Determination of Inorganic Cations and Anions in Chitooligosaccharides by Ion Chromatography with Conductivity Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Chromatographic Conditions
2.2. Calibration and Method Validation
2.3. Analysis of Cations and Anions in COS Technical Concentrates
3. Materials and Methods
3.1. Materials
3.2. Chromatographic Analysis
3.3. Calibration
3.4. Method Validation
3.5. Method Application
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jung, W.-J.; Park, R.D. Bioproduction of Chitooligosaccharides: Present and Perspectives. Mar. Drugs 2014, 12, 5328–5356. [Google Scholar] [CrossRef] [PubMed]
- Zou, P.; Yang, X.; Wang, J.; Li, Y.; Zhang, Y.; Liu, G. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem. 2016, 190, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Aam, B.B.; Heggset, E.B.; Norberg, A.L.; Sørlie, M.; Vårum, K.M.; Eijsink, V.G.H. Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs 2010, 8, 1482–1517. [Google Scholar] [CrossRef] [PubMed]
- Singh, P. Effect of chitosans and chitooligosaccharides on the processing and storage quality of foods of animal and aquatic origin. Nutr. Food Sci. 2016, 46, 51–81. [Google Scholar] [CrossRef]
- Vela Gurovic, M.S.; Dello Staffolo, M.; Montero, M.; Debbaudt, A.; Albertengo, L.; Rodríguez, M.S. Chitooligosaccharides as novel ingredients of fermented foods. Food Funct. 2015, 6, 3437–3443. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.Y.; Jang, M.-K.; Nah, J.-W. Influence of molecular weight on oral absorption of water soluble chitosans. J. Control. Release 2005, 102, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xing, R.; Liu, S.; Li, P. Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydr. Polym. 2016, 139, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Karppanen, H. Minerals and blood pressure. Ann. Med. 1991, 2, 299–305. [Google Scholar] [CrossRef]
- Karppanen, H.; Karppanen, P.; Mervaala, E. Why and how to implement sodium, potassium, calcium, and magnesium changes in food items and diets? J. Hum. Hypertens. 2005, 19, S10–S19. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, S.; Garrigues, S.; de la Guardia, M. Determination of the mineral composition of foods by infrared spectroscopy: A review of a green alternative. Crit. Rev. Anal. Chem. 2014, 44, 186–197. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, M.A.; Montes, F.; Guerrero, G.; Juárez, M. Total and soluble contents of calcium, magnesium, phosphorus and zinc in yoghurts. Food Chem. 2003, 80, 573–578. [Google Scholar] [CrossRef]
- Ieggli, C.V.S.; Bohrer, D.; do Nascimento, P.C.; de Carvalho, L.M.; Garcia, S.C. Determination of sodium, potassium, calcium, magnesium, zinc, and iron in emulsified egg samples by flame atomic absorption spectrometry. Talanta 2010, 80, 1282–1286. [Google Scholar] [CrossRef] [PubMed]
- Fantuz, F.; Ferraro, S.; Todini, L.; Piloni, P.; Mariani, P.; Salimei, E. Donkey milk concentration of calcium, phosphorus, potassium, sodium and magnesium. Int. Dairy J. 2012, 24, 143–145. [Google Scholar] [CrossRef]
- Krejčová, A.; Černohorský, T.; Čurdová, E. Determination of sodium, potassium, magnesium and calcium in urine by inductively coupled plasma atomic emission spectrometry. The study of matrix effects. J. Anal. At. Spectrom. 2001, 16, 1002–1005. [Google Scholar] [CrossRef]
- Edlund, M.; Visser, H.; Heitland, P. Analysis of biodiesel by argon-oxygen mixed-gas inductively coupled plasma optical emission spectrometry. J. Anal. At. Spectrom. 2002, 17, 232–235. [Google Scholar] [CrossRef]
