Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success
Abstract
:1. Introduction
2. Marine Environment as an Unexploited Source for Bioactives Discovery
3. Challenges Faced during Marine Natural Products Development
3.1. Biodiversity Challenges
3.2. Supply and Technical Challenges
3.3. Market Challenges
4. Marketed Marine Natural Products. Examples of Success Stories
4.1. Pharmaceutical Applications
4.1.1. Cytosar-U® and Vira-A® by Bedford Laboratories (Bedford, OH, USA) and King Pharmaceuticals (Tenafly, NJ, USA), Respectively
Compound Name (Trademark) | NP or Derivative | Original NP/Source Organism | Company/Institution (City, State, Country) | Therapeutic Area | Status 2004 [41] | Status 2009 [42] | Status 2013 [67] |
---|---|---|---|---|---|---|---|
Cytarabine (Cytosar-U®; Depocyt®) | NP derivative | Spongothymidine/sponge Cryptotethya crypta | Bedford (Bedford, OH, USA); Enzon (Piscataway, NJ, USA) | Cancer | FDA/EMEA approved | Approved | Approved |
Vidarabine (Vira-A®) | NP derivative | Spongouridine/sponge Cryptotethya crypta | King Pharma (Tenafly, NJ, USA) | Anti-viral | FDA/EMEA approved | Approved | US discontinued |
Ziconotide (Prial®) | NP | ω-Conotoxin/marine snail Conus magus | Elan Corporation (Dublin, Ireland) | Neuropahtic Pain | FDA approved | FDA/EMEA approved | Approved |
Omega-3-acid ethyl esters (Lovaza®) | NP derivative | Omega-3-fatty acids/fish | GlaxoSmithKline (Brentford, UK) | Hypertriglyceridemia | FDA approved | FDA/EMEA approved | Approved |
Trabectedin (Yondelis®) | NP | Ecteinascidin 743/tunicate Ecteinascidia turbinata | PharmaMar (Colmenar Viejo, Madrid, Spain) | Cancer | Phase II/III | EMEA approved | EMEA approved |
Eribulin mesylate (Halaven®) | NP derivative | Halichondrin B/sponge Halichodria okadai | Eisai (Tokyo, Japan) | Cancer | Phase I | Phase III | FDA/EMEA approved |
Brentuximab vedotin (SGN-35) (Adcetris®) | NP derivative | Dolastatin 10/sea hare Dolabella auricularia | Seattle Genetics (Bothell, WA, USA); Takeda GRDC (Osaka, Japan) | Cancer | - | Phase II | FDA/EMEA approved |
Iota-carrageenan (Carragelose®) | NP | Iota-carrageenan/red Algee Eucheuma/Cnondus | Marinomed (Vienna, Austria); Boehringer Ingelheim (Ingelheim, Germany) | Antiviral Viral | - | - | Over-the-counter drug (OTC) |
Pliditepsin (Aplidin®) | NP | Ascidian Aplidium albicans | PharmaMar (Colmenar Viejo, Madrid, Spain) | Cancer | Phase II | Phase II | Phase II/III |
PM00104 (Zalypsis®) | NP derivative | Jorumycin/sea slug Joruna funebris | PharmaMar (Colmenar Viejo, Madrid, Spain) | Cancer | - | Phase II | Phase II |
DMXBA (GTS-21) | NP derivative | Anabeseine/worm Paranemertes peregrina | Comentis (San Francisco, CA, USA) | Alzhemier’s | Phase I | Phase II | Phase II |
Lurbinectedin (PM01183) | NP derivative | Ecteinascidins/tunicate Ecteinascidia turbinata | PharmaMar (Colmenar Viejo, Madrid, Spain) | Cancer | - | - | Phase II |
CDX-011 | NP derivative | Dolastatin 10/sea hare Dolabella auricularia | Seatle Genetics (Bothell, WA, USA) | Cancer | - | Phase II | Phase II |
SGN-75 | NP derivative | Dolastatin 10/sea hare Dolabella auricularia | Seatle Genetics (Bothell, WA, USA) | Cancer | - | Phase I | Phase I |
PM060184 | NP | Sponge Lithoplocamia lithistoides | PharmaMar (Colmenar Viejo, Madrid, Spain) | Cancer | - | - | Phase I |
