Antitumor and Antimicrobial Potential of Bromoditerpenes Isolated from the Red Alga, Sphaerococcus coronopifolius
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vitro Bioactivity-Guided Fractionation
IC50 (µg/mL) | ||||
---|---|---|---|---|
Cytotoxicity | Anti-Proliferative | |||
Crude extracts | MeOH | 470.6 (310.7–712.6) | 646.5 (398.4–1049.0) | |
CH2Cl2 | 14.13 (8.12–24.60) | 32.32 (22.37–46.70) | ||
VLC fractions | F1 | >1000 | 102.5 (68.08–154.2) | |
F2 | 104.3 (81.82–132.9) | 19.78 (13.79–28.38) | ||
F3 | >1000 | 70.17 (38.78–127.0) | ||
F4 | >1000 | 36.68 (23.37–57.55) | ||
F5 | >1000 | 39.32 (25.89–59.71) |
IC50 (µg/mL) | |||||
---|---|---|---|---|---|
E. coli | P. aeruginosa | S. aureus | C. albicans | ||
Crude Extracts | MeOH | >1000 | >1000 | 73.65 (58.52–92.69) | >1000 |
CH2Cl2 | 267.1 (231.5–308.1) | 363.1 (207.0–637.1) | 25.15 (13.47–46.96) | 435.9 (285.6–665.5) | |
VLC Fractions | F1 | 107.0 (92.02–124.5) | 338.7 (248.3–461.9) | 16.49 (10.19–26.66) | 78.61 (58.12–106.3) |
F2 | 228.4 (188.7–276.4) | 141.5 (117.6–170.4) | 5.10 (4.50–5.78) | 538.9 (308.4–941.6) | |
F3 | >1000 | 599.9 (307.4–1171.0) | 5.39 (4.19–6.93) | >1000 | |
F4 | 433.9 (358.5–525.1) | 436.4 (184.1–1035.0) | 6.45 (5.16–8.05) | >1000 | |
F5 | 757.0 (614.5–932.6) | 422.8 (291.9–612.4) | 13.16 (9.98–17.35) | >1000 |
2.2. Isolation and Structure Elucidation of the Major Compounds of Fractions F2 and F3
Atom n° | δH in ppm, mult. (J in Hz) | δC in ppm, mult. |
---|---|---|
1 | 5.09, dd (10.8, 1.2) 5.22, dd (17.2, 1.2) | 112.3, CH2 |
2 | 5.92, dd (17.2, 10.8) | 144.9, CH |
3 | - | 73.6, qC |
4 | 1.83, td (13.1, 4.7) 1.46 m | 44.2, CH2 |
5 | 1.63, tdd (13.1, 4.7, 2.0) 1.38–1.29, m | 23.3, CH2 |
6 | 2.11–2.06, m | 45.0, CH |
7 | - | 137.2, qC |
8 | 5.22–5.17, m | 120.5, CH |
9 | 2.62–2.49, m | 35.3, CH2 |
10 | 4.31, dd (10.2, 6.2) | 61.5, CH |
11 | - | 41.4, qC |
12 | 1.57, ddd (14.4, 12.4, 5.1) 1.43 m | 38.6, CH2 |
13 | 2.03, dd (12.9, 5.8) 1.90–18.1, m | 21.5, CH2 |
14 | 5.12–5.08, m | 124.3, CH |
15 | - | 131.8, qC |
16 | 1.63, s | 17.9, CH3 |
17 | 1.30, s | 27.9, CH3 |
18 | 1.70, s | 22.4, CH3 |
19 | 0.89, s | 16.8, CH3 |
20 | 1.69, s | 25.9, CH3 |
2.3. Antitumor and Antimicrobial Activities of Purified Compounds
IC50 (µM) | ||||
---|---|---|---|---|
Cytotoxicity | Anti-Proliferative | |||
Bromoditerpenes | 1 | 719.85 (519.79–996.81) | 279.93 (206.78–378.74) | |
2 | >1000 | 203.33 (90.65–456.18) | ||
3 | >1000 | 291.42 (206.22–411.83) | ||
4 | >1000 | 104.83 (55.27–198.89) | ||
5 | >1000 | 42.87 (22.76–78.88) | ||
Drugs (+) | Cisplatin | 454.6 (388.9–531.3) | 75.41 (61.78–92.05) | |
Tamoxifen | >1000 | 45.68 (31.84–65.57) |
3. Experimental Section
3.1. General Experimental Procedures
IC50 (µM) | |||||
---|---|---|---|---|---|
E. coli | P. aeruginosa | S. aureus | C. albicans | ||
Bromoditerpenes | 1 | >100 | >100 | 96.30 (84.60–109.61) | >100 |
