Phakellistatins: An Underwater Unsolved Puzzle
Abstract
:1. Introduction
2. Phakellistatins: Isolation, Structure, and Properties
3. Phakellistatins: Total Synthesis and Puzzling Evidence
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsepd, M.R. Marine natural products. Nat. Prod. Rep. 2016, 33, 382–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cragg, G.M.; Grothaus, P.G.; Newman, D.J. New Horizons for Old Drugs and Drug Leads. J. Nat. Prod. 2014, 77, 703–723. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Marine-Sourced Anti-Cancer and Cancer Pain Control Agents in Clinical and Late Preclinical Development. Mar. Drugs 2014, 12, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.F.; Gurgui, C.; Helf, M.J.; Morinaka, B.I.; Uria, A.R.; Oldham, N.J.; Sahl, H.-G.; Matsunaga, S.; Piel, J. Metagenome Mining Reveals Polytheonamides as Posttranslationally Modified Ribosomal Peptides. Science 2012, 338, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Hardoim, C.; Costa, R. Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae. Mar. Drugs 2014, 12, 5089–5122. [Google Scholar] [CrossRef] [PubMed]
- Jaspars, M.; Challis, G. A talented genus. Nature 2014, 506, 38–39. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.C.; Mori, T.; Rückert, C.; Uria, A.R.; Helf, M.J.; Takada, K.; Gernert, C.; Steffens, U.A.E.; Heycke, N.; Schmitt, S.; et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 2014, 506, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, M.; Martens, D.; Wijffels, R.H. Towards Commercial Production of Sponge Medicines. Mar. Drugs 2009, 7, 787–802. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, S.; Fusetani, N. Nonribosomal Peptides from Marine Sponges. Curr. Org. Chem. 2003, 7, 945–966. [Google Scholar] [CrossRef]
- Bagavananthem Andavan, G.S.; Lemmens-Gruber, R. Cyclodepsipeptides from Marine Sponges: Natural Agents for Drug Research. Mar. Drugs 2010, 8, 810–834. [Google Scholar] [CrossRef] [PubMed]
- Rangel, M.; Correia de Santana, C.J.; Pinheiro, A.; dos Anjos, L.; Barth, T.; Rodrigues Pires, O., Jr.; Fontes, W.; Castro, M.S. Marine Depsipeptides as Promising Pharmacotherapeutic Agents. Curr. Prot. Pept. Sci. 2017, 18, 72–91. [Google Scholar] [CrossRef]
- Wipf, P. Synthetic Studies of Biologically Active Marine Cyclopeptides. Chem. Rev. 1995, 95, 2115–2134. [Google Scholar] [CrossRef]
- Katsara, M.; Tselios, T.; Deraos, S.; Deraos, G.; Matsoukas, M.-T.; Lazoura, E.; Matsoukas, J.; Apostolopoulos, V. Round and Round we Go: Cyclic Peptides in Disease. Curr. Med. Chem. 2006, 13, 2221–2232. [Google Scholar] [PubMed]
- Roxin, A.; Zheng, G. Flexible or fixed: a comparative review of linear and cyclic cancer-targeting peptides. Fut. Med. Chem. 2012, 4, 1601–1618. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, J.; Rechenmacher, F.; Kessler, H. N-Methylation of Peptides and Proteins: An Important Element for Modulating Biological Functions. Angew. Chem. Int. Ed. 2013, 52, 254–269. [Google Scholar] [CrossRef] [PubMed]
