Secondary Metabolites of Mangrove-Associated Strains of Talaromyces
Abstract
:1. Introduction
2. Mangrove Swamps: A Dynamic Frontier between Land and Sea
3. The Occurrence of Talaromyces Species in Mangroves
4. Structures and Properties of Secondary Metabolites from Manglicolous Talaromyces
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Hawksworth, D.L.; Crous, P.W.; Redhead, S.A.; Reynolds, D.R.; Samson, R.A.; Seifert, K.A.; Taylor, J.W.; Wingfield, M.J.; Abaci, O.; Aime, C.; et al. The Amsterdam declaration on fungal nomenclature. IMA Fungus 2011, 2, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisvad, J.C. Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front. Microbiol. 2015, 5, 773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicoletti, R.; Trincone, A. Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin. Mar. Drugs 2016, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Koul, M.; Singh, S. Penicillium spp.: Prolific producer for harnessing cytotoxic secondary metabolites. Anti-Cancer Drugs 2017, 28, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Houbraken, J.; Samson, R.A. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud. Mycol. 2011, 70, 1–51. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, N.; Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of the genus Talaromyces. Stud. Mycol. 2014, 78, 175–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.Q.; Yang, Y.G.; Zeng, Y.; Zou, C.; Zhao, P.J. A new azaphilone, kasanosin C, from an endophytic Talaromyces sp. T1BF. Molecules 2010, 15, 3993–3997. [Google Scholar] [CrossRef] [PubMed]
- Bara, R.; Aly, A.H.; Pretsch, A.; Wray, V.; Wang, B.; Proksch, P.; Debbab, A. Antibiotically active metabolites from Talaromyces wortmannii, an endophyte of Aloe vera. J. Antibiot. 2013, 66, 491–493. [Google Scholar] [CrossRef] [PubMed]
- Palem, P.P.; Kuriakose, G.C.; Jayabaskaran, C. An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS ONE 2015, 10, e0144476. [Google Scholar] [CrossRef] [PubMed]
- Vinale, F.; Nicoletti, R.; Lacatena, F.; Marra, R.; Sacco, A.; Lombardi, N.; d’Errico, G.; Digilio, M.C.; Lorito, M.; Woo, S.L. Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat. Prod. Res. 2017, 31, 1778–1785. [Google Scholar] [CrossRef] [PubMed]
- Frisvad, J.C.; Filtenborg, O.; Samson, R.A.; Stolk, A.C. Chemotaxonomy of the genus Talaromyces. Antonie van Leeuwenhoek 1990, 57, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Zhai, M.M.; Li, J.; Jiang, C.X.; Shi, Y.P.; Di, D.L.; Crews, P.; Wu, Q.X. The bioactive secondary metabolites from Talaromyces species. Nat. Prod. Bioprospect. 2016, 6, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Primavera, J.H.; Dahdouh-Guebas, F.; McKee, K.; Bosire, J.O.; Cannicci, S.; Diele, K.; Fromard, F.; Koedam, N.; Marchand, C.; et al. Ecological role and services of tropical mangrove ecosystems: A reassessment. Glob. Ecol. Biogeogr. 2014, 23, 726–743. [Google Scholar] [CrossRef] [Green Version]
- Debbab, A.; Aly, A.H.; Proksch, P. Mangrove derived fungal endophytes—A chemical and biological perception. Fungal Divers. 2013, 61, 1–27. [Google Scholar] [CrossRef]
