:YAG Laser Treatment. Microsc. Res. Tech. 2017, 80, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, A.; Jones, S.A.; Guesné, S.; Traynor, M.J.; McAuley, W.J.; Brown, M.B.; Murdan, S. Human Nail Plate Modifications Induced by Onychomycosis: Implications for Topical Therapy. Pharm. Res. 2015, 32, 1626–1633. [Google Scholar] [CrossRef] [PubMed]
- Cutrín Gómez, E.; Anguiano Igea, S.; Delgado-Charro, M.B.; Gómez Amoza, J.L.; Otero Espinar, F.J. Microstructural Alterations in the Onychomycotic and Psoriatic Nail: Relevance in Drug Delivery. Eur. J. Pharm. Biopharm. 2018, 128, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Dogra, A.; Arora, A. Nail Psoriasis: The Journey so Far. Indian. J. Dermatol. 2014, 59, 319. [Google Scholar] [CrossRef] [PubMed]
- Gudjonsson, J.E.; Karason, A.; Hjaltey Runarsdottir, E.; Antonsdottir, A.A.; Hauksson, V.B.; Jónsson, H.H.; Gulcher, J.; Stefansson, K.; Valdimarsson, H. Distinct Clinical Differences Between HLA-Cw*0602 Positive and Negative Psoriasis Patients—An Analysis of 1019 HLA-C- and HLA-B-Typed Patients. J. Investig. Dermatol. 2006, 126, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Salomon, J.; Szepietowski, J.C.; Proniewicz, A. Psoriatic Nails: A Prospective Clinical Study. J. Cutan. Med. Surg. 2003, 7, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Haneke, E. Nail Psoriasis: Clinical Features, Pathogenesis, Differential Diagnoses, and Management. Psoriasis Targets Ther. 2017, 7, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Jiaravuthisan, M.M.; Sasseville, D.; Vender, R.B.; Murphy, F.; Muhn, C.Y. Psoriasis of the Nail: Anatomy, Pathology, Clinical Presentation, and a Review of the Literature on Therapy. J. Am. Acad. Dermatol. 2007, 57, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, A.; Alldredge, V.; Minokadeh, A.; Boh, E. A Clinician’s Guide to Diagnosing and Managing Psoriatic Arthritis. J. Psoriasis Psoriatic Arthritis 2015, 1, 9–25. [Google Scholar] [CrossRef]
- Wanniang, N.; Navya, A.; Pai, V.; Ghodge, R. Comparative Study of Clinical and Dermoscopic Features in Nail Psoriasis. Indian Dermatol. Online J. 2020, 11, 35. [Google Scholar] [CrossRef]
- Piraccini, B.M.; Triantafyllopoulou, I.; Prevezas, C.; Starace, M.; Neri, I.; Patrizi, A.; Caserini, M.; Palmieri, R.; Rigopoulos, D. Nail Psoriasis in Children: Common or Uncommon Results from a 10-Year Double-Center Study. Skin Appendage Disord. 2015, 1, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, A.E.; Azoicai, D.; Coroaba, A.; Doroftei, F.; Timpu, D.; Chiriac, A.; Pertea, M.; Ursu, E.-L.; Pinteala, M. Raman Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscopy as Noninvasive Methods for Microstructural Alterations in Psoriatic Nails. Molecules 2021, 26, 280. [Google Scholar] [CrossRef] [PubMed]
- Plachouri, K.-M. Management of Pediatric Nail Psoriasis. Cutis 2021, 108, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Alpsoy, E.; Polat, M.; FettahlıoGlu-Karaman, B.; Karadag, A.S.; Kartal-Durmazlar, P.; YalCın, B.; Emre, S.; Didar-Balcı, D.; Bilgic-Temel, A.; Arca, E.; et al. Internalized Stigma in Psoriasis: A Multicenter Study. J. Dermatol. 2017, 44, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Malakouti, M.; Brown, G.E.; Leon, A.; Wang, E.; Naegeli, A.N.; Edson-Heredia, E.; Levin, E.; Koo, J.Y.M. The Dermatologic Intimacy Scale: Quantitatively Measuring the Impact of Skin Disease on Intimacy. J. Dermatol. Treat. 2017, 28, 347–352. [Google Scholar] [CrossRef]
- MacKie, R.M. Malignant Melanoma: Clinical Variants and Prognostic Indicators. Clin. Exp. Dermatol. 2000, 25, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Kanzler, M.H.; Mraz-Gernhard, S. Primary Cutaneous Malignant Melanoma and Its Precursor Lesions: Diagnostic and Therapeutic Overview. J. Am. Acad. Dermatol. 2001, 45, 260–276. [Google Scholar] [CrossRef] [PubMed]
