New Antimicrobial Bromotyrosine Analogues from the Sponge Pseudoceratina purpurea and Its Predator Tylodina corticalis
Abstract
:1. Introduction
2. Results and Discussion
RT (min) a | λmax (nm) | Brxb | HR m/z | Molecular Formula [M + H]+ | Δppm | P. purpureac | T. corticalisc | Compound c |
---|---|---|---|---|---|---|---|---|
13.7–14.2 | 226, 286 | 2 | 489.9717, 491.9689, 493.9665 | C15H18Br2N5O4 | −0.306, −1.059, −1.413 | +++ | + | pseudoceratinin A (3) |
14.67 | 232, 286 | 2 | 494.0030, 496.0004, 497.9983 | C15H22Br2N5O4 | −0.306, −0.859, −0.913 | + | + | purealidin L (10) |
15.1–15.4 | 228, 285 | 2 | 503.9878, 505.9848, 507.9824 | C16H20Br2N5O4 | +0.144, −0.809, −1.163 | +++ | ++ | aerophobin 2 (4) |
15.41 | 234, 276, 340 | 2 | 680.9950, 682.9920, 684.9897 | C24H23Br2N6O8 | +0.937, +0.183, −0.070 | + | ceratinadin B (11) | |
16.35 | 234, 276, 337 | 2 | 695.0095, 697.0067, 699.0046 | C25H25Br2N6O8 | −0.013, −0.767, −0.820 | ++ | new (ceratinadin D) (1) | |
18.48 | 209, 286 | 2 | 489.9722, 491.9692, 493.9668 | C15H18N5O4Br2 | +0.194, −0.759, −1.113 | + | purealidin M (12) | |
19.00 | 209, 286 | 2 | 503.9878, 505.9857, 507.9835 | C16H20Br2N5O4 | + 0.144, +0.091, −0.063 | + | aerophobin 2 isomer | |
19.41 | 210 | 0 | 293.2335 | - | - | + | ++ | C18 fatty acid methyl ester? |
19.3–19.8 | 223, 280 | 4 | 713.8461, 715.8431, 717.8400, 719.8376, 721.8355 | C21H24Br4N3O5 | + 1.502, +0.749, −0.305, −0.658, −0.711 | +++ | + | hexadellin A (4) |
19.85 | 203, 280 | 4 | 741.8751, 743.8729, 745.8709, 747.8689, 749.8669 | C23H28Br4N3O5 | −0.598, −0.751, −0.705, −0.658, −0.611 | ~ | +++ | purealidin P (13) or Q (14) |
20.08 | 210 | 0 | 293.2333 | - | - | ~ | ~ | C18 fatty acid methyl ester? |
20.13 | 203, 280 | 4 | 757.8720, 759.8688, 761.8660, 763.8634, 765.8616 | C23H28Br4N3O6 | +1.388, +0.234, −0.519, −1.073, −0.826 | +++ | purealidin T (15) or purealidin P N-oxide (16) | |
20.30 | impure | 3 | 633.9558, 635.9530, 637.9503, 639.9482 | C22H27Br3N3O4 | +1.179, +0.426, −0.227, −0.281 | + | aplysamine 7 (17), purpurealidin H (18), purpuramine I (19) or purpuramine L (20) | |
20.47–20.53 | 222, 280 | 3 | 647.9707, 649.9673, 651.9644, 653.9627 | C23H29Br3N3O4 | +0.429, −0.924, −1.777, −1.431 | +++ | + | aplysamine 2 (6) |
20.90 | 234, 279 | 3 | 663.9649, 665.9630, 667.9609, 669.9587 | C23H29Br3N3O5 | −0.285, −0.139, −0.192, −0.345 | ++ | purpuramine J (21 ) (aplysamine 2 N-oxide) | |
20.98 | 210, 278 | 3 | 619.9397, 621.9368, 623.9340, 625.9320 | C21H25Br3N3O4 | + 0.729, −0.124, −0.877, −0.831 | ++ | 16-debromo-aplysamine 4 (7) | |
21.71 | 209, 278 | 4 | 697.8505, 699.8476, 701.8446, 703.8420, 705.8401 | C21H24Br4N3O4 | +1.017, +0.163, −0.790, −1.343, −1.197 | ++ | new (aplysamine 8) (2) | |
22.25 | 209, 278 | 4 | 879.8942, 881.8915, 883.8894, 885.8871, 887.8850 | C27H30Br4N7O7 | + 0.727, +0.073, +0.020, −0.233, −0.287 | ++ | purealine (8) | |
24.27 | 240, 308, 363 | 2 | 404.9809, 406.9787, 408.9765 | C14H19Br2N2O2 | + 0.120, −0.033, −0.186 | + | new unknown |
Position | δC | Type | δH, m (J in Hz) | COSY (H no.) | 1H-13C HMBC (C no.) |
---|---|---|---|---|---|
1 | 73.5 | CH | 3.90 d (7.7) | 9 | 3, 4, 5, 6 |
2 | 120.9 | C | - | ||