- Masár, M.; Sydes, D.; Luc, M.; Kaniansky, D.; Kuss, H.-M. Determination of ammonium, calcium, magnesium, potassium and sodium in drinking waters by capillary zone electrophoresis on a column-coupling chip. J. Chromatogr. A 2009, 1216, 6252–6255. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.-B.; Wang, T.-R.; Guo, B.-Y.; Hashi, Y.; Guo, C.-X.; Lin, J.-M. Simultaneous determination of inorganic anions and cations in explosive residues by ion chromatography. Talanta 2008, 76, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-M.; Liu, C.-C.; Fang, G.-Z.; Wang, S. Advanced analytical methods and sample preparation for ion chromatography techniques. RSC Adv. 2015, 5, 58713–58726. [Google Scholar] [CrossRef]
- Zatirakha, A.V.; Smolenkov, A.D.; Shpigun, O.A. Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography: A review. Anal. Chim. Acta 2016, 904, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Michalski, R. Applications of ion chromatography for the determination of inorganic cations. Crit. Rev. Anal. Chem. 2009, 39, 230–250. [Google Scholar] [CrossRef]
- Michalski, R.; Lyko, A. Research onto the contents of selected inorganic ions in the dialysis fluids and dialysates by using ion chromatography. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 96–103. [Google Scholar] [CrossRef]
- Kumar, S.D.; Narayan, G.; Hassarajani, S. Determination of anionic minerals in black and kombucha tea using ion chromatography. Food Chem. 2008, 111, 784–788. [Google Scholar] [CrossRef]
- Rahimi-Yazdi, S.; Ferrer, M.A.; Corredig, M. Nonsuppressed ion chromatographic determination of total calcium in milk. J. Dairy Sci. 2010, 93, 1788–1793. [Google Scholar] [CrossRef] [PubMed]
- De Caland, L.B.; Cardoso Silveira, E.L.; Tubino, M. Determination of sodium, potassium, calcium and magnesium cations in biodiesel by ion chromatography. Anal. Chim. Acta 2012, 718, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Cardoso Silveira, E.L.; de Caland, L.B.; Tubino, M. Simultaneous quantitative analysis of the acetate, formate, chloride, phosphate and sulfate anions in biodiesel by ion chromatography. Fuel 2014, 124, 97–101. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, X.; Zhu, Z.; Pan, Z.; Wang, L.; Zhu, Y. Determination of anions and cations in biodiesel with on-line sample pretreatment column-switching ion chromatography. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1747–1752. [Google Scholar] [CrossRef]
- Zhang, Y.; Thepsithar, P.; Jiang, X.; Tay, J.H. Simultaneous determination of seven anions of interest in raw Jatropha curcas oil by ion chromatography. Energy Fuels 2014, 28, 2581–2588. [Google Scholar] [CrossRef]
- Cataldi, T.R.I.; Margiotta, G.; Del Fiore, A.; Bufo, S.A. Ionic content in plant extracts determined by ion chromatography with conductivity detection. Phytochem. Anal. 2003, 14, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Gros, N.; Gorenc, B. Performance of ion chromatography in the determination of anions and cations in various natural waters with elevated mineralization. J. Chromatogr. A 1997, 770, 119–124. [Google Scholar] [CrossRef]
- Gros, N. Ion chromatographic analyses of sea waters, brines and related samples. Water 2013, 5, 659–676. [Google Scholar] [CrossRef]
- Michalski, R. Ion chromatography as a reference method for determination of inorganic ions in water and wastewater. Crit. Rev. Anal. Chem. 2006, 36, 107–127. [Google Scholar] [CrossRef]
- Cao, L.; Wu, J.; Li, X.; Zheng, L.; Wu, M.; Liu, P.; Huang, Q. Validated HPAEC-PAD method for the determination of fully deacetylated chitooligosaccharides. Int. J. Mol. Sci. 2016, 17, 1699. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Technical Material and Preparations: Guidance for Generating and Reporting Methods of Analysis in Support of Pre- and Post-Registration Data Requirements for Annex II (Part A, Section 4) and Annex III (Part A, Section 5) of Directive 91/414. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_ppp_app-proc_guide_phys-chem-ana_tech-mat-preps.pdf (accessed on 20 February 2017).
Analyte | Linear Range (mM) | Calibration Curve a | R2 | LOD (μM ) | LOQ (μM) | |
