Studies on the Synthesis of Derivatives of Marine-Derived Bostrycin and Their Structure-Activity Relationship against Tumor Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity
Compound/Cell Line | MCF-7 b | MDA-MB-435 b | A549 b | HepG2 b | HCT-116 b | MCF-10A b |
---|---|---|---|---|---|---|
1 | 2.18 ± 0.14 | 2.82 ± 0.17 | 2.63 ± 0.33 | 7.71 ± 0.72 | 4.78 ± 0.03 | 14.08 ± 0.58 |
2 | 2.69 ± 0.31 | 3.19 ± 0.92 | 4.49 ± 0.13 | 9.99 ± 0.55 | 5.69 ± 0.25 | 13.83 ± 0.76 |
3 | 6.19 ± 0.60 | 2.91 ± 0.18 | 4.72 ± 0.17 | 31.01 ± 0.71 | 4.70 ± 0.39 | 28.63 ± 0.91 |
4 | >50 | 41.59 ± 2.63 | >50 | >50 | >50 | >50 |
5 | 6.87 ± 0.33 | 5.96 ± 0.21 | 4.25 ± 0.16 | 36.95 ± 1.97 | 11.03 ± 1.35 | 18.11±1.30 |
6 | 7.99 ± 0.09 | 11.67 ± 1.18 | 5.50 ± 0.24 | 22.34 ± 2.89 | 7.83 ± 0.32 | 34.15 ± 0.85 |
7 | 2.52 ± 0.26 | 4.25 ± 0.57 | 0.78 ± 0.04 | 4.58 ± 0.50 | 3.06 ± 0.10 | 4.79 ± 0.52 |
8 | 1.59 ± 0.16 | 1.26 ± 0.12 | 0.52 ± 0.02 | 3.32 ± 0.58 | 2.92 ± 0.06 | 21.72 ± 1.45 |
9 | 3.58 ± 0.65 | >50 | 31.07 ± 1.94 | 22.35 ± 1.16 | 34.24 ± 1.27 | >50 |
10 | 13.97 ± 0.98 | >50 | 21.50 ± 1.43 | 18.00 ± 0.60 | 26.38 ± 0.89 | >50 |
11 | 1.08 ± 0.21 | >50 | 25.14 ± 0.74 | 35.68 ± 1.29 | 36.46 ± 0.53 | >50 |
12 | 4.87 ± 0.23 | 4.25 ± 0.75 | 3.74 ± 0.67 | 12.91 ± 0.96 | 4.06 ± 0.65 | Nt c |
13 | 35.55 ± 1.40 | >50 | >50 | 32.16 ± 2.43 | 35.93 ± 1.13 | >50 |
14 | >50 | >50 | >50 | >50 | >50 | >50 |
15 | 3.72 ± 0.27 | 10.32 ± 0.45 | 4.87 ± 0.43 | >50 | 4.84 ± 0.25 | 41.60 ± 0.51 |
16 | 39.44 ± 0.68 | 36.41 ± 2.08 | 41.44 ± 2.86 | 30.31 ± 1.63 | 43.27 ± 1.56 | Nt c |
17 | 28.66 ± 2.37 | 40.37 ± 1.49 | 21.30 ± 2.02 | >50 | 20.63 ± 0.37 | 19.79 ± 0.63 |
18 | 9.17 ± 0.28 | 25.56 ± 1.71 | 15.18 ± 0.42 | >50 | 13.63 ± 1.85 | 27.69 ± 0.93 |
19 | 7.94 ± 0.26 | 7.86 ± 1.20 | 6.25 ± 0.43 | >50 | 4.92 ± 0.38 | 7.50 ± 0.69 |
20 | 3.14 ± 0.31 | 4.04 ± 0.35 | 3.16 ± 0.23 | 1.99 ± 0.17 | 2.81 ± 0.31 | Nt c |
21 | 4.62 ± 0.44 | 6.38 ± 0.47 | 3.06 ± 0.46 | 6.09 ± 1.14 | 3.25 ± 0.67 | Nt c |
22 | 4.81 ± 0.40 | 0.95 ± 0.13 | 0.76 ± 0.03 | 6.61 ± 1.12 | 0.75 ± 0.05 | Nt c |
23 | 0.71 ± 0.01 | 0.76 ± 0.06 | 4.07 ± 0.51 | 6.90 ± 0.26 | 0.95 ± 0.06 | 14.79 ± 0.96 |
24 | 2.45 ± 0.48 | 7.05 ± 0.56 | 4.06 ± 0.42 | 4.03 ± 0.13 | 3.25 ± 0.54 | 30.64 ± 2.54 |
25 | 2.60 ± 0.45 | 10.64 ± 1.11 | 0.71 ± 0.01 | 3.33 ± 0.66 | 0.74 ± 0.10 | 34.96 ± 1.94 |
26 | 14.42 ± 0.42 | 13.33 ± 0.20 | 26.12 ± 3.15 | 22.66 ± 1.95 | 11.95 ± 1.53 | Nt c |
27 | 6.01 ± 0.39 | 3.19 ± 0.15 | 7.31 ± 0.58 | 3.18 ± 0.75 | 3.08 ± 0.35 | Nt c |
28 | 0.57 ± 0.04 | 0.63 ± 0.45 | 0.37 ± 0.04 | 0.82 ± 0.01 | 0.68 ± 0.08 | 0.81 ± 0.11 |
29 | 3.18 ± 0.22 | 0.55 ± 0.11 | 4.06 ± 0.35 | 2.55 ± 0.55 | 0.73 ± 0.02 | Nt c |
epirubicin d | 0.96 ± 0.08 | 0.56 ± 0.06 | 0.61 ± 0.05 | 0.96 ± 0.02 | 0.48 ± 0.03 | 0.48 ± 0.08 |
3. Experimental Section
3.1. Chemistry
3.2. Preparation of Bostrycin (1), Deoxybostrycin (2), Nigrosporin B (3) and Austrocortinin (4)
