Early Cognitive Function after Deep Sedation Using Different Anesthetic Agents in Pediatric Patients: A Prospective, Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Randomization and Blinding
2.4. Study Protocol
2.5. Clinical Variables
2.6. Statistical Analyses and Sample Size
3. Results
3.1. Flow Diagram
3.2. Comparisons in Preoperative, Intraoperative, and PACU Variables between IVG and IHG (Table 3)
Group | Intravenous Sedation | Inhalational Sedation | p Value |
---|---|---|---|
n | 61 | 69 | |
Preoperative variables | |||
Sex (female) | 23 (37.7%) | 32 (46.4%) | 0.318 |
Age (years) | 8.0 (6.5–11.0) | 10.0 (6.5–13.0) | 0.342 |
Procedure types | |||
Bone marrow transplant | 35 (57.4%) | 42 (60.9%) | 0.686 |
Intrathecal therapy | 26 (42.6%) | 27 (39.1%) | |
Etiology | |||
Acute lymphoblastic leukemia | 40 (65.6%) | 44 (63.8%) | 0.974 |
Acute myeloid leukemia | 12 (19.7%) | 14 (20.3%) | |
Others | 9 (14.8%) | 11 (15.9%) | |
Height (cm) | 136.9 (121.8–150.9) | 143.5 (121.1–157.1) | 0.412 |
Weight (kg) | 36.5 (25.0–50.6) | 40.2 (24.0–52.8) | 0.755 |
Body mass index (kg/m2) | 18.6 (15.9–22.0) | 18.8 (16.4–20.9) | 0.928 |
Intraoperative variables | |||
Number of sedation procedures received | |||
First time | 39 (63.9%) | 65 (94.2%) | <0.001 |
Second time | 11 (18.0%) | 4 (5.8%) | |
Third time | 11 (18.0%) | 0 (0.0%) | |
Sedation duration (min) | 15.0 (12.0–20.0) | 15.0 (11.5–19.5) | 0.811 |
Procedure duration (min) | 7.0 (5.0–13.5) | 8.0 (5.0–12.0) | 0.884 |
Sedation maintenance during procedures | |||
Intravenous sedative dosage (mg) | |||
Propofol | 90.0 (60.0–120.0) | N/A | |
Inhalational sedative dosage (MAC) | |||
Sevoflurane | N/A | 2.0 (2.0–3.0) | |
Analgesic opioid consumption (mcg) | |||
Fentanyl | 30.0 (16.9–50.0) | 20.0 (7.5–50.0) | 0.187 |
Post-anesthesia care unit variables | |||
* Cognitive assessment time (min) | 5.0 (2.0–15.0) | 9.0 (5.0–17.0) | 0.013 |
Sedation score at evaluation (points) | 6.0 (6.0–6.0) | 6.0 (5.0–6.0) | 0.049 |
Behavior score at evaluation (points) | 4.0 (3.0–4.0) | 1.0 (1.0–1.0) | <0.001 |
3.3. Comparisons of Correct Response Rates for the ERA Tool between IVG and IHG
3.4. Comparisons in the Effect of the Number of Sedation Procedures on Correct Response Rates between IVG and IHG
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mashour, G.A.; Palanca, B.J.; Basner, M.; Li, D.; Wang, W.; Blain-Moraes, S.; Lin, N.; Maier, K.; Muench, M.; Tarnal, V.; et al. Recovery of consciousness and cognition after general anesthesia in humans. elife 2021, 10, e59525. [Google Scholar] [CrossRef] [PubMed]
- Sprung, J.; Schulte, P.J.; Knopman, D.S.; Mielke, M.M.; Petersen, R.C.; Weingarten, T.N.; Martin, D.P.; Hanson, A.C.; Schroeder, D.R.; Warner, D.O. Cognitive function after surgery with regional or general anesthesia: A population-based study. Alzheimers Dement. 2019, 15, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, W.; Yang, D.; Chen, D.; Qu, Y.; Hu, Y.; Liu, D.; He, J.; Tang, Y.; Zeng, H.; et al. Postsurgery Subjective Cognitive and Short-Term Memory Impairment Among Middle-Aged Chinese Patients. JAMA Netw. Open 2023, 6, e2336985. [Google Scholar] [CrossRef]
- Amiri, A.A.; Karvandian, K.; Ramezani, N.; Amiri, A.A. Short-term memory impairment in patients undergoing general anesthesia and its contributing factors. Saudi J. Anaesth. 2020, 14, 454–458. [Google Scholar] [PubMed]