3 | 147.6 | C | - | ||
4 | 113.1 | C | - | ||
5 | 131.2 | CH | 6.54 s | 1 | 2, 3, 4, 6 (w) a, 10 |
6 | 90.1 | C | - | ||
8 | 59.7 | CH3 | 3.63 s | 3 | |
9 | - | OH | 6.36 d (7.7) | 1 | 1 (w), 4 (w), 6 (w) |
10 | 39.0 | CH2 | 3.59 d (3.6), 3.15 d (3.6) | 10 | 1, 5, 6, 11 |
11 | 154.5 | C | - | ||
14 | 158.9 | C | - | ||
16 | - | NH | 8.51 t (5.8) | 17 | 14 |
17 | 38.2 | CH2 | 3.13 m | 18 | 18, 19 |
18 | 28.1 | CH2 | 1.73 m | 17, 19 | 17, 19 |
19 | 21.6 | CH2 | 2.51 m | 18 | 18 (w), 20, 24 |
20 | 122.4 | C | - | ||
21 | - | NH | 11.93 bs | 23 | 20 (w) |
22 | 146.6 | C | - | ||
23 | - | NH | 12.15 bs | 21 | - |
24 | 117.8 | C | - | ||
25 | - | NH2 | 7.28 bs | ||
1′ | - | NH | 11.76 d (6.4) | 2′ | 3′, 5′ |
2′ | 124.2 | CH | 7.64 d (6.4) | 1′ | 4′, 10′ |
3′ | 139.9 | C | - | ||
4′ | 173.2 | C | - | ||
5′ | 112.6 | C | - | ||
6′ | 149.6 | C | - | ||
7′ | 103.2 | C | - | ||
8′ | 113.7 | CH | 6.83 s | 24, 6′, 9′, 10′ | |
9′ | 137.4 | C | - | ||
10′ | 128.9 | C | - | ||
11′ | - | OH | 8.93 bs | ||
12′ | - | OH | 14.3 bs | 5′, 6′ (w) | |
13′ | - | OH | 10.25 bs | 10′ |
Position | δC | Type | δH, m ( J in Hz) | COSY (H no.) | 1H-13C HMBC (C no.) | ROESY (H no.) |
---|---|---|---|---|---|---|
1 | 136.3 | C | - | |||
2 | 132.9 | CH | 7.44 s | 7 | 3, 4 | 7 |
3 | 117.1 | C | - | |||
4 | 151.8 | C | - | |||
6 | 60.4 | CH3 | 3.75 s | 4 | ||
7 | 27.9 | CH2 | 3.76 s | 2 | 1, 2, 8, 11 | 2 |
8 | 151.0 | C | - | |||
10 | - | OH | 12.02 s | 8 (w) a | ||
11 | 163.0 | C | - | |||
13 | - | NH | 8.12 t (6.0) | 14 | 14 | 7, 14, 16, 15 (w) |
14 | 36.2 | CH2 | 3.38 m | 13, 15 | 11, 15, 16 | 15, 16 |
15 | 29.6 | CH2 | 1.96 m | 14, 16 | 14, 16 | 13 (w), 14, 16 |
16 | 71.3 | CH2 | 3.88 t (6.4) | 15 | 14, 15 | 14, 15 |
18 | 151.3 | C | - | |||
19 | 117.6 | C | - | |||
20 | 133.2 | CH | 7.55 s | 18, 19, 22 | 22, 23 | |
21 | 136.8 | C | - | |||
22 | 31.5 | CH2 | 2.81 t (7.4) | 20, 21, 23 | 20, 23 | |
23 | 39.4 | CH2 | 3.05 m | 22, 24 | 21(w) | 20, 22, 24 |
24 | - | NH3 | 7.81 bs | 23 | - | 23 |
3. Experimental Section
3.1. General Experimental Procedures
3.2. Animal Material
3.3. Bioassays
3.4. Extraction and Isolation
4. Conclusions
Acknowledgments
Author Contributions
Supplementary Information
Conflicts of Interest
References
- Harper, M.K.; Bugni, T.S.; Copp, B.R.; James, R.D.; Lindsay, B.S.; Richardson, A.D.; Schnabel, P.C.; Tasdemir, D.; vanWagoner, R.M.; Verbitski, S.M.; et al. Introduction to the chemical ecology of marine natural products. In Marine Chemical Ecology; McClintock, J.B., Baker, B.J., Eds.; CRC Press LLC: Boca Raton, FL, USA, 2001; pp. 3–69. [Google Scholar]
- Bergquist, P.R.; Wells, R.J. Chemotaxonomy of the Porifera: The development and current status of the field. In Marine Natural Products; Scheuer, P.J., Ed.; Academic: New York, NY, USA, 1983. [Google Scholar]
- Bergquist, P.R.; Karuso, P.; Cambie, R.C.; Smith, D.J. Sterol composition and classification of the Porifera. 3. Biochem. Syst. Ecol. 1991, 19, 17–24. [Google Scholar]
- Arabshahi, L.; Schmitz, F.J. Brominated tyrosine metabolites from an unidentified sponge. J. Org. Chem. 1987, 52, 3584–3586. [Google Scholar]