- Wani, Z.A.; Ashraf, N.; Mohiuddin, T. Plant-endophyte symbiosis, an ecological perspective. Appl. Microbiol. Biotechnol. 2015, 99, 2955–2965. [Google Scholar] [CrossRef] [PubMed]
- Chujo, T.; Scott, B. Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte–plant symbiosis. Mol. Microbiol. 2014, 92, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Netzker, T.; Fischer, J.; Weber, J.; Mattern, D.J.; König, C.C.; Valiante, V.; Schroeckh, V.; Brakhage, A.A. Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front. Microbiol. 2015, 6, 299. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.S.; Pan, J.H.; Tang, W.C.; Chen, Q.J.; Lin, Y.C. Biodiversity and biotechnological potential of mangrove-associated fungi. J. For. Res. 2009, 20, 63–72. [Google Scholar] [CrossRef]
- Debbab, A.; Aly, A.H.; Proksch, P. Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers. 2011, 49, 1. [Google Scholar] [CrossRef]
- Thatoi, H.; Behera, B.C.; Mishra, R.R. Ecological role and biotechnological potential of mangrove fungi: A review. Mycology 2013, 4, 54–71. [Google Scholar]
- Wang, X.; Mao, Z.G.; Song, B.B.; Chen, C.H.; Xiao, W.W.; Hu, B.; Wang, J.W.; Jiang, X.B.; Zhu, Y.H.; Wang, H.J. Advances in the study of the structures and bioactivities of metabolites isolated from mangrove-derived fungi in the South China Sea. Mar. Drugs 2013, 11, 3601–3616. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.W.; Wang, S.W.; Wu, B.; Wei, J.G. Bioactive natural compounds from the mangrove endophytic fungi. Mini Rev. Med. Chem. 2014, 14, 370–391. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, T.; Wu, X.; Guo, J.; Lan, X.; Zhu, Q.; Zheng, X.; Zhang, K. A new antibacterial chromone derivative from mangrove-derived fungus Penicillium aculeatum (No. 9EB). Nat. Prod. Res. 2017, 31, 2593–2598. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, Y.; Liu, Z.; Cai, R.; Lu, Y.; Huang, X.; She, Z. Isocoumarins and benzofurans from the mangrove endophytic fungus Talaromyces amestolkiae possess α-glucosidase inhibitory and antibacterial activities. RSC Adv. 2016, 6, 26412–26420. [Google Scholar] [CrossRef]
- Chen, S.; He, L.; Dongni, C.; Cai, R.; Long, Y.; Lu, Y.; She, Z. Talaramide A, an unusual alkaloid from the mangrove endophytic fungus Talaromyces sp.(HZ-YX1) as inhibitor of mycobacterial PknG. New J. Chem. 2017, 41, 4273–4276. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Yilmaz, N.; Thrane, U.; Rasmussen, K.B.; Houbraken, J.; Samson, R.A. Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLoS ONE 2013, 8, e84102. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Huang, H.; Shao, C.; Huang, H.; Jiang, J.; Zhu, X.; Liu, Y.; Liu, L.; Lu, Y.; Li, M.; et al. Cytotoxic norsesquiterpene peroxides from the endophytic fungus Talaromyces flavus isolated from the mangrove plant Sonneratia apetala. J. Nat. Prod. 2011, 74, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, K.R.; Mangalagangotri, M. Fungal diversity of Pichavaram mangroves, Southeast coast of India. Nat. Sci. 2009, 7, 67–75. [Google Scholar]
- Liu, Y.; Xia, G.; Li, H.; Ma, L.; Ding, B.; Lu, Y.; He, L.; Xia, X.; She, Z. Vermistatin derivatives with α-glucosidase inhibitory activity from the mangrove endophytic fungus Penicillium sp. HN29-3B1. Planta Med. 2014, 80, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Guo, S. Fungal endophyte communities in four Rhizophoraceae mangrove species on the south coast of China. Ecol. Res. 2011, 26, 403–409. [Google Scholar] [CrossRef]