- Pham, X.; Smith, K.R.; Sheppard, S.J.; Bradshaw, C.; Lo, E.; Davidson, A.J. Implicit memory formation during routine anesthesia in children: A double-masked randomized controlled trial. Anesthesiology 2010, 112, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.; Lewis, S.R.; Pritchard, M.W.; Schofield-Robinson, O.J.; Shelton, C.L.; Alderson, P.; Smith, A.F. Intravenous versus inhalational maintenance of anaesthesia for postoperative cognitive outcomes in elderly people undergoing non-cardiac surgery. Cochrane Database Syst. Rev. 2018, 8, Cd012317. [Google Scholar] [CrossRef]
- Xu, D.; Yang, W.; Zhao, G. [Effect of propofol and inhalation anesthesia on postoperative cognitive dysfunction in the elderly: A meta-analysis]. Nan Fang Yi Ke Da Xue Xue Bao 2012, 32, 1623–1627. [Google Scholar]
- Broad, K.D.; Hassell, J.; Fleiss, B.; Kawano, G.; Ezzati, M.; Rocha-Ferreira, E.; Hristova, M.; Bennett, K.; Fierens, I.; Burnett, R.; et al. Isoflurane Exposure Induces Cell Death, Microglial Activation and Modifies the Expression of Genes Supporting Neurodevelopment and Cognitive Function in the Male Newborn Piglet Brain. PLoS ONE 2016, 11, e0166784. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Cui, X.; Chen, J.; Luo, M.; Ouyang, W.; Tong, J.; Xie, Z.; Le, Y. Single exposure to anesthesia/surgery in neonatal mice induces cognitive impairment in young adult mice. Free Radic. Biol. Med. 2024, 214, 184–192. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, Y.; Zhou, Z.; Yan, J.; Zhou, B.; Chi, X.; Luo, A.; Li, S. Resveratrol Mitigates Sevoflurane-Induced Neurotoxicity by the SIRT1-Dependent Regulation of BDNF Expression in Developing Mice. Oxidative Med. Cell. Longev. 2020, 2020, 9018624. [Google Scholar] [CrossRef]
- Apai, C.; Shah, R.; Tran, K.; Pandya Shah, S. Anesthesia and the Developing Brain: A Review of Sevoflurane-induced Neurotoxicity in Pediatric Populations. Clin. Ther. 2021, 43, 762–778. [Google Scholar] [CrossRef]
- Stewart, S.H.; Buffett-Jerrott, S.E.; Finley, G.A.; Wright, K.D.; Valois Gomez, T. Effects of midazolam on explicit vs implicit memory in a pediatric surgery setting. Psychopharmacology 2006, 188, 489–497. [Google Scholar] [CrossRef]
- Xu, J.; Mathena, R.P.; Singh, S.; Kim, J.; Long, J.J.; Li, Q.; Junn, S.; Blaize, E.; Mintz, C.D. Early Developmental Exposure to Repetitive Long Duration of Midazolam Sedation Causes Behavioral and Synaptic Alterations in a Rodent Model of Neurodevelopment. J. Neurosurg. Anesthesiol. 2019, 31, 151–162. [Google Scholar] [CrossRef]
- Iqbal O’Meara, A.M.; Miller Ferguson, N.; Zven, S.E.; Karam, O.L.; Meyer, L.C.; Bigbee, J.W.; Sato-Bigbee, C. Potential Neurodevelopmental Effects of Pediatric Intensive Care Sedation and Analgesia: Repetitive Benzodiazepine and Opioid Exposure Alters Expression of Glial and Synaptic Proteins in Juvenile Rats. Crit. Care Explor. 2020, 2, e0105. [Google Scholar] [CrossRef] [PubMed]
- Drury, K.M.; Hall, T.A.; Orwoll, B.; Adhikary, S.; Kirby, A.; Williams, C.N. Exposure to Sedation and Analgesia Medications: Short-term Cognitive Outcomes in Pediatric Critical Care Survivors with Acquired Brain Injury. J. Intensive Care Med. 2024, 39, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Bosnjak, Z.J.; Logan, S.; Liu, Y.; Bai, X. Recent Insights into Molecular Mechanisms of Propofol-Induced Developmental Neurotoxicity: Implications for the Protective Strategies. Anesth. Analg. 2016, 123, 1286–1296. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Jiang, Y.; Gao, J.; Liu, B.; Chen, P. Repeated exposure to propofol potentiates neuroapoptosis and long-term behavioral deficits in neonatal rats. Neurosci. Lett. 2013, 534, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Shen, C.M.; Wang, Y.; Wu, Q.Z.; Wang, Y.L.; Liu, Q.; Sun, Y.M.; Cao, J.P.; Wu, Y.Q. Repeated exposure to propofol in the neonatal period impairs hippocampal synaptic plasticity and the recognition function of rats in adulthood. Brain Res. Bull. 2021, 169, 63–72. [Google Scholar] [CrossRef]