- Gniadecka, M.; Philipsen, P.A.; Wessel, S.; Gniadecki, R.; Wulf, H.C.; Sigurdsson, S.; Nielsen, O.F.; Christensen, D.H.; Hercogova, J.; Rossen, K.; et al. Melanoma Diagnosis by Raman Spectroscopy and Neural Networks: Structure Alterations in Proteins and Lipids in Intact Cancer Tissue. J. Investig. Dermatol. 2004, 122, 443–449. [Google Scholar] [CrossRef]
- Brauchle, E.; Noor, S.; Holtorf, E.; Garbe, C.; Schenke-Layland, K.; Busch, C. Raman Spectroscopy as an Analytical Tool for Melanoma Research. Clin. Exp. Dermatol. 2014, 39, 636–645. [Google Scholar] [CrossRef]
- Cartaxo, S.B.; de Santos, I.D.A.O.; Bitar, R.; Oliveira, A.F.; Ferreira, L.M.; Martinho, H.S.; Martin, A.A. FT-Raman Spectroscopy for the Differentiation between Cutaneous Melanoma and Pigmented Nevus. Acta Cir. Bras. 2010, 25, 351–356. [Google Scholar] [CrossRef]
- de Oliveira, A.F.; de Santos, I.D.A.O.; Cartaxo, S.B.; Bitar, R.A.; e Enokihara, M.M.S.S.; da Martinho, H.S.; Martin, A.A.; Ferreira, L.M. Differential Diagnosis in Primary and Metastatic Cutaneous Melanoma by FT-Raman Spectroscopy. Acta Cir. Bras. 2010, 25, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Santos, I.P.; Caspers, P.J.; Bakker Schut, T.C.; van Doorn, R.; Noordhoek Hegt, V.; Koljenović, S.; Puppels, G.J. Raman Spectroscopic Characterization of Melanoma and Benign Melanocytic Lesions Suspected of Melanoma Using High-Wavenumber Raman Spectroscopy. Anal. Chem. 2016, 88, 7683–7688. [Google Scholar] [CrossRef] [PubMed]
- Lui, H.; Zhao, J.; McLean, D.; Zeng, H. Real-Time Raman Spectroscopy for In Vivo Skin Cancer Diagnosis. Cancer Res. 2012, 72, 2491–2500. [Google Scholar] [CrossRef] [PubMed]
- Philipsen, P.A.; Knudsen, L.; Gniadecka, M.; Ravnbak, M.H.; Wulf, H.C. Diagnosis of Malignant Melanoma and Basal Cell Carcinoma by in Vivo NIR-FT Raman Spectroscopy Is Independent of Skin Pigmentation. Photochem. Photobiol. Sci. 2013, 12, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.; Nichols, B.; Migden, M.R.; Rajaram, N.; Reichenberg, J.S.; Markey, M.K.; Ross, M.I.; Tunnell, J.W. Clinical Study of Noninvasive in Vivo Melanoma and Nonmelanoma Skin Cancers Using Multimodal Spectral Diagnosis. J. Biomed. Opt. 2014, 19, 117003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, Y.; Song, Y.; Xu, J. Accuracy of Raman Spectroscopy for Differentiating Skin Cancer from Normal Tissue. Medicine 2018, 97, e12022. [Google Scholar] [CrossRef]
- Zhang, Y.; Moy, A.J.; Feng, X.; Nguyen, H.T.M.; Sebastian, K.R.; Reichenberg, J.S.; Wilke, C.O.; Markey, M.K.; Tunnell, J.W. Assessment of Raman Spectroscopy for Reducing Unnecessary Biopsies for Melanoma Screening. Molecules 2020, 25, 2852. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.F.; Correia, O.; Barros, A.M.; Ventura, F.; Haneke, E. Nail Melanoma In Situ. Dermatol. Surg. 2015, 41, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Littleton, T.W.; Murray, P.M.; Baratz, M.E. Subungual Melanoma. Orthop. Clin. North. Am. 2019, 50, 357–366. [Google Scholar] [CrossRef]
- Conway, J.; Bellet, J.S.; Rubin, A.I.; Lipner, S.R. Adult and Pediatric Nail Unit Melanoma: Epidemiology, Diagnosis, and Treatment. Cells 2023, 12, 964. [Google Scholar] [CrossRef]