2 | >100 | >100 | 22.42 (15.44–32.57) | >100 | |
3 | >100 | >100 | >100 | >100 | |
4 | >100 | >100 | 6.35 (4.78–8.42) | >100 | |
5 | >100 | >100 | >100 | >100 | |
Drugs (+) | Ampicillin | 6.42 (1.86–22.26) | - | 0.11 (0.08–0.15) | - |
Bacitracin | >100 | - | 2.85 (2.36–3.44) | - | |
Chloramphenicol | >100 | - | 80.49 (58.99–109.86) | - | |
Oxytetracycline | 1.12 (0.65–1.89) | 2.13 (1.65–2.76) | 0.87 (0.59–1.32) | - | |
Amphotericin b | - | - | - | >100 | |
Flumequine | - | - | - | >100 |
3.2. Sampling, Identification and Treatment of Algal Material
3.3. Extraction and Fractionation of Algal Extract by Vacuum Liquid Chromatography (VLC)
3.4. Purification of Bromoditerpenes
3.5. Sphaerodactylomelol (1)
3.6. Biological Activities
3.6.1. Cytotoxicity and Anti-Proliferative Activities
3.6.2. Antimicrobial Activities
3.6.3. Data Analysis
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xiong, Z.-Q.; Wang, J.-F.; Hao, Y.-Y.; Wang, Y. Recent advances in the discovery and development of marine microbial natural products. Mar. Drugs 2013, 11, 700–717. [Google Scholar] [CrossRef] [PubMed]
- Sawadogo, W.; Schumacher, M.; Teiten, M.-H.; Cerella, C.; Dicato, M.; Diederich, M. A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2011. Molecules 2013, 18, 3641–3673. [Google Scholar] [CrossRef] [PubMed]
- Simmons, T.L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. Mol. Cancer Ther. 2005, 4, 333–342. [Google Scholar] [PubMed]
- Aneiros, A.; Garateix, A. Bioactive peptides from marine sources: pharmacological properties and isolation procedures. J. Chromatogr. B 2004, 803, 41–53. [Google Scholar] [CrossRef]
- Rocha, J.; Peixe, L.; Gomes, N.C. M.; Calado, R. Cnidarians as a source of new marine bioactive compounds—an overview of the last decade and future steps for bioprospecting. Mar. Drugs 2011, 9, 1860–1886. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.M.; Moane, S.; Collins, C.; Beletskaya, T.; Thomas, O.P.; Duarte, A.W. F.; Nobre, F.S.; Owoyemi, I.O.; Pagnocca, F.C.; Sette, L.D.; et al. Sustainable production of biologically active molecules of marine based origin. N. Biotechnol. 2013, 30, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Paul, V.J.; Puglisi, M.P. Chemical mediation of interactions among marine organisms. Nat. Prod. Rep. 2004, 21, 189–209. [Google Scholar] [CrossRef] [PubMed]
- Ianora, A.; Boersma, M.; Casotti, R.; Fontana, A.; Harder, J.; Hoffmann, F.; Pavia, H.; Potin, P.; Poulet, S.A.; Toth, G. New trends in marine chemical ecology. Estuar. Coast. 2006, 29, 531–551. [Google Scholar] [CrossRef]
- De Almeida, C.L.F.; de S. Falcão, H.; de M. Lima, G.R.; de A. Montenegro, C.; Lira, N.S.; de Athayde-Filho, P.F.; Rodrigues, L.C.; de Souza, M.d.F.V.; Barbosa-Filho, J.M.; Batista, L.M. Bioactivities from marine algae of the genus Gracilaria. Int. J. Mol. Sci. 2011, 12, 4550–4573. [Google Scholar] [CrossRef] [PubMed]