Marizomib | NP | Salinosporamide A/Marine actinomycete Salinispora tropica | Nereus Pharmaceutical (San Diego, CA, USA) | Cancer | - | Phase I | Phase I |
ASG-5ME | NP derivative | Dolastatin 10/sea hare Dolabella auricularia | Astellas (Northbrook, IL, USA) | Cancer | - | - | Phase I |
Bryostatin I | NP | Bryozoan Bugula neritina | NCI (Bethesda, MD, USA) | Cancer Alzheimer’s | Phase I/II | Phase I/II Phase I | Phase I Phase II |
Soblidotin | NP derivative | Dolastatin 10/sea hare Dolabella auricularia | Aska Pharmaceuticals (Tokyo, Japan) | Cancer | Phase I | Phase III | Discontinued |
Synthadotin | NP derivative | Dolastatin 15/Sea hare Dolabella auricularia | Genzyme Coporation (Cambridge, MA, USA) | Cancer | Phase I/II | Phase II | Discontinued |
Pseudopterosins | NP and derivatives | Pseudopterosins /Soft coral Pseudoptergorgia elisabethae | VimRx Pharmaceuticals * (Irvine, CA, USA) | Wound healing | Phase I | Phase II | Discontinued |
Elisidepsin (Irvalec®) | NP derivative | Kahalides/ Sea slug Elysia rufescens | PharmaMar (Colmenar Viejo, Madrid, Spain) | Cancer | - | Phase II | Discontinued |
Plinabulin (NPI-2358) | NP derivative | Halimide (NPI-2350)/marine fungus Aspergillus sp. | Nereus Pharmaceutical (San Diego, CA, USA) | Cancer | - | Phase II | Discontinued |
Tasidotin (ILX-651) | NP derivative | Dolastatin 15/sea hare Dolabella auricularia | Genzyme Corporation (Cambridge, MA, USA) | Cancer | - | Phase II | Discontinued |
Hemiasterlin | NP | Sponge Hemiastrella minor | Eisai (Tokyo, Japan) | Cancer | - | Phase I | Discontinued |
Kahalalide F | NP | Sea slug Elysia rufescens. | PharmaMar (Colmenar Viejo, Madrid, Spain); Hawai University (Honolulu, HI., USA) | Cancer | Phase I/II | Discontinued | - |
Squalamine | NP | Dogphish shark Squalus acanthias | Genaera * (Plymouth Meeting, PA, USA) | Cancer | Phase I/II | Discontinued | - |
HTI-286 | NP derivative | Hemiasterlin/sponge Hemiastrella minor | Wyeth * (Philadelphia, PA, USA) | Cancer | Phase I/II | Discontinued | - |
Discodermolide | NP | Sponge Discodermia dissouta | Novartis (Basel, Switzerland); Harbor Branch (Fort Pierce, FL, USA) | Cancer | Phase I | Discontinued | - |
E7389 | NP derivative | Halichondria B/sponge Halichondria okadai | Eisai (Tokyo, Japan) | Cancer | Phase I | Discontinued | - |
Spisulosine (ES-285) | NP | Marine clam Spisula polynyma | PharmaMar (Colmenar Viejo, Madrid, Spain) | Cancer | Phase I | Discontinued | - |
KRN-7000 | NP derivative | Agelasphins/sponge Agelas mauritianus | Vrije Universiteit Medical Center, (Amsterdam, Netherlands) | Cancer | Phase I | Discontinued | - |
Æ-941 (Neovastat®) | NP mixture | Shark cartilage | Æterna (Québec, Québec, Canada) | Cancer | Phase II/III | Discontinued | - |
NVP-LAQ824 | NP derivative | Psammaplin A/sponge Aplysinella rhax | Dana-Farber Cancer Institute (Boston, MA, USA) | Cancer | Phase I | Discontinued | - |
Conotoxin G (CGX-1160) | NP | Marine snail Conus geographus | Cognetix (Salt Lake City, UT, USA) | Pain | Phase I | Discontinued | - |
IPL-576092 and derivatives | NP derivatives | Contignasterol/Sponge Petrosia contignata | Aventis * (Strasbourg, France) | Anti-asthmatic | Phase II | Discontinued | - |