3.3. Synthetic Methods of Compounds
3.3.1. Synthesis of 2,3-O-(isopropylidene) Bostrycin (5)
3.3.2. Synthesis of 2,3-O-(3′-methylbut-2′-enyl) Bostrycin (6)
3.3.3. Synthesis of 1-O-(hydroxymethyl)-2,3-O-(methylene) Bostrycin (7)
3.3.4. Synthesis of 2,3-O-(carbonyl) Bostrycin (8)
3.3.5. General Procedure: Synthesis of Compounds 9–22
3.3.6. General Procedure: Synthesis of Compounds 23–29
3.4. Antitumor Activity in Vitro
3.4.1. Cell Culture
3.4.2. Assessment of Antitumor Activity by MTT Assay
4. Conclusions
Acknowledgments
References
- Gill, M.; Strauch, R.J. New tetrahydroanthraquinones from the genus Cortinarius. Tetrahedron Lett. 1985, 26, 2593–2596. [Google Scholar] [CrossRef]
- Gill, M.; Smrdel, A.F. Deoxyaustrocortilutein and deoxyaustrocortirubin, tetrahydroanthraquinones from the genus Cortinarius. Phytochemistry 1987, 26, 2999–3001. [Google Scholar] [CrossRef]
- Gill, M.; Smrdel, A.F.; Strauch, R.J.; Begley, M.J. Pigments of fungi. Part 12. Structure and absolute stereochemistry of antibiotic tetrahydroanthraquinones from the fungus Dermocybe splendida Horak. X-ray structure determination of austrocortirubin phenylboronate and austrocortilutein acetonide. J. Chem. Soc. Perkin Trans. 1990, 1, 1583–1592. [Google Scholar]
- Elsworth, C.; Gill, M.; Ten, A. Pigments of Fungi. LXII* (1S,3R)-Austrocortirubin: Isolation from the fungus Dermocybe splendida and synthesis from (S)-Citramalic acid. Aust. J. Chem. 1999, 52, 1115–1117. [Google Scholar] [CrossRef]
- Alvi, K.A.; Rabenstein, J. Auxarthrol A and Auxarthrol B: Two new tetrahydroanthraquinones from Auxarthron umbrinum. J. Ind. Microbiol. Biotechnol. 2004, 31, 11–15. [Google Scholar] [CrossRef]
- Yagi, A.; Okamura, N.; Haraguchi, H.; Abo, T.; Hashimoto, K. Antimicrobial tetrahydroanthraquinones from a strain of Alternaria solani. Phytochemistry 1993, 33, 87–91. [Google Scholar]
- Feng, S.X.; Hao, J.; Chen, T.; Samuel, X. A new anthraquinone and two new tetrahydroanthraquinones from the roots of Prismatomeris connata. Helv. Chim. Acta 2011, 94, 1843–1849. [Google Scholar] [CrossRef]
- Kettner, M.; Nemec, P.; Kovác, S.; Balanová, J. Dactylarin, a new antiprotozoal antibiotic from Dactylaria lutea. J. Antibiot. 1973, 26, 692–696. [Google Scholar] [CrossRef]
- Charudattan, R.; Rao, K.V. Bostrycin and 4-deoxybostrycin: Two nonspecific phytotoxins produced by Alternaria eichhorniae. Appl. Environ. Microbiol. 1982, 43, 846–849. [Google Scholar]
- Sturdík, E.; Drobnica, L. Interaction of cytotoxic antibiotic dactylarin with glycolytic thiol enzymesin Ehrlich ascites carcinoma cells. J. Antibiot. 1981, 34, 708–712. [Google Scholar]
- Haraguchi, H.; Abo, T.; Fukuda, A.; Okamura, N.; Yagi, A. Mode of phytotoxic action of Altersolanols. Phytochemistry 1996, 43, 989–992. [Google Scholar]
- Jiang, G.C.; Lin, Y.C.; Zhou, S.N.; Vrumoed, L.L.P.; Jones, E.B.G. Studies on the secondary metabolites of mangrove fungus No. 1403 from the South China Sea. Acta. Sci. Nat. Univ. Sunyatseni 2000, 39, 68–72. [Google Scholar]