- Basurto-Lozada, P.; Molina-Aguilar, C.; Castaneda-Garcia, C.; Vázquez-Cruz, M.E.; Garcia-Salinas, O.I.; Álvarez-Cano, A.; Martínez-Said, H.; Roldán-Marín, R.; Adams, D.J.; Possik, P.A.; et al. Acral Lentiginous Melanoma: Basic Facts, Biological Characteristics and Research Perspectives of an Understudied Disease. Pigment. Cell Melanoma Res. 2021, 34, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Levit, E.K.; Kagen, M.H.; Scher, R.K.; Grossman, M.; Altman, E. The ABC Rule for Clinical Detection of Subungual Melanoma. J. Am. Acad. Dermatol. 2000, 42, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Standl, E.; Khunti, K.; Hansen, T.B.; Schnell, O. The Global Epidemics of Diabetes in the 21st Century: Current Situation and Perspectives. Eur. J. Prev. Cardiol. 2019, 26, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Topor-Madry, R.; Wojtyniak, B.; Strojek, K.; Rutkowski, D.; Bogusławski, S.; Ignaszewska-Wyrzykowska, A.; Jarosz-Chobot, P.; Czech, M.; Kozierkiewicz, A.; Chlebus, K.; et al. Prevalence of Diabetes in Poland: A Combined Analysis of National Databases. Diabet. Med. 2019, 36, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, R.; Neu, A. Diabetes in Childhood and Adolescence: A guideline-based approach to diagnosis, treatment, and follow-up. Dtsch. Arztebl. Int. 2018, 115, 146. [Google Scholar] [CrossRef] [PubMed]
- Szalecki, M.; Wysocka-Mincewicz, M.; Ramotowska, A.; Mazur, A.; Lisowicz, L.; Beń-Skowronek, I.; Sieniawska, J.; Klonowska, B.; Charemska, D.; Nawrotek, J.; et al. Epidemiology of Type 1 Diabetes in Polish Children: A Multicentre Cohort Study. Diabetes Metab. Res. Rev. 2018, 34, e2962. [Google Scholar] [CrossRef] [PubMed]
- Herman, W.H.; Cohen, R.M. Racial and Ethnic Differences in the Relationship between HbA1c and Blood Glucose: Implications for the Diagnosis of Diabetes. J. Clin. Endocrinol. Metab. 2012, 97, 1067–1072. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef]
- Jabłecka, A.; Olszewski, J.; Marzec, E. Dielectric Properties of Keratin–Water System in Diabetic and Healthy Human Fingernails. J. Non Cryst. Solids 2009, 355, 2456–2460. [Google Scholar] [CrossRef]
- Bakan, E.; Bakan, N. Glycosylation of Nail in Diabetics: Possible Marker of Long-Term Hyperglycemia. Clin. Chim. Acta 1985, 147, 1–5. [Google Scholar] [CrossRef]
- Barman, I.; Dingari, N.C.; Kang, J.W.; Horowitz, G.L.; Dasari, R.R.; Feld, M.S. Raman Spectroscopy-Based Sensitive and Specific Detection of Glycated Hemoglobin. Anal. Chem. 2012, 84, 2474–2482. [Google Scholar] [CrossRef] [PubMed]
- Farhan, K.M.; Sastry, T.P.; Mandal, A.B. Comparative Study on Secondary Structural Changes in Diabetic and Non-Diabetic Human Finger Nail Specimen by Using FTIR Spectra. Clin. Chim. Acta 2011, 412, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Zargar, A.H.; Bashir, M.I.; Masoodi, S.R.; Laway, B.A.; Wani, A.I.; Khan, A.R.; Dar, F.A. Copper, Zinc and Magnesium Levels in Type-1 Diabetes Mellitus. Saudi Med. J. 2002, 23, 539–542. [Google Scholar] [PubMed]
- Triggiani, V.; Resta, F.; Guastamacchia, E.; Sabba, C.; Licchelli, B.; Ghiyasaldin, S.; Tafaro, E. Role of Antioxidants, Essential Fatty Acids, Carnitine, Vitamins, Phytochemicals and Trace Elements in the Treatment of Diabetes Mellitus and Its Chronic Complications. Endocr. Metab. Immune Disord. Drug Targets 2006, 6, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Mather, H.M.; Levin, G.E.; Nisbet, J.A. Hypomagnesemia and Ischemic Heart Disease in Diabetes. Diabetes Care 1982, 5, 452–453. [Google Scholar] [CrossRef]
- McNair, P.; Christiansen, C.; Madsbad, S.; Lauritzen, E.; Faber, O.; Binder, C.; Transbøl, I. Hypomagnesemia, a Risk Factor in Diabetic Retinopathy. Diabetes 1978, 27, 1075–1077. [Google Scholar] [CrossRef]
- Nadler, J.L.; Malayan, S.; Luong, H.; Shaw, S.; Natarajan, R.D.; Rude, R.K. Intracellular Free Magnesium Deficiency Plays a Key Role in Increased Platelet Reactivity in Type II Diabetes Mellitus. Diabetes Care 1992, 15, 835–841. [Google Scholar] [CrossRef]
- Bahijri, S.M. Serum Zinc in Infants and Preschool Children in the Jeddah Area: Effect of Diet and Diarrhea in Relation to Growth. Ann. Saudi Med. 2001, 21, 324–329. [Google Scholar] [CrossRef]
