Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Principal Component Analysis of Metabolic GlcNAc Profiles
2.2. Changes in Plasma Metabolite Concentrations
Metabolites | m/z | MT | Before | After | Ratio | p-Value | ||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||||
Ectoine | 143.082 | 9.33 | 1.7 × 10−4 | 6.1 × 10−5 | 9.7 × 10−4 | 5.1 × 10−5 | 5.7 | 7.6E-05 *** |
5-Oxo-2-tetrahydrofurancarboxylic acid | 129.019 | 10.26 | 2.9 × 10−4 | 9.5 × 10−5 | 1.5 × 10−3 | 1.3 × 10−4 | 5.3 | 0.002 ** |
Stachydrine | 144.101 | 11.35 | 8.1 × 10−4 | 2.7 × 10−4 | 4.0 × 10−3 | 8.7 × 10−4 | 4.9 | 0.017 * |
Trigonelline | 138.055 | 10.33 | 6.8 × 10−4 | 5.0 × 10−4 | 3.0 × 10−3 | 9.7 × 10−4 | 4.4 | 0.035 * |
1-Methyl-4-imidazoleacetic acid | 141.066 | 8.17 | 1.2 × 10−4 | 4.5 × 10−6 | 5.1 × 10−4 | 5.5 × 10−5 | 4.3 | 0.006 ** |
Pimelic acid | 159.066 | 13.79 | 1.6 × 10−4 | 1.1 × 10−5 | 6.6 × 10−4 | 1.9 × 10−4 | 4.1 | 0.044 * |
XA0013 | 172.991 | 10.86 | 7.1 × 10−4 | 3.6 × 10−4 | 2.5 × 10−3 | 6.0 × 10−4 | 3.5 | 0.019 * |
2-Quinolinecarboxylic acid | 172.040 | 8.67 | 1.1 × 10−4 | 3.9 × 10−5 | 3.4 × 10−4 | 1.1 × 10−4 | 3.1 | 0.056 |
3. Methods
3.1. Materials
3.2. Animals
3.3. Administration and Blood Sampling
3.4. Metabolome Analysis
3.5. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, J.-K.; Shen, C.-R.; Liu, C.-L. N-Acetylglucosamine: Production and Applications. Mar. Drugs 2010, 8, 2493–2516. [Google Scholar] [CrossRef] [PubMed]
- Levin, R.M.; Krieger, N.N.; Winzler, R.J. Glucosamine and Acetylglucosamine Tolerance in Man. J. Lab. Clin. Med. 1961, 58, 927–932. [Google Scholar] [PubMed]
- Liu, Y.; Li, Z.; Liu, G.; Jia, J.; Li, S.; Yu, C. Liquid Chromatography-Tandem Mass Spectrometry Method for Determination of N-Acetylglucosamine Concentration in Human Plasma. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2008, 862, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Osaki, T.; Tsuka, T.; Imagawa, T.; Okamoto, Y.; Takamori, Y.; Minami, S. Effects of oral glucose hydrochloride administration on plasma free amino acid concentrations in dogs. Mar. Drugs 2011, 9, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Tamai, Y.; Miyatake, K.; Okamoto, Y.; Takamori, Y.; Sakamoto, K.; Minami, S. Enhanced Healing of Cartilaginous Injuries by N-Acetyl-d-glucosamine and Glucuronic Acid. Carbohydr. Polym. 2003, 54, 251–262. [Google Scholar] [CrossRef]
- Azuma, K.; Osaki, T.; Wakuda, T.; Tsuka, T.; Imagawa, T.; Okamoto, Y.; Minami, S. Suppressive effects of N-Acetyl-d-Glucosamine in rheumatoid arthritis mouse models. Inflamation 2012, 35, 1462–1465. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, S.; Heuschkel, R.; Tomlin, S.; Davies, S.E.; Edwards, S.; Walker-Smith, J.A.; French, I.; Murch, S.H. A pilot study of N-acetyl glucosamine, a nutritional substrate for glycosaminoglycan synthesis, in paediatric chronic inflammatory bowel disease. Aliment. Pharmacol. Ther. 2000, 14, 1567–1579. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.H.; Hsu, C.N.; Chung, M.Y.; Tsai, W.L.; Liu, C.H. Effect of Different Concentrations of Collagen, Ceramides, N-acetyl glucosamine, or Their Mixture on Enhancing the Proliferation of Keratinocytes, Fibroblasts and the Secretion of Collagen and/or the Expression of mRNA of Type I Collagen. J. Food Drug Anal. 2008, 16, 66–74. [Google Scholar]
- Konopka, J.B. N-acetylglucosamine functions in cell signaling. Scientifica 2012, 2012, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dessì, A.; Marincola, F.C.; Masili, A.; Gazzolo, D.; Fanos, V. Clinical Metabolomics and Nutrition: The new frontier in neonatology and pediatrics. BioMed. Res. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Osaki, T.; Azuma, K.; Kurozumi, S.; Takamori, Y.; Tsuka, T.; Imagawa, T.; Okamoto, Y.; Minami, S. Metabolomic Analysis of Blood Plasma after Oral Administration of d-Glucosamine Hydrochloride to Dogs. Mar. Drugs 2012, 10, 1873–1882. [Google Scholar] [CrossRef] [PubMed]