- Pangestuti, R.; Kim, S.-K. Neuroprotective effects of marine algae. Mar. Drugs 2011, 9, 803–818. [Google Scholar] [CrossRef] [PubMed]
- Joana Gil-Chávez, G.; Villa, J.A.; Fernando Ayala-Zavala, J.; Basilio Heredia, J.; Sepulveda, D.; Yahia, E.M.; González-Aguilar, G.A. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Compr. Rev. Food Sci. Food Saf. 2013, 12, 5–23. [Google Scholar]
- Thomas, N.; Kim, S.-K. Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs 2013, 11, 146–164. [Google Scholar] [CrossRef] [PubMed]
- Viano, Y.; Bonhomme, D.; Ortalo-Magné, A.; Thomas, O.P.; Hattab, M.E.; Piovetti, L.; Blache, Y.; Culioli, G. Dictyotadimer A, a new dissymmetric bis-diterpene from a brown alga of the genus Dictyota. Tetrahedron Lett. 2011, 52, 1031–1035. [Google Scholar] [CrossRef]
- Lee, J.-C.; Hou, M.-F.; Huang, H.-W.; Chang, F.-R.; Yeh, C.-C.; Tang, J.-Y.; Chang, H.-W. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 2013, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-X.; Himaya, S.; Kim, S.-K. Triterpenoids of marine origin as anti-cancer agents. Molecules 2013, 18, 7886–7909. [Google Scholar] [CrossRef] [PubMed]
- Cabrita, M.T.; Vale, C.; Rauter, A.P. Halogenated compounds from marine algae. Mar. Drugs 2010, 8, 2301–2317. [Google Scholar] [CrossRef] [PubMed]
- Fattorusso, E.; Magno, S.; Santacroce, C.; Sica, D.; di Blasio, B.; Pedone, C.; Impellizzeri, G.; Mangiafico, S.; Oriente, G. Bromosphaerol, a new bromine-containing diterpenoid from the red alga Sphaerococcus coronopifolius. Gazz. Chim. Ital. 1976, 106, 779–783. [Google Scholar]
- Fenical, W.; Finer, J.; Clardy, J. Sphaerococcenol A, a new rearranged bromo-diterpene from the red alga Sphaerococcus coronopifolius. Tetrahedron Lett. 1976, 731–734. [Google Scholar]
- Cafieri, F.; de Napoli, L.; Fattorusso, E.; Impellizzeri, G.; Piattelli, M.; Sciuto, S. Bromosphaerodiol, a minor bromo compound from the red alga Sphaerococcus coronopifolius. Experientia 1977, 33, 1549–1550. [Google Scholar] [CrossRef]
- Cafieri, F.; de Napoli, L.; Fattorusso, E.; Piattelli, M.; Sciuto, S. Presphaerol, a new rearranged diterpene from the red alga Sphaerococcus coronopifolius. Tetrahedron Lett. 1979, 20, 963–966. [Google Scholar] [CrossRef]
- Cafieri, F.; Fattorusso, E.; di Blasio, B.; Pedone, C. Diterpenes from the red alga Sphaerococcus coronopifolius. Structure of sphaerodiene and reassignment of structure for presphaerol. Tetrahedron Lett. 1981, 22, 4123–4126. [Google Scholar] [CrossRef]
- Cafieri, F.; Ciminiello, P.; Fattorusso, E.; Santacroce, C. 12S-hydroxybromosphaerol, a new bromoditerpene from the red alga Sphaerococcus coronopifolius. Experientia 1982, 38, 298–299. [Google Scholar] [CrossRef]
- Cafieri, F.; Ciminiello, P.; Santacroce, C.; Fattorusso, E. (1S)-1,2-Dihydro-1-hydroxybromosphaerol, a minor bromoditerpene from the red alga Sphaerococcus coronopifolius. Phytochemistry 1982, 21, 2412–2413. [Google Scholar] [CrossRef]