- Michaelsen, K.; Samuelson, G.; Graham, T.; Lönnerdal, B. Zinc Intake, Zinc Status and Growth in a Longitudinal Study of Healthy Danish Infants. Acta Paediatr. 1994, 83, 1115–1121. [Google Scholar] [CrossRef]
- McNair, P.; Madsbad, S.; Christiansen, C.; Christensen, M.S.; Faber, O.K.; Binder, C.; Transbøl, I. Bone Loss in Diabetes: Effects of Metabolic State. Diabetologia 1979, 17, 283–286. [Google Scholar] [CrossRef]
- Esfahani, E.; Faridbod, F.; Larijani, B.; Ganjali, M.R.; Norouzi, P. Trace Element Analysis of Hair, Nail, Serum and Urine of Diabetes Mellitus Patients by Inductively Coupled Plasma Atomic Emission Spectroscopy. Iran. J. Diabetes Lipid Disord. 2011, 10, 1–9. [Google Scholar]
- Monteyne, T.; Coopman, R.; Kishabongo, A.S.; Himpe, J.; Lapauw, B.; Shadid, S.; Van Aken, E.H.; Berenson, D.; Speeckaert, M.M.; De Beer, T.; et al. Analysis of Protein Glycation in Human Fingernail Clippings with Near-Infrared (NIR) Spectroscopy as an Alternative Technique for the Diagnosis of Diabetes Mellitus. Clin. Chem. Lab. Med. (CCLM) 2018, 56, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
Study | Study Population | Results and Conclusions |
---|---|---|
[54,55] | Control group n = 13 Osteoporosis group n = 9 | Lower nail disulfide content in the osteoporosis group than in the control group. Relationship between the nail and bone content of disulfide bonds was observed. |
[52] | Pre-menopausal group n = 84 (including bone fracture group n = 18) Post-menopausal group n = 85 (including bone fracture group n = 21) | Difference in the disulfide content of nails sourced from pre- and post-menopausal women. Lower disulfide content in nails sourced from women with a history of fracture independent of menopausal status. A promising method for examination of fracture risk. |
[58] | Patients undergoing hormonal therapy for early breast cancer n = 13 (including tamoxifen treatment n = 4; letrozole treatment n = 9; bone fracture n = 8) | Reduction in BQT scores after a six-month period regardless of the treatment method. |
[49] | Pre-menopausal group n = 81 (including bone fracture group n = 16) Post-menopausal group n = 78 (including bone fracture group n = 18) | Lower nail disulfide content in subjects with a history of fracture. BQT discriminated most accurately between the control and fracture cases. A promising method for the examination of fracture risk. |
[50] | Normal BMD n = 208 (including measurements taken at hip n = 109 and lumbar n = 99) Osteopenia n = 178 (including measurements taken at hip n = 93 and lumbar n = 85) Osteoporosis n = 40 (including measurements taken at hip n = 11 and lumbar n = 29) | No correlation was found between the peak intensities of the S-S bonds and the BMD values of hip and lumbar. No relationship between the nail keratin Raman spectrum and the osteoporotic disease assessed by BMD. |
[51] | Post-menopausal women n = 633 (including subjects with and without bone fracture history) | Differences in nail protein structure between fracture and non-fracture groups. Raman spectroscopy could be included in fracture risk assessment protocols. |
[56] | Post-menopausal women n = 633 (including bone fracture and non-bone fracture groups and osteoporosis and no osteoporosis groups) | Altered nail keratin structure and different amino acid composition of the nail in the fracture group. Lack of statistical significance in differentiation of osteoporosis cases. |
[53] | Post-menopausal group without history of fracture n = 81 Post-menopausal group with history of fracture n = 82 | Raman spectra suggest a decrease in disulfide bonds and an increase in -SH groups of proteins. A promising method for the examination of fracture risk. |
Study | Study Population | Results and Conclusions |
---|---|---|