4.1.2. Prialt® by Elan Corporation (Dublin, Ireland)
4.1.3. Lovaza®/Omacor® by GlaxoSmithKline (Brentford, UK)
4.1.4. Yondelis® by PharmaMar (Colmenar Viejo, Madrid, Spain)
4.1.5. Halaven® by Eisai (Tokyo, Japan)
4.1.6. Adcetris® by Seattle Genetics (Bothell, WA, USA)
4.1.7. Carragelose® by Marinomed (Vienna, Austria)
4.2. Cosmeceutical Applications
4.2.1. Abyssine® by Unipex (New York, NY, USA)
4.2.2. Resilience® by Estée Lauder (New York, NY, USA)
4.2.3. SeaCode® by Lipotec (Barcelona, Spain)
4.2.4. RefirMAR® by BIOALVO (Lisbon, Portugal)
4.2.5. Microalgae Derived Bioactive Ingredients
4.2.6. Other Derived Marine Bioactive Ingredients
5. How Can Success Rate Be Improved?
5.1. Biodiversity Challenges
5.2. Supply and Technical Challenges
5.3. Market Challenges
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Mann, J.; Davidson, R.S.; Hobbs, J.B.; Banthorpe, D.V.; Harbourne, J.B. Natural Products, Their Chemistry and Biological Significance, 1st ed.; Longman Scientific and Technical Longman Group: London, UK, 1994. [Google Scholar]
- Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef]
- Carter, G.T. Natural products and Pharma 2011: Strategic changes spur new opportunities. Nat. Prod. Rep. 2011, 28, 1783–1789. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef]
- Margulis, L.; Schwartz, K.V. Five Kingdoms—An Illustrated Guide to the Phyla of Life on Earth, 3rd ed.; W.H. Freeman & Company: New York, NY, USA, 1998. [Google Scholar]
- Gerwick, W.H.; Moore, B.S. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol. 2012, 19, 85–98. [Google Scholar] [CrossRef]
- Leal, M.C.; Puga, J.; Serodio, J.; Gomes, N.C.M.; Calado, R. Trends in the discovery of new marine natural products from invertebrates over the last two decades—Where and what are we bioprospecting? PLoS One 2012, 7, e30580. [Google Scholar]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2014, 31, 160–258. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2013, 30, 237–323. [Google Scholar] [CrossRef]
- Bhatnagar, I.; Kim, S.K. Immense essence of excellence: Marine microbial bioactive compounds. Mar. Drugs 2010, 8, 2673–2701. [Google Scholar] [CrossRef]
- Waters, A.L.; Hill, R.T.; Place, A.R.; Hamann, M.T. The expanding role of marine microbes in pharmaceutical development. Curr. Opin. Biotechnol. 2010, 21, 780–786. [Google Scholar] [CrossRef]
- Penesyan, A.; Kjelleberg, S.; Egan, S. Development of novel drugs from marine surface associated microorganisms. Mar. Drugs 2010, 8, 438–459. [Google Scholar] [CrossRef]
- Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 2009, 26, 338–362. [Google Scholar] [CrossRef]
- Pettit, G.R.; Fujii, Y.; Hasler, J.A.; Schmidt, J.M. Isolation and characterization of palystatins A–D. J. Nat. Prod. 1982, 45, 272–276. [Google Scholar] [CrossRef]
- Berdy, J. Bioactive microbial metabolites. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef]
- Sudek, S.; Lopanik, N.B.; Waggoner, L.E.; Hildebrand, M.; Anderson, C.; Liu, H.; Patel, A.; Sherman, D.H.; Haygood, M.G. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J. Nat. Prod. 2007, 70, 67–74. [Google Scholar] [CrossRef]
- Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov. 2009, 8, 69–85. [Google Scholar] [CrossRef]
- Schumacher, M.; Kelkel, M.; Dicato, M.; Diederich, M. Gold from the sea: Marine compounds as inhibitors of the hallmarks of cancer. Biotechnol. Adv. 2011, 29, 531–547. [Google Scholar] [CrossRef]
- Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem. 2011, 46, 4769–4807. [Google Scholar] [CrossRef]
- Nelson, F.P.; Rumsfield, J. Cosmetics. Content and function. Int. J. Dermatol. 1988, 27, 665–672. [Google Scholar] [CrossRef]
- Marine Cosmeceuticals: Trends and Prospects; Kim, S.-K. (Ed.) CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2012.