- She, Z.G.; Chen, S.P.; Lin, Y.C.; Yuan, J.; Pang, J.Y.; Li, M.F.; Liu, L.; Wu, Y.H.; Cai, X.L.; Zheng, M.Y.; et al. Process for preparation of quinone-like compound bostrycin, and its application for treating neoplasm. China Patent Application CN 101544556 A, 30 September 2009. [Google Scholar]
- Xia, X.K.; Li, Q.; Li, J.; Shao, C.L.; Zhang, J.Y.; Zhang, Y.G.; Liu, X.; Lin, Y.C.; Liu, C.H.; She, Z.G. Two new derivatives of griseofulvin from the mangrove endophytic fungus Nigrospora sp. (Strain No. 1403) from Kandelia candel (L.) Druce. Planta Med. 2011, 77, 1735–1738. [Google Scholar] [CrossRef]
- Nota, T.; Take, T.; Watanabe, T.; Abe, J. The structure of bostrycin. Tetrahedron 1970, 26, 1339–1346. [Google Scholar]
- Nota, T.; Take, T.; Otani, M.; Miyauchi, K.; Watanabe, T.; Abe, J. Structure of bostrycin. Tetrahedron Lett. 1968, 58, 6087–6090. [Google Scholar]
- Takenada, A.; Furusaki, A.; Watanabe, T.; Nota, T.; Take, T.; Watanabe, T.; Abe, J. The crystal and molecular structure of bostrycin p-bromobenzoate, a derivative of bostrycin. Tetrahedron Lett. 1968, 58, 6091–6094. [Google Scholar]
- Kelly, T.R.; Saha, J.K. Bostrycin: Structure correction and synthesis. J. Org. Chem. 1985, 50, 3679–3685. [Google Scholar]
- Larsen, D.S.; Stoodley, R.J. An enantioselective synthesis of (+)-bostrycin leading to a revision of the absolute configuration of its natural antipode. Tetrahedron 1990, 46, 4711–4732. [Google Scholar]
- Xie, G.E.; Zhu, X.; Li, Q.; Gu, M.H.; He, Z.j.; Wu, J.H.; Li, J.; Lin, Y.C.; Li, M.F.; She, Z.G.; Yuan, J. SZ-685C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activityby suppression of the Akt/FOXO pathway. Br. J. Pharmacol. 2010, 159, 689–697. [Google Scholar] [CrossRef]
- Xia, X.K.; Huang, H.R.; She, Z.G.; Shao, C.L.; Liu, F.; Cai, X.L.; Vrijmoed, L.L.P.; Lin, Y.C. 1H and 13C NMR assignments for five anthraquinones from the mangrove endophytic fungus Halorosellinia sp. (No. 1403). Magn. Reson. Chem. 2007, 45, 1006–1009. [Google Scholar] [CrossRef]
- Xu, C.L.; Wang, J.F.; Gao, Y.; Lin, H.Y.; Du, L.; Yang, S.S.; Long, S.M.; She, Z.G.; Cai, X.L.; Zhou, S.N.; Lu, Y.J. The anthracenedinone compound bostrycin induces mitochondria-mediated apoptosis in the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2010, 10, 297–308. [Google Scholar]
- Chen, W.S.; Hou, J.N.; Guo, Y.B.; Yang, H.L.; Xia, C.M.; Lin, Y.C.; She, Z.G. Bostrycin inhibits proliferation of human lung carcinoma A549 cells via downregulation of the P13K/Akt pathway. J. Exp. Clin. Cancer Res. 2011, 30, 1–7. [Google Scholar]
- Tandon, V.K.; Maurya, H.K. “On water”: Unprecedented nucleophilic substitution and addition reactions with 1,4-quinones in aqueous suspension. Tetrahedron Lett. 2009, 50, 5896–5902. [Google Scholar]