- Costa, I.P.; Maia, L.C.; Cavalcanti, M.A. Diversity of leaf endophytic fungi in mangrove plants of northeast Brazil. Braz. J. Microbiol. 2012, 43, 1165–1173. [Google Scholar] [CrossRef]
- Lin, Z.; Zhu, T.; Fang, Y.; Gu, Q.; Zhu, W. Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum. Phytochemistry 2008, 69, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.F.; Zuo, W.J.; Guo, Z.K.; Mei, W.L.; Dai, H.F. Metabolites from the endophytic fungus Penicillium sp. FJ-1 of Ceriops tagal. Acta Pharm. Sin. 2013, 48, 1688–1691. [Google Scholar]
- Zheng, C.; Chen, Y.; Jiang, L.L.; Shi, X.M. Antiproliferative metabolites from the endophytic fungus Penicillium sp. FJ-1 isolated from a mangrove Avicennia marina. Phytochem. Lett. 2014, 10, 272–275. [Google Scholar] [CrossRef]
- Liu, J.F.; Chen, W.J.; Xin, B.R.; Lu, J. Metabolites of the endophytic fungus Penicillium sp. FJ-1 of Acanthus ilicifolius. Nat. Prod. Commun. 2014, 9, 799–801. [Google Scholar] [PubMed]
- Liu, H.; Chen, S.; Liu, W.; Liu, Y.; Huang, X.; She, Z. Polyketides with immunosuppressive activities from mangrove endophytic fungus Penicillium sp. ZJ-SY2. Mar. Drugs 2016, 14, 217. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, Q.; Yang, H.; Cai, X.L.; Xia, X.K.; Chen, S.P.; Li, M.F.; She, Z.G.; Lin, Y.C. Structure elucidation of three diphenyl ether derivatives from the mangrove endophytic fungus SBE-14 from the South China Sea. Magn. Reson. Chem. 2009, 47, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Cai, X.L.; Yang, H.; Xia, X.K.; Guo, Z.Y.; Yuan, J.; Li, M.F.; She, Z.G.; Lin, Y.C. The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L.) Druce. Planta Med. 2010, 76, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Chen, S.; Long, Y.; She, Z. Depsidones from Talaromyces stipitatus SK-4, an endophytic fungus of the mangrove plant Acanthus ilicifolius. Phytochem. Lett. 2017, 20, 196–199. [Google Scholar] [CrossRef]
- Sreeta, K.; Dethoup, T.; Singburaudum, N.; Kijjoa, A. Antifungal activities of the crude extracts of endophytic fungi isolated from mangrove plants against phytopathogenic fungi in vitro. In Proceedings of the 52nd Kasetsart University Annual Conference, Agricultural Sciences: Leading Thailand to World Class Standards, Kasetsart, Thailand, 4–7 February 2014; Kasetsart University: Bangkok, Thailand, 2014; Volume 1, pp. 372–379. [Google Scholar]
- Liu, Y.; Yang, Q.; Xia, G.; Huang, H.; Li, H.; Ma, L.; Lu, Y.; He, L.; Xia, X.; She, Z. Polyketides with α-glucosidase inhibitory activity from a mangrove endophytic fungus, Penicillium sp. HN29-3B1. J. Nat. Prod. 2015, 78, 1816–1822. [Google Scholar] [CrossRef] [PubMed]
- Keller, N.P.; Turner, G.; Bennett, J.W. Fungal secondary metabolism—From biochemistry to genomics. Nat. Rev. Microbiol. 2005, 3, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Al-Sadi, A.M.; Schulz, B.; Steinert, M.; Khan, A.; Green, I.R.; Ahmed, I. A fruitful decade for fungal polyketides from 2007 to 2016: Antimicrobial activity, chemotaxonomy and chemodiversity. Future Med. Chem. 2017, 9, 1631–1648. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Joshi, G.P.; Rawat, M.S.M. Lichens as a potential natural source of bioactive compounds: A review. Phytochem. Rev. 2010, 9, 303–314. [Google Scholar] [CrossRef]