- Teeyapant, R.; Kreis, P.; Wray, V.; Witte, L.; Proksch, P. Brominated secondary compounds from the marine sponge Verongia aerophoba and the sponge feeding gastropod Tylodina perversa. Z. Naturforsch. C: Biosci. 1993, 48, 640–644. [Google Scholar]
- Shaala, L.A.; Bamane, F.H.; Badr, J.M.; Youssef, D.T.A. Brominated arginine-derived alkaloids from the red sea sponge Suberea mollis. J. Nat. Prod. 2011, 74, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.A.; Khalil, Z.G.; Capon, R.J. Structural and stereochemical investigations into bromotyrosine-derived metabolites from southern Australian marine sponges, Pseudoceratina spp. Tetrahedron 2012, 68, 9802–9807. [Google Scholar] [CrossRef]
- Jang, J.-H.; van Soest, R.W.M.; Fusetani, N.; Matsunaga, S. Pseudoceratins A and B, antifungal bicyclic bromotyrosine-derived metabolites from the marine sponge Pseudoceratina purpurea. J. Org. Chem. 2007, 72, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Kon, Y.; Kubota, T.; Shibazaki, A.; Gonoi, T.; Kobayashi, J.I.; Ceratinadins, A.-C. New bromotyrosine alkaloids from an Okinawan marine sponge Pseudoceratina sp. Bioorg. Med. Chem. Lett. 2010, 20, 4569–4572. [Google Scholar] [CrossRef] [PubMed]
- Jurek, J.; Yoshida, W.Y.; Scheuer, P.J.; Kelly-Borges, M. Three new bromotyrosine-derived metabolites of the sponge Psammaplysilla purpurea. J. Nat. Prod. 1993, 56, 1609–1612. [Google Scholar] [CrossRef]
- Kobayashi, J.I.; Honma, K.; Sasaki, T.; Tsuda, M.; Purealidins, J.-R. New bromotyrosine alkaloids from the Okinawan marine sponge Psammaplysilla purea. Chem. Pharm. Bull. 1995, 43, 403–407. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Ceratinamides A and B: New antifouling dibromotyrosine derivatives from the marine sponge Pseudoceratina purpurea. Tetrahedron 1996, 52, 8181–8186. [Google Scholar] [CrossRef]
- Compagnone, R.S.; Avila, R.; Suarez, A.I.; Abrams, O.V.; Rangel, H.R.; Arvelo, F.; Pina, I.C.; Merentes, E. 11-Deoxyfistularin-3, a new cytotoxic metabolite from the Caribbean sponge Aplysina fistularis insularis. J. Nat. Prod. 1999, 62, 1443–1444. [Google Scholar] [CrossRef] [PubMed]
- Tabudravu, J.N.; Jaspars, M. Purealidin S and purpuramine J, bromotyrosine alkaloids from the Fijian marine sponge Druinella sp. J. Nat. Prod. 2002, 65, 1798–1801. [Google Scholar] [CrossRef] [PubMed]
- Kalaitzis, J.A.; De, A.L.P.; Hooper, J.N.A.; Quinn, R.J. Ianthesine E, a new bromotyrosine-derived metabolite from the Great Barrier Reef sponge Pseudoceratina sp. Nat. Prod. Res. 2008, 22, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Teruya, T.; Iwasaki, A.; Suenaga, K. 20-N-methylpurpuramine E: New bromotyrosine-derived metabolite from Okinawan marine sponge Pseudoceratina purpurea. Bull. Chem. Soc. Jpn. 2008, 81, 1026–1027. [Google Scholar] [CrossRef]
- Proksch, P.; Putz, A.; Ortlepp, S.; Kjer, J.; Bayer, M. Bioactive natural products from marine sponges and fungal endophytes. Phytochem. Rev. 2010, 9, 475–489. [Google Scholar] [CrossRef]
- Su, J.-H.; Chen, Y.-C.; El-Shazly, M.; Du, Y.-C.; Su, C.-W.; Tsao, C.-W.; Liu, L.-L.; Chou, Y.; Chang, W.-B.; Su, Y.-D.; et al. Towards the small and the beautiful: A small dibromotyrosine derivative from Pseudoceratina sp. sponge exhibits potent apoptotic effect through targeting IKK/NFκB signaling pathway. Mar. Drugs 2013, 11, 3168–3185. [Google Scholar] [CrossRef] [PubMed]