- Thomas, N.V.; Kim, S.-K. Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs 2013, 11, 146–164. [Google Scholar] [CrossRef]
- Raposo, M.F.; de Morais, R.M.; Bernardo de Morais, A.M. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar. Drugs 2013, 11, 233–252. [Google Scholar] [CrossRef]
- Kim, Y.H.; Chung, C.B.; Kim, J.G.; Ko, K.I.; Park, S.H.; Kim, J.H.; Eom, S.Y.; Kim, Y.S.; Hwang, Y.I.; Kim, K.H. Anti-wrinkle activity of ziyuglycoside I isolated from a Sanguisorba officinalis root extract and its application as a cosmeceutical ingredient. Biosci. Biotechnol. Biochem. 2008, 72, 303–311. [Google Scholar]
- Kijjoa, A.S. Pichan, drugs and cosmetics from the sea. Mar. Drugs 2004, 2, 73–74. [Google Scholar] [CrossRef]
- Imhoff, J.F.; Labes, A.; Wiese, J. Bio-mining the microbial treasures of the ocean: New natural products. Biotechnol. Adv. 2011, 29, 468–482. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Rodriguez, A.D.; Berlinck, R.G.S.; Hamann, M.T. Marine pharmacology in 2005–6: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochim. Biophys. Acta 2009, 1790, 283–308. [Google Scholar] [CrossRef]
- Ortholand, J.Y.; Ganesan, A. Natural products and combinatorial chemistry: Back to the future. Curr. Opin. Chem. Biol. 2004, 8, 271–280. [Google Scholar] [CrossRef]
- Beutler, J.A. Natural products as a foundation for drug discovery. Curr. Protoc. Pharmacol. 2009, 46, 9.11.1–9.11.21. [Google Scholar]
- Radjasa, O.K.; Vaske, Y.M.; Navarro, G.; Vervoort, H.C.; Tenney, K.; Linington, R.G.; Crews, P. Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants. Bioorg. Med. Chem. 2011, 19, 6658–6674. [Google Scholar] [CrossRef]
- Glaser, K.B.; Mayer, A.M.S. A renaissance in marine pharmacology: From preclinical curiosity to clinical reality. Biochem. Pharmacol. 2009, 78, 440–448. [Google Scholar] [CrossRef]
- Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 2005, 4, 206–220. [Google Scholar] [CrossRef]
- Reynolds, W.F.; Enriquez, R.G. Choosing the best pulse sequences, acquisition parameters, postacquisition processing strategies, and probes for natural product structure elucidation by NMR spectroscopy. J. Nat. Prod. 2002, 65, 221–244. [Google Scholar] [CrossRef]
- Leeds, J.A.; Schmitt, E.K.; Krastel, P. Recent developments in antibacterial drug discovery: Microbe-derived natural products—From collection to the clinic. Expert Opin. Investig. Drugs 2006, 15, 211–226. [Google Scholar] [CrossRef]
- Brady, S.F. Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat. Protoc. 2007, 2, 1297–1305. [Google Scholar] [CrossRef]
- Li, X.; Qin, L. Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol. 2005, 23, 539–543. [Google Scholar]
- Galm, U.; Shen, B. Natural product drug discovery: The times have never been better. Chem. Biol. 2007, 14, 1098–1104. [Google Scholar] [CrossRef]
- Zhang, W.; Dolan, M.E. Beyond the hapmap genotypic data: Prospects of deep resequencing projects. Curr. Bioinform. 2008, 3, 178. [Google Scholar] [CrossRef]
- Piel, J. Combinatorial biosynthesis in symbiotic bacteria. Nat. Chem. Biol. 2006, 2, 661–662. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Glaser, K.B. Marine pharmacology and the marine pharmaceuticals pipeline. FASEB J. 2013, 27, 1167.7. [Google Scholar]
- Newman, D.J.; Cragg, G.M. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 2004, 67, 1216–1238. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; Newman, D.J.; Potts, B.C.; Shuster, D.E. The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends Pharmacol. Sci. 2010, 31, 255–265. [Google Scholar] [CrossRef]
- BCC Research. Available online: http://www.bccresearch.com/pressroom/phm/global-market-marine-derived-drugs-reach-nearly-$8.6-billion-2016 (accessed on 25 November 2013).
- Freedonia Group. Available online: http://www.freedoniagroup.com/FreedoniaStudyIndex.aspx (accessed on 25 November 2013).
- EurOcean. Available online: http://www.eurocean.org/np4/2502.html (acessed on 25 November 2013).
- Rouhi, A.M. Supply Issues Complicate Trek of Chemicals from the Sea to Market. Chem. Eng. News 1995, 73, 42–44. [Google Scholar] [CrossRef]
- Leal, M.C.; Madeira, C.; Brandão, C.A.; Puga, J.; Calado, R. Bioprospecting of marine invertebrates for new natural products—A chemical and zoogeographical perspective. Molecules 2012, 17, 9842–9854. [Google Scholar] [CrossRef]
- Pettit, R.K. Culturability and secondary metabolite diversity of extreme microbes: Expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Mar. Biotechnol. 2011, 13, 1–11. [Google Scholar] [CrossRef]
- Montaser, R.; Luesch, H. Marine natural products: A new wave of drugs? Future Med. Chem. 2011, 3, 1475–1489. [Google Scholar] [CrossRef]
- Hill, R.T. Marine Natural Products Biotechnology. Biotechnology. Volume 9. Available online: http://www.eolss.net/sample-chapters/c17/e6-58-08-05.pdf (accessed on 25 November 2013).