- Bertram, A.; Pattenden, G. Marine metabolites: Metal binding and metal complexes of azole-based cyclic peptides of marine origin. Nat. Prod. Rep. 2007, 24, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, S.; Fusetani, N.; Konosu, S. Bioactve marine metabolites, IV. Isolation and the Amino acids Composition of Discodermin A, an Antimicrobial Peptide, from the Marine Sponge Discodermia Kiiensis. J. Nat. Prod. 1985, 48, 236–241. [Google Scholar] [CrossRef] [PubMed]
- For some examples of synthesis of cyclopeptides and cyclodepsipeptides from marine sponges see: Garcia-Barrantes, P.M.; Lindsley, C.W. Total synthesis of gombamide A. Org. Lett. 2016, 18, 3810–3813. [Google Scholar]Kashinath, K.; Jachak, G.R.; Athawale, P.R.; Marelli, U.K.; Gonnade, R.G.; Reddy, D.S. Total Synthesis of the Marine Natural Product Solomonamide B Necessitates Stereochemical Revision. Org. Lett. 2016, 18, 3178–3181. [Google Scholar]Anand, M.; Selvaraj, V.; Alagar, M. Total synthesis and anticancer activity of a cyclic heptapeptide from marine sponge using water soluble peptide coupling agent EDC. Arab. J. Chem. 2016. [Google Scholar] [CrossRef]Martín, M.J.; Rodríguez-Acebes, R.; García-Ramos, Y.; Martínez, V.; Murcia, C.; Digón, I.; Marco, I.; Pelay-Gimeno, M.; Fernández, R.; Reyes, F.; et al. Stellatolides, a New Cyclodepsipeptide Family from the Sponge Ecionemia acervus: Isolation, Solid-Phase Total Synthesis, and Full Structural Assignment of Stellatolide A. J. Am. Chem. Soc. 2014, 136, 6754–6762. [Google Scholar]Pelay-Gimeno, M.; García-Ramos, Y.; Jesús Martin, M.; Spengler, J.; Molina-Guijarro, J.M.; Munt, S.; Francesch, A.M.; Cuevas, C.; Tulla-Puche, J.; Albericio, F. The first total synthesis of the cyclodepsipeptide pipecolidepsin A. Nature Commun. 2013, 4, 2352. [Google Scholar]Tannert, R.; Hu, T.-S.; Arndt, H.-D.; Waldmann, H. Solid-phase based total synthesis of Jasplakinolide by ring-closing metathesis. Chem. Commun. 2009, 1493–1495. [Google Scholar] [CrossRef]Xie, W.; Ding, D.; Zi, W.; Li, G.; Ma, D. Total synthesis and structure assignment of papuamide B, a potent marine cyclodepsipeptide with anti-HIV properties. Angew. Chem. Int. Ed. 2008, 47, 2844–2848. [Google Scholar]Izzo, I.; Maulucci, N.; Bifulco, G.; De Riccardis, F. Total Synthesis of Azumamides A and E. Angew. Chem. Int. Ed. 2006, 45, 7557–7560. [Google Scholar]Della Monica, C.; Maulucci, N.; De Riccardis, F.; Izzo, I. Asymmetric synthesis of (3S,4R,7S)-(–)-3-hydroxy-7-methoxy-2,2,4-trimethyl-decanoic acid, a plausible polyketide fragment of halipeptin A. Tetrahedron Asymmetry 2003, 14, 3371–3378. [Google Scholar]
- Fang, W.-Y.; Dahiya, R.; Qin, H.-L.; Mourya, R.; Maharaj, S. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status. Mar. Drugs 2016, 14, 194. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Cichacz, Z.; Barkoczy, J.; Dorsaz, A.C.; Herald, D.L.; Williams, M.D.; Doubek, D.L.; Schmidt, J.M.; Tackett, L.P.; Brune, D.C.; et al. Isolation and structure of the marine sponge cell growth inhibitory cyclic peptide phakellistatin 1. J. Nat. Prod. 1993, 56, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.T.; Williamson, R.T.; Gerwick, W.H.; Watts, K.S.; McGough, K.; Jacobs, R. cis,cis- and trans,trans-Ceratospongamide, new bioactive cyclic heptapeptides from the indonesian red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. J. Org. Chem. 2000, 65, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Tan, R.; Williams, M.D.; Tackett, L.; Schmidt, J.M.; Cerny, R.L.; Hooper, J.N.A. Isolation and structure of phakellistatin 2 from the eastern Indian ocean marine sponge Phakellia carteri. Bioorg. Med. Chem. Lett. 1993, 3, 2869–2874. [Google Scholar] [CrossRef]