- Shaala, L.A.; Youssef, D.T.A.; Sulaiman, M.; Behery, F.A.; Foudah, A.I.; El Sayed, K.A. Subereamolline A as a potent breast cancer migration, invasion and proliferation inhibitor and bioactive dibrominated alkaloids from the Red Sea sponge Pseudoceratina arabica. Mar. Drugs 2012, 10, 2492–2508. [Google Scholar] [CrossRef] [PubMed]
- Niemann, H.; Lin, W.; Mueller, W.E.G.; Kobbutat, M.; Lai, D.; Proksch, P. Trimeric hemibastadin congener from the marine sponge Ianthella basta. J. Nat. Prod. 2013, 76, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.D.; Pham, N.B.; Fechner, G.; Hooper, J.N.A.; Quinn, R.J. Bromotyrosine alkaloids from the Australian marine sponge Pseudoceratina verrucosa. J. Nat. Prod. 2013, 76, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Andrews, K.T.; Birrell, G.W.; Tran, T.L.; Camp, D.; Davis, R.A.; Quinn, R.J. Psammaplysin H, a new antimalarial bromotyrosine alkaloid from a marine sponge of the genus Pseudoceratina. Bioorg. Med. Chem. Lett. 2011, 21, 846–848. [Google Scholar] [CrossRef] [PubMed]
- Galeano, E.; Thomas, O.P.; Robledo, S.; Munoz, D.; Martinez, A. Antiparasitic bromotyrosine derivatives from the marine sponge Verongula rigida. Mar. Drugs 2011, 9, 1902–1913. [Google Scholar] [CrossRef] [PubMed]
- Mani, L.; Jullian, V.; Mourkazel, B.; Valentin, A.; Dubois, J.; Cresteil, T.; Folcher, E.; Hooper, J.N.A.; Erpenbeck, D.; Aalbersberg, W.; et al. New antiplasmodial bromotyrosine derivatives from Suberea ianthelliformis Lendenfeld, 1888. Chem. Biodivers. 2012, 9, 1436–1451. [Google Scholar] [CrossRef] [PubMed]
- Karuso, P. Chemical ecology of the nudibranchs. Bioorg. Mar. Chem. 1987, 1, 31–60. [Google Scholar]
- Hao, E.; Fromont, J.; Jardine, D.; Karuso, P. Natural products from sponges of the genus Agelas—on the trail of a [2 + 2]-photoaddition enzyme. Molecules 2001, 6, 130–141. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Pseudoceratidine: A new antifouling spermidine derivative from the marine sponge Pseudoceratina purpurea. Tetrahedron Lett. 1996, 37, 1439–1440. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Pseudoceramine: An unprecedented antifouling cyanoformamide from the marine sponge Pseudoceratina purpurea. J. Org. Chem. 1996, 61, 2936–2937. [Google Scholar] [CrossRef] [PubMed]
- Fusetani, N.; Masuda, Y.; Nakao, Y.; Matsunaga, S.; van Soest, R.W.M. Three new bromotyrosine derivatives lethal to crab from the marine sponge, Pseudoceratina purpurea. Tetrahedron 2001, 57, 7507–7511. [Google Scholar] [CrossRef]
- Takada, N.; Watanabe, R.; Suenaga, K.; Yamada, K.; Ueda, K.; Kita, M.; Uemura, D. Zamamistatin, a significant antibacterial bromotyrosine derivative, from the Okinawan sponge Pseudoceratina purpurea. Tetrahedron Lett. 2001, 42, 5265–5267. [Google Scholar] [CrossRef]
- Peng, X.; Deng, S.; Xiao, D.; Wu, H. Chemical constituents of the marine sponge Pseudoceratina purpurea from South China Sea (I). Guangzhou Huaxue 2003, 28, 1–4. [Google Scholar]