- Cragg, G.M.; Katz, F.; David, J.N.A.; Rosenthal, J. The impact of the United Nations Convention on Biological Diversity on natural products research. Nat. Prod. Rep. 2012, 29, 1407–1423. [Google Scholar] [CrossRef]
- Costello, M.J.; Bouchet, P.; Emblow, C.S.; Legakis, A. European marine biodiversity inventory and taxonomic resources: State of the art and gaps in knowledge. Mar. Ecol. Prog. Ser. 2006, 316, 257–268. [Google Scholar] [CrossRef]
- Jianga, X.; Xionga, J.; Songa, Z.; Morsed, J.C.; Jonese, F.C.; Xie, Z. Is coarse taxonomy sufficient for detecting macroinvertebrate patterns in floodplain lakes? Ecol. Indic. 2013, 27, 48–55. [Google Scholar] [CrossRef]
- Hughes, J.; Rees, S.; Kalindjian, S.; Philpott, K. Principles of early drug discovery. Br. J. Pharmacol. 2011, 162, 1239–1249. [Google Scholar] [CrossRef]
- Gribbon, P.; Sewing, A. High-throughput drug discovery: What can we exulect from HTS? Drug Discov. Today 2005, 10, 17–22. [Google Scholar] [CrossRef]
- Kingston, D.G.I. Modern natural products drug discovery and its relevance to biodiversity conservation. J. Nat. Prod. 2011, 74, 496–511. [Google Scholar] [CrossRef]
- Parker, C.N.; Ottl, J.; Gabriel, D.; Zhang, J.H. Advances in Biological Screening for Lead Discovery. In Natural Product Chemistry for Drug Discovery; Royal Society of Chemistry: Cambridge, UK, 2010. [Google Scholar]
- Suyama, T.L.; Gerwick, W.H.; McPhail, K.L. Survey of marine natural product structure revisions: A synergy of spectroscopy and chemical synthesis. Bioorg. Med. Chem. 2011, 19, 6675–6701. [Google Scholar] [CrossRef]
- Maier, M.E. Structural revisions of natural products by total synthesis. Nat. Prod. Rep. 2009, 26, 1105–1124. [Google Scholar] [CrossRef]
- Michel, T.; Halabalaki, M.; Skaltsounis, A.L. New concepts, experimental approaches, and dereplication strategies for the discovery of novel phytoestrogens from natural sources. Planta Med. 2013, 79, 514–532. [Google Scholar] [CrossRef]
- AntiBase 2012, The Natural Compound Identifier. Available online: http://www.wiley-vch.de/stmdata/antibase.php (acessed on 20 November 2013).
- MarinLit Database™, 2012, University of Canterbury, Christchurch, New Zealand. Available online: http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml (accessed on 20 November 2013).
- Dictionary of Natural Products Online™, A Subset of the Chapman & Hall/CRC CHEMICAL Database™. Available online: http://dnp.chemnetbase.com/dictionary-search.do?method=view&id=6930629&si= (accessed on 20 November 2013).
- Lopez-Perez, J.L.; Theron, R.; del Olmo, E.; Diaz, D. NAPROC-13: A database for the dereplication of natural product mixtures in bioassay-guided protocols. Bioinformatics 2007, 23, 3256–3257. [Google Scholar] [CrossRef]
- Petersen, F.; Amstutz, R. Natural Compounds as Drugs; Birkhäuser: Basel, Switzerland, 2008. [Google Scholar]
- Børresen, T.; Boyen, C.; Dobson, A.; Höfle, M.; Ianora, A.; Jaspars, M.; Kijjoa, A.; Olafsen, J.; Querellou, J.; Rigos, G.; et al. Marine Biotechnology: A New Vision and Strategy for Europe. Marine Board-ESF Position Paper 15. Available online: http://www.marine.ie/NR/rdonlyres/C076682C-2B32-437C-A781-B2EACBAA6B62/0/ESFMBmarine_biotechnology_paper15LR.pdf (accessed on 27 January 2014).
- Meyer, C.A. The Global Marine Pharmaceuticals Pipeline. Available online: http://marinepharmacology.midwestern.edu/ (accessed on 8 November 2013).
- Schuster, D.; Laggner, C.; Langer, T. Why drugs fail—A study on side effects in new chemical entities. Curr. Pharm. Des. 2005, 11, 3545–3559. [Google Scholar] [CrossRef]
- Lichtman, M.A. A historical perspective on the development of the cytarabine (7 days) and daunorubicin (3 days) treatment regimen for acute myelogenous leukemia: 2013 the 40th anniversary of 7 + 3. Blood Cells Mol. Dis. 2013, 50, 119–130. [Google Scholar] [CrossRef]
- Cimino, G.; Derosa, S.; Destefano, S. Antiviral agents from a gorgonian, eunicella-cavolini. Experientia 1984, 40, 339–340. [Google Scholar] [CrossRef]
- Chhikara, B.S.; Parang, K. Development of cytarabine prodrugs and delivery systems for leukemia treatment. Expert Opin. Drug Deliv. 2010, 7, 1399–1414. [Google Scholar] [CrossRef]
- Kripp, M.; Hofheinz, R.D. Treatment of lymphomatous and leukemic meningitis with liposomal encapsulated cytarabine. Int. J. Nanomed. 2008, 3, 397–401. [Google Scholar]
- National Cancer Institute, Clinical Trials (PDQ®). Available online: http://www.cancer.gov/clinicaltrials/search/results?protocolsearchid=6532271 (accessed on 1 November 2013).