---|---|---|---|---|---|---|
Cation | Sodium | 0.002–0.8 | y = 6.4217x + 0.0073 | 0.9999 | 0.01 | 0.03 |
Ammonium b | 0.002–0.1 | y = 5.2160x + 0.0176 | 0.9960 | 0.02 | 0.06 | |
Potassium | 0.002–0.8 | y = 7.6307x − 0.0009 | 0.9998 | 0.04 | 0.14 | |
Magnesium | 0.002–0.8 | y = 13.3560x + 0.0130 | 0.9999 | 0.05 | 0.15 | |
Calcium | 0.002–0.8 | y = 14.4640x + 0.0256 | 0.9999 | 0.02 | 0.05 | |
Anion | Lactate | 0.001–0.6 | y = 5.3829x − 0.0317 | 0.9998 | 0.6 | 2.0 |
Acetate | 0.001–0.6 | y = 3.9231x + 0.0674 | 0.9950 | 0.5 | 1.7 | |
Chloride | 0.001–0.6 | y = 9.1727x − 0.1074 | 0.9988 | 0.5 | 1.6 |
Analyte | Repeatability (n = 7) | Intermediate Precision (n = 9) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Peak Area | Retention Time | Peak Area | Retention Time | ||||||||||
C1 | C2 | C3 | C1 | C2 | C3 | C1 | C2 | C3 | C1 | C2 | C3 | ||
Cation | Sodium | 0.39 | 0.21 | 0.60 | 0.46 | 0.07 | 0.61 | 0.94 | 6.44 | 4.57 | 0.49 | 0.39 | 0.40 |
Ammonium | 0.49 | 0.44 | 0.23 | 0.12 | 0.06 | 0.66 | 0.57 | 0.51 | 0.18 | 0.44 | 0.32 | 0.65 | |
Potassium | 0.87 | 0.51 | 0.28 | 0.44 | 0.06 | 0.12 | 0.81 | 0.54 | 0.26 | 0.50 | 0.33 | 0.34 | |
Magnesium | 1.13 | 0.70 | 0.19 | 0.67 | 0.13 | 0.21 | 1.39 | 0.82 | 0.18 | 1.14 | 1.30 | 0.64 | |
Calcium | 2.79 | 0.75 | 0.37 | 0.63 | 0.08 | 0.17 | 3.08 | 1.20 | 0.47 | 1.44 | 0.79 | 0.63 | |
Anion | Lactate | 0.85 | 0.48 | 3.04 | 1.03 | 0.62 | 1.52 | 6.20 | 4.69 | 5.60 | 0.84 | 0.68 | 1.64 |
Acetate | 0.64 | 0.48 | 1.46 | 1.14 | 0.62 | 1.56 | 0.84 | 0.56 | 2.39 | 3.69 | 0.56 | 1.37 | |
Chloride | 0.52 | 0.62 | 0.83 | 1.18 | 0.59 | 0.63 | 5.13 | 4.43 | 6.68 | 1.00 | 0.62 | 1.65 |
Analyte | COS Technical Concentrate A | COS Technical Concentrate B | |||||
---|---|---|---|---|---|---|---|
Content (%) a | %RSD | %RSDr | Content (%) a | %RSD | %RSDr | ||
Cation | Sodium | 0.08 | 2.13 | 3.91 | 0.08 | 2.33 | 3.91 |
Ammonium | 0.39 | 1.18 | 3.08 | 0.36 | 2.71 | 3.14 | |
Potassium | 0.01 | 4.91 | 5.24 | 0.01 | 4.95 | 5.24 | |
Magnesium | 0.04 | 2.72 | 4.37 | 0.04 | 3.35 | 4.37 | |
Calcium | 0.17 | 3.04 | 3.50 | 0.18 | 2.86 | 3.48 | |
Anion | Acetate | 17.64 | 1.30 | 1.74 | – | – | – |
Chloride | – | – | – | 11.57 | 0.34 | 1.85 |
Analyte | Recovery (%) | |||
---|---|---|---|---|
Spiked C1 | Spiked C2 | Spiked C3 | ||
Cation | Sodium | 102.13 ± 4.47 | 103.29 ± 3.45 | 98.79 ± 1.41 |
Ammonium | 89.68 ± 4.64 | 90.21 ± 2.13 | 87.80 ± 0.41 | |
Potassium | 86.41 ± 0.37 | 90.51 ± 0.22 | 92.54 ± 1.82 | |
Magnesium | 93.08 ± 2.19 | 97.02 ± 1.73 | 96.94 ± 3.02 | |
Calcium | 91.90 ± 0.45 | 86.04 ± 0.24 | 93.42 ± 0.39 | |
Anion | Lactate | 110.65 ± 2.84 | 105.64 ± 4.79 | 107.14 ± 3.40 |
Acetate | 103.17 ± 3.04 | 108.97 ± 2.24 | 102.43 ± 6.03 | |
Chloride | 97.97 ± 4.51 | 105.84 ± 3.87 | 108.15 ± 0.94 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Li, X.; Fan, L.; Zheng, L.; Wu, M.; Zhang, S.; Huang, Q. Determination of Inorganic Cations and Anions in Chitooligosaccharides by Ion Chromatography with Conductivity Detection. Mar. Drugs 2017, 15, 51. https://doi.org/10.3390/md15020051
Cao L, Li X, Fan L, Zheng L, Wu M, Zhang S, Huang Q. Determination of Inorganic Cations and Anions in Chitooligosaccharides by Ion Chromatography with Conductivity Detection. Marine Drugs. 2017; 15(2):51. https://doi.org/10.3390/md15020051
Chicago/Turabian StyleCao, Lidong, Xiuhuan Li, Li Fan, Li Zheng, Miaomiao Wu, Shanxue Zhang, and Qiliang Huang. 2017. "Determination of Inorganic Cations and Anions in Chitooligosaccharides by Ion Chromatography with Conductivity Detection" Marine Drugs 15, no. 2: 51. https://doi.org/10.3390/md15020051
APA StyleCao, L., Li, X., Fan, L., Zheng, L., Wu, M., Zhang, S., & Huang, Q. (2017). Determination of Inorganic Cations and Anions in Chitooligosaccharides by Ion Chromatography with Conductivity Detection. Marine Drugs, 15(2), 51. https://doi.org/10.3390/md15020051