- Nicoletti, R.; Manzo, E.; Ciavatta, M.L. Occurence and bioactivities of funicone-related compounds. Int. J. Mol. Sci. 2009, 10, 1430–1444. [Google Scholar] [CrossRef] [PubMed]
- Baroni, A.; De Luca, A.; De Filippis, A.; Petrazzuolo, M.; Manente, L.; Nicoletti, R.; Tufano, M.A.; Buommino, E. 3-O-methylfunicone, a metabolite of Penicillium pinophilum, inhibits proliferation of human melanoma cells by causing G2 + M arrest and inducing apoptosis. Cell Prolif. 2009, 42, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Buommino, E.; Paoletti, I.; De Filippis, A.; Nicoletti, R.; Ciavatta, M.L.; Menegozzo, S.; Menegozzo, M.; Tufano, M.A. 3-O-Methylfunicone, a metabolite produced by Penicillium pinophilum, modulates ERK1/2 activity, affecting cell motility of human mesothelioma cells. Cell Prolif. 2010, 43, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Buommino, E.; Tirino, V.; De Filippis, A.; Silvestri, F.; Nicoletti, R.; Ciavatta, M.L.; Pirozzi, G.; Tufano, M.A. 3-O-methylfunicone, from Penicillium pinophilum, is a selective inhibitor of breast cancer stem cells. Cell Prolif. 2011, 44, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Buommino, E.; De Filippis, A.; Nicoletti, R.; Menegozzo, M.; Menegozzo, S.; Ciavatta, M.L.; Rizzo, A.; Brancato, V.; Tufano, M.A.; Donnarumma, G. Cell-growth and migration inhibition of human mesothelioma cells induced by 3-O-methylfunicone from Penicillium pinophilum and cisplatin. Investig. New Drugs 2012, 30, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, R.; Scognamiglio, M.; Fiorentino, A. Structural and bioactive properties of 3-O-methylfunicone. Mini Rev. Med. Chem. 2014, 14, 1043–1047. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, Y.; Chen, R.; Liu, D.; Liu, M.; Proksch, P.; Guo, P.; Lin, W. Phenolic metabolites from mangrove-associated Penicillium pinophilum fungus with lipid-lowering effects. RSC Adv. 2016, 6, 21969–21978. [Google Scholar] [CrossRef]
- Masters, K.S.; Bräse, S. Xanthones from fungi, lichens, and bacteria: The natural products and their synthesis. Chem. Rev. 2012, 112, 3717–3776. [Google Scholar] [CrossRef] [PubMed]
- Negreiros de Carvalho, P.L.; de Oliveira Silva, E.; Chagas-Paula, D.A.; Hortolan Luiz, J.H.; Ikegaki, M. Importance and implications of the production of phenolic secondary metabolites by endophytic fungi: A mini-review. Mini Rev. Med. Chem. 2016, 16, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Shamsuzzaman, H.K. Bioactive benzofuran derivatives: A review. Eur. J. Med. Chem. 2015, 97, 483–504. [Google Scholar]
- Saeed, A. Isocoumarins, miraculous natural products blessed with diverse pharmacological activities. Eur. J. Med. Chem. 2016, 116, 290–317. [Google Scholar] [CrossRef] [PubMed]
- Mapari, S.A.; Thrane, U.; Meyer, A.S. Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol. 2010, 28, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Osmanova, N.; Schultze, W.; Ayoub, N. Azaphilones: A class of fungal metabolites with diverse biological activities. Phytochem. Rev. 2010, 9, 315–342. [Google Scholar] [CrossRef]