- Clavis Pharma Announces Negative Outcome of Phase III CLAVELA Trial with Elacytarabine in Patients with Acute Myeloid Leukaemia. Available online: http://aqualis.no/home (accessed on 1 November 2013).
- Shen, W.; Kim, J.S.; Kish, P.E.; Zhang, J.; Mitchell, S.; Gentry, B.G.; Breitenbach, J.M.; Drach, J.C.; Hilfinger, J. Design and synthesis of vidarabine prodrugs as antiviral agents. Bioorg. Med. Chem. Lett. 2009, 19, 792–796. [Google Scholar] [CrossRef]
- Lloyd-Evans, L.P.M. A Study into the Prospects for Marine Biotechnology Development in the United Kingdom. Foresight Marine Panel, Marine Biotechnology Group 2005. Available online: http://www.vliz.be/imisdocs/publications/238815.pdf (accessed on 25 November 2013).
- Mcintosh, M.; Cruz, L.J.; Hunkapiller, M.W.; Gray, W.R.; Olivera, B.M. Isolation and structure of a peptide toxin from the marine snail conus-magus. Arch. Biochem. Biophys. 1982, 218, 329–334. [Google Scholar] [CrossRef]
- Oliveira, B.M. ω-Conotoxin MVIIA: From Marine Snail Venom to Analgesic Drug. In Drugs from the Sea; Karger: Basel, Switzerland; New York, NY, USA, 2000. [Google Scholar]
- Bauer, A.; Bronstrup, M. Industrial natural product chemistry for drug discovery and development. Nat. Prod. Rep. 2013, 31, 35–60. [Google Scholar] [CrossRef]
- Schmidtko, A.; Lotsch, J.; Freynhagen, R.; Geisslinger, G. Ziconotide for treatment of severe chronic pain. Lancet 2010, 375, 1569–1577. [Google Scholar] [CrossRef]
- Elan 2010 Annual Report; Elan Corporation: Dublin, Ireland, 2010.
- Olivera, B.M. Conus peptides: Biodiversity-based discovery and exogenomics. J. Biol. Chem. 2006, 281, 31173–31177. [Google Scholar] [CrossRef]
- Vemomics for Health. Available online: http://www.venomics.eu/ (accessed on 1 November 2013).
- Glueck, C.J.; Khan, N.; Riaz, M.; Padda, J.; Khan, Z.; Wang, P. Titrating lovaza from 4 to 8 to 12 grams/day in patients with primary hypertriglyceridemia who had triglyceride levels >500 mg/dL despite conventional triglyceride lowering therapy. Lipids Health Dis. 2012, 11, 143. [Google Scholar] [CrossRef]
- Rupp, H. OmacorA® (prescription omega-3-acid ethyl esters 90): From severe rhythm disorders to hypertriglyceridemia. Adv. Ther. 2009, 26, 675–690. [Google Scholar] [CrossRef]
- Koski, R.R. Omega-3-acid ethyl esters (lovaza) for severe hypertriglyceridemia. Pharm. Ter. 2008, 33, 271–303. [Google Scholar]
- D’Incalci, M.; Galmarini, C.M. A review of trabectedin (ET-743): A unique mechanism of action. Mol. Cancer Ther. 2010, 9, 2157–2163. [Google Scholar] [CrossRef]
- Monk, B.J.; Dalton, H.; Benjamin, I.; Tanovic, A. Trabectedin as a new chemotherapy option in the treatment of relapsed platinum sensitive ovarian cancer. Curr. Pharm. Des. 2012, 18, 3754–3769. [Google Scholar] [CrossRef]
- Cuevas, C.; Francesch, A. Development of Yondelis® (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat. Prod. Rep. 2009, 26, 322–337. [Google Scholar] [CrossRef]
- PharmaMar. Annual report 2011. Available online: http://www.pharmamar.com/pdf/EN_memoria2012.pdf (accessed on 25 November 2013).