- Peng, X.; Deng, S.; Xiao, D.; Ma, W.; Wu, H. Studies on the active constituents of the marine sponge Pseudoceratina purpurea from the South China Sea. Zhongguo Haiyang Yaowu 2004, 23, 11–13. [Google Scholar]
- Kijjoa, A.; Bessa, J.; Wattanadilok, R.; Sawangwong, P.; Nascimento, M.S.J.; Pedro, M.; Silva, A.M.S.; Eaton, G.; van Soest, R.; Herz, W. Dibromotyrosine derivatives, a maleimide, aplysamine-2 and other constituents of the marine sponge Pseudoceratina purpurea. Z. Naturforsch. B Chem. Sci. 2005, 60, 904–908. [Google Scholar]
- Hertiani, T.; Edrada, R.; van, S.R.W.M.; Mueller, W.E.G.; Sudarsono Proksch, P. Chemical investigation on Pseudoceratina purpurea collected from Banyuwangi Indonesia. Indonesian J. Pharm. 2009, 20, 17–26. [Google Scholar]
- McCulloch, M.W.B.; Coombs, G.S.; Banerjee, N.; Bugni, T.S.; Cannon, K.M.; Harper, M.K.; Veltri, C.A.; Virshup, D.M.; Ireland, C.M. Psammaplin A as a general activator of cell-based signaling assays via HDAC inhibition and studies on some bromotyrosine derivatives. Biorg. Med. Chem. 2009, 17, 2189–2198. [Google Scholar] [CrossRef]
- Faulkner, D.; Ghiselin, M. Chemical defense and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar. Ecol. 1983, 13, 295–301. [Google Scholar] [CrossRef]
- Ebel, R.; Marin, A.; Proksch, P. Organ-specific distribution of dietary alkaloids in the marine opisthobranch Tylodina perversa. Biochem. Syst. Ecol. 1999, 27, 769–777. [Google Scholar] [CrossRef]
- Thoms, C.; Ebel, R.; Hentschel, U.; Proksch, P. Sequestration of dietary alkaloids by the spongivorous marine mollusk Tylodina perversa. Z. Naturforsch. C: Biosci. 2003, 58, 426–432. [Google Scholar]
- Thoms, C.; Ebel, R.; Proksch, P. Sequestration and possible role of dietary alkaloids in the sponge-feeding mollusk Tylodina perversa. Prog. Mol. Subcell. Biol. 2006, 43, 261–275. [Google Scholar] [PubMed]
- Ciminiello, P.; Fattorusso, E.; Forino, M.; Magno, S.; Pansini, M. Chemistry of verongida sponges. VIII. Bromo compounds from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. Tetrahedron 1997, 53, 6565–6572. [Google Scholar] [CrossRef]
- Encarnacion, R.D.; Sandoval, E.; Malmstrom, J.; Christophersen, C. Calafianin, a bromotyrosine derivative from the marine sponge Aplysina gerardogreeni. J. Nat. Prod. 2000, 63, 874–875. [Google Scholar] [CrossRef] [PubMed]
- Fendert, T.; Wray, V.; van Soest, R.W.M.; Proksch, P. Bromoisoxazoline alkaloids from the Caribbean sponge Aplysina insularis. Z. Naturforsch. C: Biosci. 1999, 54, 246–252. [Google Scholar]
- Venkateswarlu, Y.; Rao, M.R.; Venkatesham, U. A new dibromotyrosine-derived metabolite from the sponge Psammaplysilla purpurea. J. Nat. Prod. 1998, 61, 1388–1389. [Google Scholar] [CrossRef] [PubMed]
- Cimino, G.; de Rosa, S.; de Stefano, S.; Spinella, A.; Sodano, G. The zoochrome of the sponge Verongia aerophoba (“Uranidine”). Tetrahedron Lett. 1984, 25, 2925–2928. [Google Scholar] [CrossRef]
- Benharref, A.; Pais, M.; Debitus, C. Bromotyrosine alkaloids from the sponge Pseudoceratina verrucosa. J. Nat. Prod. 1996, 59, 177–180. [Google Scholar] [CrossRef]
- Cimino, G.; Rosa, S.D.; Stefano, S.D.; Self, R.; Sodano, G. The bromo-compounds of the true sponge Verongia aerophoba. Tetrahedron Lett. 1983, 24, 3029–3032. [Google Scholar] [CrossRef]