- Pettit, G.R.; Tan, R.; Herald, D.L.; Cerny, R.L.; Williams, M.D. Antineoplastic agents. 277. Isolation and structure of phakellistatin 3 and isophakellistatin 3 from a Republic of Comoros marine sponge. J. Org. Chem. 1994, 59, 1593–1595. [Google Scholar] [CrossRef]
- Pettit, G.R.; Xu, J.P.; Cichacz, Z.; Schmidt, J.M.; Dorsaz, A.-C.; Boyd, M.R.; Cerny, R.L. Antineoplastic agents 303. Isolation and structure of the human cancer cell growth inhibitory phakellistatin 4 from the western Pacific sponge Phakellia costata. Heterocycles 1995, 40, 501–506. [Google Scholar] [CrossRef]
- Pettit, G.R.; Xu, J.P.; Cichacz, Z.A.; Williams, M.D.; Dorsaz, A.-C.; Brune, D.C.; Boyd, M.R.; Cerny, R.L. Antineoplastic agents 315. Isolation and structure of the marine sponge cancer cell growth inhibitor phakellistatin 5. Bioorg. Med. Chem. Lett. 1994, 4, 2091–2096. [Google Scholar] [CrossRef]
- Pettit, G.R.; Xu, J.P.; Cichacz, Z.A.; Williams, M.D.; Chapuis, J.C.; Cerny, R.L. Antineoplastic agents 323. Isolation and structure of phakellistatin 6 from a Chuuk archipelago marine sponge. Bioorg. Med. Chem. Lett. 1994, 4, 2677–2682. [Google Scholar] [CrossRef]
- Pettit, G.R.; Xu, J.P.; Dorsaz, A.-C.; Williams, M.D.; Boyd, M.R.; Cerny, R.L. Isolation and structure of the human cancer cell growth inhibitory cyclic decapeptides phakellistatins 7, 8 and 9. Bioorg. Med. Chem. Lett. 1995, 5, 1339–1344. [Google Scholar] [CrossRef]
- Herald, D.L.; Cascarano, G.L.; Pettit, G.R.; Srirangam, J.K. Crystal Conformation of the Cyclic Decapeptide Phakellistatin 8: Comparison with Antamanide. J. Am. Chem. Soc. 1997, 119, 6962–6973. [Google Scholar] [CrossRef]
- Saviano, G.; Rossi, F.; Benedetti, E.; Pedone, C.; Mierke, D.F.; Maione, A.; Zanotti, G.; Tancredi, T.; Saviano, M. Structural Consequences of Metal Complexation of cyclo [Pro-Phe-Phe-Ala-Xaa]2 Decapeptides. Chem. Eur. J. 2001, 7, 1176–1183. [Google Scholar] [CrossRef]
- Galzitskaya, O.; Caflisch, A. Solution conformation of phakellistatin 8 investigated by molecular dynamics simulations. J. Mol. Graphics Mod. 1999, 17, 19–27. [Google Scholar] [CrossRef]
- Pettit, G.R.; Tan, R.; Ichihara, Y.; Williams, M.D.; Doubek, D.L.; Tackett, L.P.; Schmidt, J.M.; Cerny, R.L.; Boyd, M.R.; Hooper, J.N. Antineoplastic agents, 325. Isolation and structure of the human cancer cell growth inhibitory cyclic octapeptides phakellistatin 10 and 11 from Phakellia sp. J. Nat. Prod. 1995, 58, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Valley, P.; Tan, R. Isolation and structure of the human cancer cell growth inhibitory cyclic octapeptides phakellistatin 10 and 11. U.S. Patent 5,801,222, 1 September 1998. [Google Scholar]