- Tandon, V.K.; Maurya, H.K.; Tripathi, A.; Shivakesva, G.B.; Shukla, P.K.; Srivastava, A.; Panda, D. 2,3-Disubstituted-1,4-naphthoquinones, 12H-benzo[b]phenothiazine-6,11-diones and related compounds: synthesis and biological evaluation as potential antiproliferative and antifungal agents. Eur. J. Med. Chem. 2009, 44, 1086–1092. [Google Scholar] [CrossRef]
- Tandon, V.K.; Yadav, D.B.; Maurya, H.K.; Chaturvedi, A.K.; Shukla, P.K. Design, synthesis, and biological evaluation of 1,2,3-trisubstituted-1,4-dihydrobenzo[g]quinoxaline-5,10-diones and related compounds as antifungal and antibacterial agents. Bioorg. Med. Chem. 2006, 14, 6120–6126. [Google Scholar]
- Tandon, V.K.; Maurya, H.K.; Mishra, N.N.; Shukla, P.K. Design, synthesis and biologicalevaluation of novel nitrogen and sulfur containing hetero-1,4-naphthoquinones as potentantifungal and antibacterial agents. Eur. J. Med. Chem. 2009, 44, 3130–3137. [Google Scholar]
- Huang, C.H.; Pan, J.H.; Chen, B.; Yu, M.; Huang, H.B.; Zhu, X.; Lu, Y.J.; She, Z.G.; Lin, Y.C. Three bianthraquinone derivatives from the mangrove endophytic fungus Alternaria sp. ZJ9-6B from the South China Sea. Mar. Drugs 2011, 9, 832–843. [Google Scholar] [CrossRef]
- Bonfante, V.; Bonadonna, G.; Villani, F.; di Fronzo, G.; Martini, A.; Casazza, A.M. Preliminary phase I study of 4′-epi-adriamycin. Cancer Treat. Rep. 1979, 63, 915–918. [Google Scholar]
- Schauer, P.K.; Wittes, R.E.; Gralla, R.J.; Casper, E.S.; Young, C.W. A phase I trial of 4′-epi-adriamycin. Cancer Clin. Trials 1981, 4, 433–437. [Google Scholar]
- Bonfante, V.; Villani, F.; Bonadonna, G. Toxic and therapeutic activity of 4′-epi-doxorubicin. Tumori 1982, 68, 105–111. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chen, H.; Zhong, L.; Long, Y.; Li, J.; Wu, J.; Liu, L.; Chen, S.; Lin, Y.; Li, M.; Zhu, X.; et al. Studies on the Synthesis of Derivatives of Marine-Derived Bostrycin and Their Structure-Activity Relationship against Tumor Cells. Mar. Drugs 2012, 10, 932-952. https://doi.org/10.3390/md10040932
Chen H, Zhong L, Long Y, Li J, Wu J, Liu L, Chen S, Lin Y, Li M, Zhu X, et al. Studies on the Synthesis of Derivatives of Marine-Derived Bostrycin and Their Structure-Activity Relationship against Tumor Cells. Marine Drugs. 2012; 10(4):932-952. https://doi.org/10.3390/md10040932
Chicago/Turabian StyleChen, Hong, Lili Zhong, Yuhua Long, Jia Li, Jueheng Wu, Lan Liu, Shengping Chen, Yongcheng Lin, Mengfeng Li, Xun Zhu, and et al. 2012. "Studies on the Synthesis of Derivatives of Marine-Derived Bostrycin and Their Structure-Activity Relationship against Tumor Cells" Marine Drugs 10, no. 4: 932-952. https://doi.org/10.3390/md10040932
APA StyleChen, H., Zhong, L., Long, Y., Li, J., Wu, J., Liu, L., Chen, S., Lin, Y., Li, M., Zhu, X., & She, Z. (2012). Studies on the Synthesis of Derivatives of Marine-Derived Bostrycin and Their Structure-Activity Relationship against Tumor Cells. Marine Drugs, 10(4), 932-952. https://doi.org/10.3390/md10040932