- Aicher, T.D.; Buszek, K.R.; Fang, F.G.; Forsyth, C.J.; Jung, S.H.; Kishi, Y.; Matelich, M.C.; Scola, P.M.; Spero, D.M.; Yoon, S.K. Total synthesis of halichondrin-B and norhalichondrin-B. J. Am. Chem. Soc. 1992, 114, 3162–3164. [Google Scholar] [CrossRef]
- Towle, M.J.; Salvato, K.A.; Budrow, J.; Wels, B.F.; Kuznetsov, G.; Aalfs, K.K.; Welsh, S.; Zheng, W.J.; Seletsky, B.M.; Palme, M.H.; et al. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res. 2001, 61, 1013–1021. [Google Scholar]
- NCI. Development Therapeutics Program, Success storY: Halichondrin B (NSC 609395) E7389 (NSC 707389). Available online: http://dtp.nci.nih.gov/timeline/flash/success_stories/S4_halichondrinB.htm (accessed on 3 November 2013).
- Pettit, G.R.; Kamano, Y.; Herald, C.L.; Tuinman, A.A.; Boettner, F.E.; Kizu, H.; Schmidt, J.M.; Baczynskyj, L.; Tomer, K.B.; Bontems, R.J. Antineoplastic agents 136. The isolation and structure of a remarkable marine animal antineoplastic constituent—Dolastatin 10. J. Am. Chem. Soc. 1987, 109, 6883–6885. [Google Scholar] [CrossRef]
- Eccles, R.; Meier, C.; Jawad, M.; Weinmullner, R.; Grassauer, A.; Prieschl-Grassauer, E. Efficacy and safety of an antiviral Iota-Carrageenan nasal spray: A randomized, double-blind, placebo-controlled exploratory study in volunteers with early symptoms of the common cold. Respir. Res. 2010, 11, 108. [Google Scholar]
- Euromonitor. Available online: http://www.euromonitor.com/skin-care (accessed on 25 November 2013).
- Chi, Z.; Fang, Y. Exopolysaccharides from marine bacteria. J. Ocean Univ. China 2005, 4, 67–74. [Google Scholar] [CrossRef]
- Nichols, C.A.; Guezennec, J.; Bowman, J.P. Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: A review. Mar. Biotechnol. 2005, 7, 253–271. [Google Scholar] [CrossRef]
- Vincent, P.; Pignet, P.; Talmont, F.; Bozzi, L.; Fournet, B.; Guezennec, J.; Jeanthon, C.; Prieur, D. Production and characterization of an exopolysaccharide excreted by a deep-sea hydrothermal vent bacterium isolated from the polychaete annelid alvinella pompejana. Appl. Environ. Microbiol. 1994, 60, 4134–4141. [Google Scholar]
- Raguenes, G.; Pignet, P.; Gauthier, G.; Peres, A.; Christen, R.; Rougeaux, H.; Barbier, G.; Guezennec, J. Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminary characterization of the polymer. Appl. Environ. Microbiol. 1996, 62, 67–73. [Google Scholar]
- Raguenes, G.; Christen, R.; Guezennec, J.; Pignet, P.; Barbier, G. Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int. J. Syst. Bacteriol. 1997, 47, 989–995. [Google Scholar] [CrossRef]
- Raguenes, G.H.; Peres, A.; Ruimy, R.; Pignet, P.; Christen, R.; Loaec, M.; Rougeaux, H.; Barbier, G.; Guezennec, J.G. Alteromonas infernus sp. nov., a new polysaccharide-producing bacterium isolated from a deep-sea hydrothermal vent. J. Appl. Microbiol. 1997, 82, 422–430. [Google Scholar]
- Rougeaux, H.; Guezennec, J.; Carlson, R.W.; Kervarec, N.; Pichon, R.; Talaga, P. Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deep-sea hydrothermal vent. Carbohydr. Res. 1999, 315, 273–285. [Google Scholar] [CrossRef]
- Cambon-Bonavita, M.A.; Raguenes, G.; Jean, J.; Vincent, P.; Guezennec, J. A novel polymer produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. J. Appl. Microbiol. 2002, 93, 310–315. [Google Scholar] [CrossRef]
- Weiner, R.; Langille, S.; Quintero, E. Structure, function and immunochemistry of bacterial exopolysaccharides. J. Ind. Microbiol. 1995, 15, 339–346. [Google Scholar] [CrossRef]
- Desbruyeres, D.; Laubier, L. Alvinella pompejana gen. sp. nov., aberrant Ampharetidae from East Pacific Rise hydrothermal vents. Oceanol. Acta 1980, 3, 326–274. [Google Scholar]
- Le Costaouëc, T.; Cérantola, S.; Ropartz, D.; Sinquin, C.; Colliec-Jouault, S.; Boisset, C. Structural data on a bacterial exopolysaccharide produced by a deep-sea Alteromonas macleodii strain. Carbohydr. Polym. 2012, 90, 49–59. [Google Scholar] [CrossRef]
- Thibodeau, A.; Takeoka, A. The applications and functions of new exopolysaccharide “Deepsane” from the deepest oceans. Fragr. J. 2006, 34, 61–68. [Google Scholar]
- Potts, B.C.; Faulkner, D.J.; Jacobs, R.S. Phospholipase A2 inhibitors from marine organisms. J. Nat. Prod. 1992, 55, 1701–1717. [Google Scholar] [CrossRef]
- Day, D.R.; Jabaiah, S.; Jacobs, R.S.; Little, R.D. Cyclodextrin formulation of the marine natural product pseudopterosin A uncovers optimal pharmacodynamics in proliferation studies of human umbilical vein endothelial cells. Mar. Drugs 2013, 11, 3258–3271. [Google Scholar] [CrossRef]
- Rouhi, A.M. Betting on natural products for cures. Chem. Eng. News 2003, 81, 93–103. [Google Scholar] [CrossRef]
- Lipotec. Available online: http://www.lipotec.com (accessed on 25 November 2013).