- Cafieri, F.; Ciminiello, P.; Santacroce, C.; Fattorusso, E. Three diterpenes from the red alga Sphaerococcus coronopifolius. Phytochemistry 1983, 22, 1824–1825. [Google Scholar] [CrossRef]
- Cafieri, F.; Fattorusso, E.; Santacroce, C. Bromocorodienol, a diterpenoid based on a novel bicyclic skeleton from the red alga Sphaerococcus coronopifolius. Tetrahedron Lett. 1984, 25, 3141–3144. [Google Scholar] [CrossRef]
- Cafieri, F.; Fattorusso, E.; Mayol, L.; Santacroce, C. Coronopifoliol, a diterpene based on an unprecedented tetracyclic skeleton from the red algae Sphaerococcus coronopifolius. J. Org. Chem. 1985, 50, 3982–3984. [Google Scholar] [CrossRef]
- Cafieri, F.; Fattorusso, E.; Mayol, L.; Santacroce, C. Structure of bromotetrasphaerol, a further irregular diterpene from the red alga Sphaerococcus coronopifolius. Tetrahedron 1986, 42, 4273–4276. [Google Scholar] [CrossRef]
- Bavoso, A.; Cafieri, F.; de Napoli, L.; di Blasio, B.; Fattorusso, E.; Pavone, V.; Santacroce, C. Isolation and structure determination of norsphaerol, a bis-nor-diterpene from the red alga Sphaerococcus coronopifolius. Gazz. Chim. Ital. 1987, 117, 87–89. [Google Scholar]
- Cafieri, F.; De Napoli, L.; Fattorusso, E.; Santacroce, C. Diterpenes from the red alga Sphaerococcus coronopifolius. Phytochemistry 1987, 26, 471–473. [Google Scholar] [CrossRef]
- Cafieri, F.; De Napoli, L.; Fattorusso, E.; Santacroce, C. Sphaeropyrane, a diterpene from the marine red alga Sphaerococcus coronopifolius. Phytochemistry 1988, 27, 621–623. [Google Scholar] [CrossRef]
- De Rosa, S.; De Stefano, S.; Scarpelli, P.; Zavodnik, N. Chemical studies of north Adriatic seaweeds. Part 3. Terpenes from the red alga Sphaerococcus coronopifolius of the north Adriatic Sea. Phytochemistry 1988, 27, 1875–1878. [Google Scholar]
- Cafieri, F.; Ciminiello, P.; Fattorusso, E.; Mangoni, A. Two novel bromoditerpenes from the red alga Sphaerococcus coronopifolius. Gazz. Chim. Ital. 1990, 120, 139–142. [Google Scholar]
- Etahiri, S.; Bultel-Ponce, V.; Caux, C.; Guyot, M. New bromoditerpenes from the red alga Sphaerococcus coronopifolius. J. Nat. Prod. 2001, 64, 1024–1027. [Google Scholar] [CrossRef] [PubMed]
- Smyrniotopoulos, V.; Quesada, A.; Vagias, C.; Moreau, D.; Roussakis, C.; Roussis, V. Cytotoxic bromoditerpenes from the red alga Sphaerococcus coronopifolius. Tetrahedron 2008, 64, 5184–5190. [Google Scholar] [CrossRef]
- Smyrniotopoulos, V.; Vagias, C.; Rahman, M.M.; Gibbons, S.; Roussis, V. Brominated diterpenes with antibacterial activity from the red alga Sphaerococcus coronopifolius. J. Nat. Prod. 2008, 71, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Smyrniotopoulos, V.; Vagias, C.; Roussis, V. Sphaeroane and neodolabellane diterpenes from the red alga Sphaerococcus coronopifolius. Mar. Drugs 2009, 7, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Smyrniotopoulos, V.; Vagias, C.; Bruyère, C.; Lamoral-Theys, D.; Kiss, R.; Roussis, V. Structure