- Gao, J.M.; Yang, S.X.; Qin, J.C. Azaphilones: Chemistry and biology. Chem. Rev. 2013, 113, 4755–4811. [Google Scholar] [CrossRef] [PubMed]
- Barton, D.H.R.; Sutherland, J.K. The nonadrides. Part I. Introduction and general survey. J. Chem. Soc. 1965, 1769–1772. [Google Scholar] [CrossRef]
- Bloomer, J.L.; Moppett, C.E.; Sutherland, J.K. The nonadrides. Part V. Biosynthesis of glauconic acid. J. Chem. Soc. C Org. 1968, 588–591. [Google Scholar] [CrossRef]
- Cox, R.E.; Holker, J.S. Biosynthesis of glauconic acid from [2, 3–13 C] succinate. J. Chem. Soc. Chem. Commun. 1976, 15, 583–584. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, T.; Ming, Q.; Wu, L.; Rahman, K.; Qin, L. Alkaloids produced by endophytic fungi: A review. Nat. Prod. Commun. 2012, 7, 963–968. [Google Scholar] [PubMed]
- West, R.R.; Van Ness, J.; Varming, A.M.; Rassing, B.; Biggs, S.; Gasper, S.; Mckernan, P.A.; Piggott, J. ZG-1494α, a novel platelet-activating factor acetyltransferase inhibitor from Penicilium rubrum, isolation, structure elucidation and biological activity. J. Antibiot. 1996, 49, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Higginbotham, S.J.; Arnold, A.E.; Ibañez, A.; Spadafora, C.; Coley, P.D.; Kursar, T.A. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE 2013, 8, e73192. [Google Scholar] [CrossRef] [PubMed]
- El-Elimat, T.; Figueroa, M.; Ehrmann, B.M.; Cech, N.B.; Pearce, C.J.; Oberlies, N.H. High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a dereplication protocol for bioactive natural products. J. Nat. Prod. 2013, 76, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.F.; Larsen, T.O. The importance of mass spectrometric dereplication in fungal secondary metabolite analysis. Front. Microbiol. 2015, 6, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.B.; Nierman, W.C.; Shan, Y.; Frank, B.C.; Spoering, A.; Ling, L.; Peoples, A.; Zullo, A.; Lewis, K.; Nelson, K.E. Reducing the bottleneck in discovery of novel antibiotics. Microb. Ecol. 2017, 73, 658–667. [Google Scholar] [CrossRef] [PubMed]
Species/Strain | Source | Location | Reference |
---|---|---|---|
T. aculeatus/9EB | Kandelia candel (leaf) | Yangjiang (Guangdong), China | [23] |
T. amestolkiae/YX1 | Kandelia obovata (leaf) | Zhanjiang Mangrove Natural Reserve (Guangdong), China | [24] |
T. amestolkiae/HZ-YX1 | K. obovata (leaf) | Huizhou Mangrove Natural Reserve (Guangdong), China | [25] |
T. atroroseus/IBT 20955 | Laguncularia racemosa (root) | Paria Bay, Venezuela | [26] |
T. flavus/CCTCCM2010266 | Sonneratia apetala (leaf) | Hainan, China | [27] |
T. funiculosus | Avicennia officinalis (root) Rhizophora mucronata (root) undetermined species (leaf) | Pichavaram (Tamil Nadu), India | [28] |
T. pinophilus/HN29-3B1 | Cerbera manghas | Dong Zhai Gang Mangrove Natural Reserve (Hainan), China | [29] |
T. pinophilus | Ceriops tagal (root) | Dong Zhai Gang (Hainan), China | [30] |
T. pinophilus | L. racemosa (leaf) | Itamaracá Island, Brazil | [31] |
T. purpurogenus/JP-1 | Aegiceras corniculatum (bark) | Fujian, China | [32] |
Talaromyces sp./FJ-1 1 | C. tagal (stem) | Haikou (Hainan), China | [33] |
Talaromyces sp./FJ-1 1 | Avicennia marina | Fujian, China | [34] |