- Ivatt, R.J. The Biology of Glycoproteins; Plenum Press: New York, NY, USA, 1984. [Google Scholar]
- Gottschalk, A. Glycoproteins: Their Composition, Structure and Function; Elsevier Publishing Company: New York, NY, USA, 1972. [Google Scholar]
- Martins, A.; Tenreiro, T.; Andrade, G.; Gadanho, M.; Chaves, S.; Abrantes, M.; Calado, P.; Tenreiro, R.; Vieira, H. Photoprotective bioactivity present in a unique marine bacteria collection from Portuguese deep sea hydrothermal vents. Mar. Drugs 2013, 11, 1506–1523. [Google Scholar] [CrossRef]
- RefirMAR™ by BIOALVO. Available online: http://www.bioalvo.com/products/products-bioactive-ingredients/refirmar (accessed on 1 November 2013).
- Satyanarayana, K.G.; Mariano, A.B.; Vargas, J.V.C. A review on microalgae, a versatile source for sustainable energy and materials. Int. J. Energy Res. 2011, 35, 291–311. [Google Scholar] [CrossRef]
- Stolz, P.; Obermayer, B. Manufacturing microalgae for skin care. Cosmet. Toilet. 2005, 120, 99–106. [Google Scholar]
- CODIF Website. Available online: http://www.codif-recherche-et nature.com/en/s06_catalogue/s06p02_fiche.php?prod=56 (accessed on 25 November 2013).
- An Unlimite Mine of Innovation. Available online: http://greensea.fr/en/active-ingredients (accessed on 25 November 2013).
- Patented Breakthrough Ingredient. Available online: http://www.algenist.com/why-algenist/patented-breakthrough-ingredient (accessed on 25 November 2013).
- Frutarom. Available online: http://www.frutarom.com/FrutaromNew/index.asp (accessed on 25 November 2013).
- Senaratne, L.S.; Park, P.J.; Kim, S.K. Isolation and characterization of collagen from brown backed toadfish (Lagocephalus gloveri) skin. Bioresour. Technol. 2006, 97, 191–197. [Google Scholar] [CrossRef]
- Alan, H. Strategies for discovering drugs from previously unexplored natural products. Drug Discov. Today 2000, 5, 294–300. [Google Scholar] [CrossRef]
- Wagenaar, M.M. Pre-fractionated microbial samples—The second generation natural products library at Wyeth. Molecules 2008, 13, 1406–1426. [Google Scholar] [CrossRef]
- Cobb, R.E.; Ning, J.C.; Zhao, H. DNA assembly techniques for next generation combinatorial biosynthesis of natural products. J. Ind. Microbiol. Biotechnol. 2014, 41, 469–477. [Google Scholar] [CrossRef]
- Pollier, J.; Moses, T.; Goossens, A. Combinatorial biosynthesis in plants: A (p)review on its potential and future exploitation. Nat. Prod. Rep. 2011, 28, 1897–1916. [Google Scholar] [CrossRef]
- Leal, M.C.; Calado, R.; Sheridan, C.; Alimonti, A.; Osinga, R. Coral aquaculture to support drug discovery. Trends Biotechnol. 2013, 31, 555–561. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. Mar. Drugs 2014, 12, 1066-1101. https://doi.org/10.3390/md12021066
Martins A, Vieira H, Gaspar H, Santos S. Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. Marine Drugs. 2014; 12(2):1066-1101. https://doi.org/10.3390/md12021066
Chicago/Turabian StyleMartins, Ana, Helena Vieira, Helena Gaspar, and Susana Santos. 2014. "Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success" Marine Drugs 12, no. 2: 1066-1101. https://doi.org/10.3390/md12021066
APA StyleMartins, A., Vieira, H., Gaspar, H., & Santos, S. (2014). Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. Marine Drugs, 12(2), 1066-1101. https://doi.org/10.3390/md12021066