- Pettit, G.R.; Tan, R. Antineoplastic Agents 390. Isolation and Structure of Phakellistatin 12 from a Chuuk Archipelago Marine Sponge. Bioorg. Med. Chem. Lett. 2003, 13, 685–688. [Google Scholar] [CrossRef]
- Li, W.-L.; Yi, Y.-H.; Wu, H.-M.; Xu, Q.-Z.; Tang, H.-F.; Zhou, D.-Z.; Lin, H.-W.; Wang, Z.-H. Isolation and Structure of the Cytotoxic Cycloheptapeptide Phakellistatin 13. J. Nat. Prod. 2003, 66, 146–148. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wen, J.; Xie, R.; Lin, H.; Fan, G.; Wu, Y. Quantitative determination of Phakellistatin 13, a new cyclic heptapeptide, in rat plasma by liquid chromatography/tandem mass spectrometry: application to a pharmacokinetic study. Anal. Bioanal. Chem. 2009, 395, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-J.; Yi, Y.-H.; Yang, G.-J.; Hu, M.-Y.; Cao, G.-D.; Yang, F.; Lin, H.-W. Proline-Containing Cyclopeptides from the Marine Sponge Phakellia fusca. J. Nat. Prod. 2010, 73, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Tan, R. Isolation and Structure of Phakellistatin 14 from the Western Pacific Marine Sponge Phakellia sp. J. Nat. Prod. 2005, 68, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Mechnich, O.; Kessler, H. What are the structures of phakellistatin 2 and phakellistatin 4? Lett. Pept. Sci. 1997, 4, 21–28. [Google Scholar] [CrossRef]
- Pettit, G.R.; Rhodes, M.R.; Tan, R. Antineoplastic Agents. 400. Synthesis of the Indian Ocean Marine Sponge Cyclic Heptapeptide Phakellistatin 2. J. Nat. Prod. 1999, 62, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Tabudravu, J.N.; Jaspars, M.; Morris, L.A.; Kettenes-van den Bosch, J.J.; Smith, N. Two Distinct Conformers of the Cyclic Heptapeptide Phakellistatin 2 Isolated from the Fijian Marine Sponge Stylotella aurantium. J. Org. Chem. 2002, 67, 8593–8601. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Toki, B.E.; Xu, J.-P.; Brune, D.C. Synthesis of the Marine Sponge Cycloheptapeptide Phakellistatin 5. J. Nat. Prod. 2000, 63, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Lippert, J.W., III; Taylor, S.R.; Tan, R.; Williams, M.D. Synthesis of Phakellistatin 11: A Micronesia (Chuuk) Marine Sponge Cyclooctapeptide. J. Nat. Prod. 2001, 64, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, A.; Rodriquez, M.; Bruno, I.; Marzocco, S.; Autore, G.; Riccio, R.; Gomez-Paloma, L. Synthesis, structural aspects and cytotoxicity of the natural cyclopeptides yunnanins A, C and phakellistatins 1, 10. Tetrahedron 2003, 59, 10203–10211. [Google Scholar] [CrossRef]
- Napolitano, A.; Bruno, I.; Riccio, R.; Gomez-Paloma, L. Synthesis, structure, and biological aspects of cyclopeptides related to marine phakellistatins 7–9. Tetrahedron 2005, 61, 6808–6815. [Google Scholar] [CrossRef]
- Greenman, K.L.; Hach, D.M.; Van Vranken, D.L. Synthesis of Phakellistatin 13 and Oxidation to Phakellistatin 3 and Isophakellistatin 3. Org. Lett. 2004, 6, 1713–1716. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.F.; Zhou, Y.J.; Yao, J.Z.; Lu, J.G.; Zhu, J.; Sheng, C.Q.; Zheng, C.H.; Yao, B. Total Synthesis of Phakellistatin 13 by Solution Method. Chin. Chem. Lett. 2006, 17, 995–998. [Google Scholar]