- Morris, S.A.; Andersen, R.J. Nitrogenous metabolites from the deep water sponge Hexadella sp. Can. J. Chem. 1989, 67, 677–681. [Google Scholar] [CrossRef]
- Xynas, R.; Capon, R.J. Two new bromotyrosine-derived metabolites from an Australian marine sponge, Aplysina sp. Aust. J. Chem. 1989, 42, 1427–1433. [Google Scholar] [CrossRef]
- Pakrashi, S.C.; Achari, B.; Dutta, P.K.; Chakrabarti, A.K.; Giri, C.; Saha, S.; Basa, S.C. Marine products from bay of Bengal: Constituents of the sponge. Tetrahedron 1994, 50, 12009–12014. [Google Scholar] [CrossRef]
- Nakamura, H.; Wu, H.; Kobayashi, J.; Nakamura, Y.; Ohizumi, Y.; Hirata, Y. Purealin, a novel enzyme activator from the Okinawan marine sponge Psammaplysilla purea. Tetrahedron Lett. 1985, 26, 4517–4520. [Google Scholar] [CrossRef]
- Peng, J.; Li, J.; Hamann, M.T. The marine bromotyrosine derivatives. In The Alkaloids: Chemistry and Biology; Cordell, G.A., Ed.; Academic Press: San Diego, CA, USA, 2005; Volume 61, pp. 59–262. [Google Scholar]
- Mukai, H.; Kubota, T.; Aoyama, K.; Mikami, Y.; Fromont, J.; Kobayashi, J. Tyrokeradines A and B, new bromotyrosine alkaloids with an imidazolyl-quinolinone moiety from a Verongid sponge. Bioorg. Med. Chem. Lett. 2009, 19, 1337–1339. [Google Scholar] [CrossRef] [PubMed]
- Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Willan, R.C. A review of the diets in the Notaspidea (Mollusca: Opisthobranchia). J. Malacol. Soc. Aust. 1984, 6, 125–142. [Google Scholar]
- Thoms, C.; Schupp, P.J. Activated chemical defense in marine sponges—A case study on Aplysinella rhax. J. Chem. Ecol. 2008, 34, 1242–1252. [Google Scholar] [CrossRef] [PubMed]
- Becerro, M.A.; Turon, X.; Uriz, M.J.; Templado, J. Can a sponge feeder be a herbivore? Tylodina perversa (Gastropoda) feeding on Aplysina aerophoba (Demospongiae). Biol. J. Linn. Soc. 2003, 78, 429–438. [Google Scholar]
- Cimino, G.; Sodano, G. Biosynthesis of secondary metabolites in marine mollusks. Top. Curr. Chem. 1993, 167, 77–115. [Google Scholar]
- Hooper, J.N.A. “Sponguide”. Guide to Sponge Collection and Identification; Queensland Museum: Brisbane, Australia, 2000. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gotsbacher, M.P.; Karuso, P. New Antimicrobial Bromotyrosine Analogues from the Sponge Pseudoceratina purpurea and Its Predator Tylodina corticalis. Mar. Drugs 2015, 13, 1389-1409. https://doi.org/10.3390/md13031389
Gotsbacher MP, Karuso P. New Antimicrobial Bromotyrosine Analogues from the Sponge Pseudoceratina purpurea and Its Predator Tylodina corticalis. Marine Drugs. 2015; 13(3):1389-1409. https://doi.org/10.3390/md13031389
Chicago/Turabian StyleGotsbacher, Michael P., and Peter Karuso. 2015. "New Antimicrobial Bromotyrosine Analogues from the Sponge Pseudoceratina purpurea and Its Predator Tylodina corticalis" Marine Drugs 13, no. 3: 1389-1409. https://doi.org/10.3390/md13031389
APA StyleGotsbacher, M. P., & Karuso, P. (2015). New Antimicrobial Bromotyrosine Analogues from the Sponge Pseudoceratina purpurea and Its Predator Tylodina corticalis. Marine Drugs, 13(3), 1389-1409. https://doi.org/10.3390/md13031389