- Alexander, S.; Kairalla, J.A.; Gupta, S.; Hibbitts, E.; Weisman, H.; Anghelescu, D.; Winick, N.J.; Krull, K.R.; Salzer, W.L.; Burke, M.J.; et al. Impact of Propofol Exposure on Neurocognitive Outcomes in Children with High-Risk B All: A Children’s Oncology Group Study. J. Clin. Oncol. 2024, 42, 2671–2679. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, X. Genistein attenuates cognitive deficits and neuroapoptosis in hippocampus induced by ketamine exposure in neonatal rats. Synapse 2021, 75, e22181. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wen, G.; Yan, L.; Wang, Y.; Ren, X.; Li, G.; Luo, Y.; Shang, J.; Lu, L.; Hermenean, A.; et al. Ketamine administration causes cognitive impairment by destroying the circulation function of the glymphatic system. Biomed. Pharmacother. 2024, 175, 116739. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Anand, K.J. Developmental neurotoxicity of ketamine in pediatric clinical use. Toxicol. Lett. 2013, 220, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Galarza Vallejo, A.; Kroes, M.C.W.; Rey, E.; Acedo, M.V.; Moratti, S.; Fernández, G.; Strange, B.A. Propofol-induced deep sedation reduces emotional episodic memory reconsolidation in humans. Sci. Adv. 2019, 5, eaav3801. [Google Scholar] [CrossRef] [PubMed]
- Borrat, X.; Ubre, M.; Risco, R.; Gambús, P.L.; Pedroso, A.; Iglesias, A.; Fernandez-Esparrach, G.; Ginés, À.; Balust, J.; Martínez-Palli, G. Computerized tests to evaluate recovery of cognitive function after deep sedation with propofol and remifentanil for colonoscopy. J. Clin. Monit. Comput. 2019, 33, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.Y.; Shi, G.; Zhao, P. Neonatal Sevoflurane Exposure Impairs Learning and Memory by the Hypermethylation of Hippocampal Synaptic Genes. Mol. Neurobiol. 2021, 58, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Cattano, D.; Young, C.; Straiko, M.M.; Olney, J.W. Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth. Analg. 2008, 106, 1712–1714. [Google Scholar] [CrossRef] [PubMed]
- Amrock, L.G.; Starner, M.L.; Murphy, K.L.; Baxter, M.G. Long-term effects of single or multiple neonatal sevoflurane exposures on rat hippocampal ultrastructure. Anesthesiology 2015, 122, 87–95. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Q.; Wang, J.; Liu, L. Anaesthesia and brain development: A review of propofol-induced neurotoxicity in pediatric populations. J. Dev. Orig. Health Dis. 2024, 15, e2. [Google Scholar] [CrossRef]
- Olutoye, O.A.; Baker, B.W.; Belfort, M.A.; Olutoye, O.O. Food and Drug Administration warning on anesthesia and brain development: Implications for obstetric and fetal surgery. Am. J. Obstet. Gynecol. 2018, 218, 98–102. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, Y.; Tan, S.; Xu, C.; Ma, J. Role of posttranslational modifications in memory and cognitive impairments caused by neonatal sevoflurane exposure. Front. Pharmacol. 2023, 14, 1113345. [Google Scholar] [CrossRef]
- Ma, J.; Williams, J.; Eastwood, D.; Lin, S.; Qian, X.; Fang, Q.; Cope, D.; Yuan, Z.; Cao, L.; An, J. High-dose Propofol Anesthesia Reduces the Occurrence of Postoperative Cognitive Dysfunction via Maintaining Cytoskeleton. Neuroscience 2019, 421, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H. Mechanism of emergence agitation induced by sevoflurane anesthesia. Korean J. Anesthesiol. 2011, 60, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.D.; Anghelescu, D.L. Emergence Delirium in Pediatric Anesthesia. Paediatr. Drugs 2017, 19, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Hoch, K. Current Evidence-Based Practice for Pediatric Emergence Agitation. AANA J. 2019, 87, 495–499. [Google Scholar]