- Ali, L.; Musharraf, S.G.; Shaheen, F. Solid-Phase Total Synthesis of Cyclic Decapeptide Phakellistatin 12. J. Nat. Prod. 2008, 71, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, F.; Ziaee, M.A.; Ali, S.A.; Simijee, S.U.; Ahmed, A.; Choudhary, M.I. The First Solid-phase Synthesis and Structural Studies on Phakellistatin 15. Rec. Nat. Prod. 2016, 10, 397–406. [Google Scholar]
- Pelay-Gimeno, M.; Meli, A.; Tulla-Puche, J.; Albericio, F. Rescuing Biological Activity from Synthetic Phakellistatin 19. J. Med. Chem. 2013, 56, 9780–9788. [Google Scholar] [CrossRef] [PubMed]
- Chierici, S.; Figuet, M.; Dettori, A.; Dumy, P. Thiazolidines to lock cis Xaa-Pro amide bond: new synthetic approach. C. R. Chim. 2005, 8, 875–880. [Google Scholar] [CrossRef]
- Wittelsberger, A.; Patiny, L.; Slaninova, J.; Barberis, C.; Mutter, M. Introduction of a cis-Prolyl Mimic in Position 7 of the Peptide Hormone Oxytocin Does Not Result in Antagonistic Activity. J. Med. Chem. 2005, 48, 6553–6562. [Google Scholar] [CrossRef] [PubMed]
Phakellistatin [a] | Marine Sponge | Biological Activity ED50 (μg/mL) | Synthetic Studies (Reference Number) |
---|---|---|---|
1 (1) | Phakellia costata and Stylotella aurantium | 7.50 [b] | 43 |
2 (2) | Phakellia carteri | 0.34 [b] | 38, 39 |
3 (3) | Phakellia carteri | 0.33 [b] | 45 |
iso 3 (3a) | Phakellia carteri | not active [b] | 45 |
4 (4) | Phakellia costata | 0.32 [b] | 38 |
5 (5) | Phakellia costata | 0.23 [b] | 41 |
6 (6) | Phakellia costata | 0.18 [b] | - |
7 (7) | Phakellia costata | 3.2 [b] | 44 |
8 (8) | Phakellia costata | 2.9 [b] | 44 |
9 (9) | Phakellia costata | 4.1 [b] | 44 |
10 (10) | Phakellia sp. | 2.1 [b] | 43 |
11 (11) | Phakellia sp. | 0.20 [b] | 42 |
12 (12) | Phakellia sp. | 2.80 [b] | 47 |
13 (13) | Phakellia fusca | <10−2 [c] | 45, 46 |
14 (18) | Phakellia sp. | 5.0 [b] | - |
15 (14) | Phakellia fusca | 7.8 [b,d] | 48 |
16 (15) | Phakellia fusca | 5.6 [b,d]; 14.8 [c,d] | - |
17 (16) | Phakellia fusca | not active [b,c] | - |
18 (17) | Phakellia fusca | not active [b,c] | - |
19 (18) | not reported | 4.41 × 10−7; 4.62 × 10−7; 5.51 × 10−7 [e] | 49 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meli, A.; Tedesco, C.; Della Sala, G.; Schettini, R.; Albericio, F.; De Riccardis, F.; Izzo, I. Phakellistatins: An Underwater Unsolved Puzzle. Mar. Drugs 2017, 15, 78. https://doi.org/10.3390/md15030078
Meli A, Tedesco C, Della Sala G, Schettini R, Albericio F, De Riccardis F, Izzo I. Phakellistatins: An Underwater Unsolved Puzzle. Marine Drugs. 2017; 15(3):78. https://doi.org/10.3390/md15030078
Chicago/Turabian StyleMeli, Alessandra, Consiglia Tedesco, Giorgio Della Sala, Rosaria Schettini, Fernando Albericio, Francesco De Riccardis, and Irene Izzo. 2017. "Phakellistatins: An Underwater Unsolved Puzzle" Marine Drugs 15, no. 3: 78. https://doi.org/10.3390/md15030078
APA StyleMeli, A., Tedesco, C., Della Sala, G., Schettini, R., Albericio, F., De Riccardis, F., & Izzo, I. (2017). Phakellistatins: An Underwater Unsolved Puzzle. Marine Drugs, 15(3), 78. https://doi.org/10.3390/md15030078