[2] | Control group n = 8 Onychomycosis group n = 5 | Reduction in sulfur-containing amino acids content in nails obtained from patients with onychomycosis in comparison the control group. A trend to the energetically less-favored g–g–t form in the disulfide bonds in the nails of patients with onychomycosis. Raman spectroscopy may become a tool used in diagnosis of nail fungal infection. |
[70] | No data on the number of subjects whose nails were analyzed. A total of 18 nail samples were infected ex vivo with T. rubrum, T. mentagrophytes, T. tonsurans, S. brevicaulis, or C. albicans. | Raman spectroscopy can be used for differentiation between infections caused by dermatophytes (T. rubrum, T. mentagrophytes, T. tonsurans) and non-dermatophytes (S. brevicaulis, C. albicans). A promising method for examination of pediatric patients. |
[71] | Healthy control n = 26 T. rubrum infection group n = 12 Candida infection group n = 14 | Differentiation between healthy nails, nails infected with T. rubrum, and nails infected with Candida species is possible with use of Raman spectroscopy. |
[72] | Participants n = 15 (including some with suspected onychomycosis) | Ethyl alcohol improves the efficacy of T. rubrum detection in nails with the use of Raman spectroscopy. |
[73] | T. rubrum infection group n = 3 | Nail keratin structure changes during Nd:YAG laser treatment. |
[74] | No data on the number of subjects whose nails were analyzed. Samples were obtained from healthy individuals and patients with onychomycosis. Nail samples infected ex vivo were used too. | No increase of amount of -SH groups observed in the infected nails. |
[75] | No data on the number of subjects whose nails were analyzed. Samples were obtained from healthy individuals, patients with onychomycosis, and patients with psoriasis. | Onychomycosis causes a reduction in the number of S-S bonds in the nails to a greater extent than psoriasis. |
Study | Study Population | Results and Conclusions |
---|---|---|
[84] | Control group n = 7 Nail psoriasis n = 18 (including patients n = 16 and patients treated with biologics n = 2) | Psoriasis affects surface morphology of nails. Keratin’s α-helix structure is partially destroyed in psoriasis and S-S bonds are broken. Biological treatment leads to the reformation of S-S bonds. |
[75] | No data on the number of subjects whose nails were analyzed. Samples were obtained from healthy individuals, patients with onychomycosis, and patients with psoriasis. | Psoriasis causes a reduction in the number of S-S bonds in the nails, but to a lesser extent than onychomycosis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabasz, T.; Szymańska, N.; Bąk-Drabik, K.; Damasiewicz-Bodzek, A.; Nowak, A. Is Raman Spectroscopy of Fingernails a Promising Tool for Diagnosing Systemic and Dermatological Diseases in Adult and Pediatric Populations? Medicina 2024, 60, 1283. https://doi.org/10.3390/medicina60081283
Tabasz T, Szymańska N, Bąk-Drabik K, Damasiewicz-Bodzek A, Nowak A. Is Raman Spectroscopy of Fingernails a Promising Tool for Diagnosing Systemic and Dermatological Diseases in Adult and Pediatric Populations? Medicina. 2024; 60(8):1283. https://doi.org/10.3390/medicina60081283
Chicago/Turabian StyleTabasz, Teresa, Natalia Szymańska, Katarzyna Bąk-Drabik, Aleksandra Damasiewicz-Bodzek, and Agnieszka Nowak. 2024. "Is Raman Spectroscopy of Fingernails a Promising Tool for Diagnosing Systemic and Dermatological Diseases in Adult and Pediatric Populations?" Medicina 60, no. 8: 1283. https://doi.org/10.3390/medicina60081283
APA StyleTabasz, T., Szymańska, N., Bąk-Drabik, K., Damasiewicz-Bodzek, A., & Nowak, A. (2024). Is Raman Spectroscopy of Fingernails a Promising Tool for Diagnosing Systemic and Dermatological Diseases in Adult and Pediatric Populations? Medicina, 60(8), 1283. https://doi.org/10.3390/medicina60081283