and in vitro antitumor activity evaluation of brominated diterpenes from the red alga Sphaerococcus coronopifolius. Bioorg. Med. Chem. 2010, 18, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Smyrniotopoulos, V.; Vagias, C.; Rahman, M.M.; Gibbons, S.; Roussis, V. Ioniols I and II, tetracyclic diterpenes with antibacterial activity, from Sphaerococcus coronopifolius. Chem. Biodivers. 2010, 7, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Smyrniotopoulos, V.; Vagias, C.; Rahman, M.M.; Gibbons, S.; Roussis, V. Structure and antibacterial activity of brominated diterpenes from the red alga Sphaerococcus coronopifolius. Chem. Biodivers. 2010, 7, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Piazza, V.; Roussis, V.; Garaventa, F.; Greco, G.; Smyrniotopoulos, V.; Vagias, C.; Faimali, M. Terpenes from the red alga Sphaerococcus coronopifolius inhibit the settlement of barnacles. Mar. Biotechnol. 2011, 13, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.J.; Souto, M.L.; Gil, L.V.; Norte, M. Isolation of naturally occurring dactylomelane metabolites as Laurencia constituents. Tetrahedron 2005, 61, 8910–8915. [Google Scholar] [CrossRef]
- Estrada, D.M.; Ravelo, J.L.; Ruiz-Pérez, C.; Martín, J.D.; Solans, X. Dactylomelol, a new class of diterpene from the sea hare Aplysia dactylomela. Tetrahedron Lett. 1989, 30, 6219–6220. [Google Scholar] [CrossRef]
- Findlay, J.A.; Li, G. Novel terpenoids from the sea hare Aplysia punctata. Can. J. Chem. 2002, 80, 1697–1707. [Google Scholar] [CrossRef]
- Yuan, Y.V.; Walsh, N.A. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem. Toxicol. 2006, 44, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, D.; Alves, C.; Horta, A.; Pinteus, S.; Silva, J.; Culioli, G.; Thomas, O.P.; Pedrosa, R. Antitumor and Antimicrobial Potential of Bromoditerpenes Isolated from the Red Alga, Sphaerococcus coronopifolius. Mar. Drugs 2015, 13, 713-726. https://doi.org/10.3390/md13020713
Rodrigues D, Alves C, Horta A, Pinteus S, Silva J, Culioli G, Thomas OP, Pedrosa R. Antitumor and Antimicrobial Potential of Bromoditerpenes Isolated from the Red Alga, Sphaerococcus coronopifolius. Marine Drugs. 2015; 13(2):713-726. https://doi.org/10.3390/md13020713
Chicago/Turabian StyleRodrigues, Daniel, Celso Alves, André Horta, Susete Pinteus, Joana Silva, Gérald Culioli, Olivier P. Thomas, and Rui Pedrosa. 2015. "Antitumor and Antimicrobial Potential of Bromoditerpenes Isolated from the Red Alga, Sphaerococcus coronopifolius" Marine Drugs 13, no. 2: 713-726. https://doi.org/10.3390/md13020713
APA StyleRodrigues, D., Alves, C., Horta, A., Pinteus, S., Silva, J., Culioli, G., Thomas, O. P., & Pedrosa, R. (2015). Antitumor and Antimicrobial Potential of Bromoditerpenes Isolated from the Red Alga, Sphaerococcus coronopifolius. Marine Drugs, 13(2), 713-726. https://doi.org/10.3390/md13020713