- Ringnér, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Galinski, E.A.; Pfeiffer, H.-P.; Tru ̈per, H.G. 1,4,5,6-Tetrahydro-2 methyl-4-pyrimidinecarboxylic acid: A novel cyclic amino acid from halophilic bacteria of the genus Ectothiorhodospira. Eur. J. Biochem. 1985, 149, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Kanapathipillai, M.; Lentzen, G.; Sierks, M.; Park, C.B. Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer’s b-amyloid. FEBS Lett. 2005, 579, 4775–4780. [Google Scholar] [CrossRef] [PubMed]
- Buenger, J.; Driller, H. Ectoin: An effective natural substance to prevent UVA-induced premature photoaging. Skin Pharmacol. Physiol. 2004, 17, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Grether-Beck, S.; Timmer, A.; Felsner, I.; Brenden, H.; Brammertz, D.; Krutmann, J. Ultraviolet A-induced signaling involves a ceramide mediated autocrine loop leading to ceramide de novo synthesis. J. Investig. Dermatol. 2005, 125, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Rabe, J.H.; Mamelak, A.J.; McElgunn, P.J.S.; Morison, W.L.; Sauder, D.N. Photoaging: mechanisms and repair. J. Am. Acad. Dermatol. 2006, 55, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Bunger, J. Ectoine added protection and care for the skin. Eur. Cosmet. 1999, 7, 22–24. [Google Scholar]
- Graf, R.; Anzali, S.; Buenger, J.; Pfluecker, F.; Driller, H. The multifunctional role of ectoine as a natural cell protectant. Clin. Dermatol. 2008, 26, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Pastor, J.M.; Salvador, M.; Argandoña, M.; Bernal, V.; Reina-Bueno, M.; Csonka, L.N.; Iborra, J.L.; Vargas, C.; Nieto, J.J.; Cánovas, M. Ectoines in cell stress protection: Uses and biotechnological production. Biotechnol. Adv. 2010, 28, 782–801. [Google Scholar] [CrossRef] [PubMed]
- Soga, T.; Heiger, D.N. Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Anal. Chem. 2000, 72, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Soga, T.; Ohashi, Y.; Ueno, Y.; Naraoka, H.; Tomita, M.; Nishioka, T. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J. Proteome Res. 2003, 2, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Soga, T.; Ueno, Y.; Naraoka, H.; Ohashi, Y.; Tomita, M.; Nishioka, T. Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal. Chem. 2002, 74, 2233–2239. [Google Scholar] [CrossRef] [PubMed]
- Soga, T.; Ishikawa, T.; Igarashi, S.; Sugawara, K.; Kakazu, Y.; Tomita, M. Analysis of nucleotides by pressure-assisted capillary electrophoresis-mass spectrometry using silanol mask technique. J. Chromatogr. A 2007, 1159, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Hirayama, A.; Ihiskawa, T.; Baran, R.; Robert, M.; Uehara, K.; Soga, T.; Tomita, M. Differential Metabolomics Software for Capillary Electrophoresis-Mass Spectrometry Data Analysis. Metabolomics 2010, 6, 27–41. [Google Scholar] [CrossRef]
- Junker, B.H.; Klukas, C.; Schreiber, F. VANTED: A system for advanced data analysis and visualization in the context of biological networks. BMC Bioinform. 2006, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Klukas, C.; Schreiber, F. Integration of -omics data and networks for biomedical research with VANTED. J. Integr. Bioinform. 2010, 7, 112. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osaki, T.; Kurozumi, S.; Sato, K.; Terashi, T.; Azuma, K.; Murahata, Y.; Tsuka, T.; Ito, N.; Imagawa, T.; Minami, S.; et al. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs. Mar. Drugs 2015, 13, 5007-5015. https://doi.org/10.3390/md13085007
Osaki T, Kurozumi S, Sato K, Terashi T, Azuma K, Murahata Y, Tsuka T, Ito N, Imagawa T, Minami S, et al. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs. Marine Drugs. 2015; 13(8):5007-5015. https://doi.org/10.3390/md13085007
Chicago/Turabian StyleOsaki, Tomohiro, Seiji Kurozumi, Kimihiko Sato, Taro Terashi, Kazuo Azuma, Yusuke Murahata, Takeshi Tsuka, Norihiko Ito, Tomohiro Imagawa, Saburo Minami, and et al. 2015. "Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs" Marine Drugs 13, no. 8: 5007-5015. https://doi.org/10.3390/md13085007
APA StyleOsaki, T., Kurozumi, S., Sato, K., Terashi, T., Azuma, K., Murahata, Y., Tsuka, T., Ito, N., Imagawa, T., Minami, S., & Okamoto, Y. (2015). Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs. Marine Drugs, 13(8), 5007-5015. https://doi.org/10.3390/md13085007