- Farag, R.S.; Spicer, A.C.; Iyer, G.; Stevens, J.P.; King, A.; Bain, P.A.; McAlvin, J.B. Incidence of emergence agitation in children undergoing sevoflurane anesthesia compared to isoflurane anesthesia: An updated systematic review and meta-analysis. Paediatr. Anaesth. 2024, 34, 304–317. [Google Scholar] [CrossRef] [PubMed]
Sedation Score |
---|
1. no response to light tapping or shaking |
2. slight response to light tapping or shaking |
3. only response when their name is called loudly or repeatedly |
4. response by blinking eyes when one’s name is called in normal tone |
5. response and goes back to sleep when one’s name is called in normal tone |
6. response immediately when one’s name is called in anormal tone. They are alert and can make clear decisions |
Behavior Response Score |
---|
1. Stay calm, cooperate, and follow instructions |
2. Anxious, but if you advise and comfort them, they will remain calm |
3. Anxious, and even when calmed down, they are on the verge of crying, looking for one’s mother |
4. Crying, blowing, making a fuss, not staying still, and constantly moving with resistance |
Group | Intravenous Sedation | Inhalational Sedation | p Value |
---|---|---|---|
n | 61 | 69 | |
The correct response rate for the early recognition assessment tool | |||
The names of the images | 52 (85.2%) | 61 (88.4%) | 0.594 |
The number of images | 50 (82.0%) | 60 (87.0%) | 0.431 |
* Both perspectives | 49 (80.3%) | 59 (85.5%) | 0.432 |
Number of IV Sedation Procedures Received | First Time | Second Time | Third Time | p Value |
---|---|---|---|---|
n = 39 | n = 11 | n = 11 | ||
Correct response rate for the ERA tool | ||||
Names of images | 32 (82.1%) | 11 (100.0%) | 9 (81.8%) | 0.313 |
Number of images | 31 (79.5%) | 10 (90.9%) | 9 (81.8%) | 0.685 |
* Both perspectives | 31 (79.5%) | 9 (81.8%) | 9 (81.8%) | 0.976 |
Number of IH Sedation Procedures Received | First Time | Second Time | p Value |
---|---|---|---|
65 | 4 | ||
Correct response rate for the ERA tool | |||
Names of images | 58 (89.2%) | 3 (75.0%) | 0.396 |
Number of images | 57 (87.7%) | 3 (75.0%) | 0.436 |
* Both perspectives | 56 (86.2%) | 3 (75.0%) | 0.474 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, M.S.; Kim, J.Y.; Koh, H.J. Early Cognitive Function after Deep Sedation Using Different Anesthetic Agents in Pediatric Patients: A Prospective, Randomized Controlled Trial. Medicina 2024, 60, 1342. https://doi.org/10.3390/medicina60081342
Chae MS, Kim JY, Koh HJ. Early Cognitive Function after Deep Sedation Using Different Anesthetic Agents in Pediatric Patients: A Prospective, Randomized Controlled Trial. Medicina. 2024; 60(8):1342. https://doi.org/10.3390/medicina60081342
Chicago/Turabian StyleChae, Min Suk, Ji Yeon Kim, and Hyun Jung Koh. 2024. "Early Cognitive Function after Deep Sedation Using Different Anesthetic Agents in Pediatric Patients: A Prospective, Randomized Controlled Trial" Medicina 60, no. 8: 1342. https://doi.org/10.3390/medicina60081342
APA StyleChae, M. S., Kim, J. Y., & Koh, H. J. (2024). Early Cognitive Function after Deep Sedation Using Different Anesthetic Agents in Pediatric Patients: A Prospective, Randomized Controlled Trial. Medicina, 60(8), 1342. https://doi.org/10.3390/medicina60081342