Talaromyces sp./FJ-1 1 | Acanthus ilicifolius | Hainan, China | [35] |
Talaromyces sp./ZJ-SY2 1 | S. apetala (leaf) | Zhanjiang Mangrove Natural Reserve (Guangdong), China | [36] |
Talaromyces sp./SBE-14 | K. candel (bark) | Hong Kong, China | [37] |
Talaromyces sp./ZH154 | K. candel (bark) | Zhuhai (Guangdong), China | [38] |
T. stipitatus/SK-4 | A. ilicifolius (leaf) | Shankou Mangrove Natural Reserve (Guangxi), China | [39] |
T. trachyspermus/KUFA35 | not specified | Thailand | [40] |
Compound Name | Structure | Reported Bioactivities | Reference |
---|---|---|---|
Depsidones, Diphenyl Ether Derivatives | |||
Penicillide * (R = H) Purpactin A * (=vermixocin B) (R = CH3CO) | [39] | ||
Secopenicillide B | [39] | ||
Talaromyone A (R = H) | Antibacterial: (MIC μg/mL) B. subtilis 12.5 (talaromyone B) | [39] | |
Talaromyone B (R = CH3CO) | α-Glucosidase inhibitor (IC50 μM) 48.4 (talaromyone B) | ||
Tenelate A (R = H) Tenelate B (R = CH2CH3) | [37] | ||
Tenellic acid A * | α-Glucosidase inhibitor (IC50 μM) 99.8 | [39] | |
Tenellic acid C | [37,39] | ||
Funicones, Vermistatins | |||
3-O-Methylfunicone * | [41] | ||
Penicidone D | [41] | ||
(±)-Penifupyrone | α-Glucosidase inhibitor (IC50 μM) 14.4 | [41] | |
Penisimplicissin * (R1 = H, R2 = CH3) 6-Demethylpenisimplicissin (R1 = R2 = H) 5′-Hydroxypenisimplicissin (R1 = OH, R2 = CH3) | α-Glucosidase inhibitor (IC50 μM) 9.5 (6-demethylpenisimplicissin) | [29] | |
Vermistatin * (R = H) Hydroxyvermistatin * (R = OH) Methoxyvermistatin * (R = OCH3) | α-Glucosidase inhibitors (IC50 μM) 29.2, 20.3 1 | [29] | |
2′′-Epihydroxydihydrovermistatin | α-Glucosidase inhibitor (IC50 μM) 8.0 | [29] | |
6-Demethylvermistatin | [29] | ||
Anthraquinones | |||
Emodin * | Antibacterial: (MIC μg/mL) E. coli 6.25; P. aeruginosa 12.5; S. ventriculi 12.5; S. aureus 12.5 | [38] | |
Antifungal: (MIC μg/mL) A. niger 12.5; C. albicans 6.25; F. oxysporum f.sp. cubense 25.0 | |||
Cytotoxic: (IC50 μg/mL) KB 12.43; KBv200 15.72 | |||
Skyrin * | Antibacterial: (MIC μg/mL) E. coli 25.0; P. aeruginosa 12.5; S. ventriculi 25.0; S. aureus 25.0 | [38] | |
Antifungal: (MIC μg/mL) A. niger 25.0; C. albicans 12.25 | |||
Cytotoxic: (IC50 μg/mL) KB 20.38; KBv200 16.06 | |||
Xanthones | |||
Conioxanthone A (R1 = H, R2 = R3 = OH) 8-Hydroxy-6-methyl-9-oxo-9H-xanthene-1-methylcarboxylate (R1 = R2 = R3 = H) Pinselin (R1 = OH, R2 = R3 = H) Sydowinin A (R1 = OH, R2 = H, R3 = OH) Sydowinin B (R1 = R2 = H, R3 = OH) | Immunosuppressive: (IC50 μg/mL) Con A-Induced 8.2, 25.7, 5.9, 6.5, 19.2 1 | [36] | |
Immunosuppressive: (IC50 μg/mL) LPS-Induced 7.5, 26.4, 7.5, 7.1, 20.8 1 | |||
Norlichexanthone | Antibacterial: (MIC μg/mL) P. aeruginosa 25.0; S. ventriculi 25.0; S. aureus 12.5 | [38] | |
Antifungal (MIC μg/mL) A. niger 25.0; C. albicans 6.25; F. oxysporum f.sp. cubense 50.0 | |||
Cytotoxic: (IC50 μg/mL) KB 12.43; KBv200 15.72 | |||
Peniphenone (R = H) | Immunosuppressive: Con A-Induced (IC50 μg/mL) 8.1, 17.5 1 | [36] | |
Methylpeniphenone (R = CH3) | Immunosuppressive: LPS-Induced (IC50 μg/mL) 9.3, 23.7 1 | ||
Remisporine B (R = βH) Epiremisporine B (R = αH) | [36] | ||
Secalonic acid A | Antibacterial: (MIC μg/mL) E. coli 25.0; P. aeruginosa 12.5; S. ventriculi 12.5; S. aureus 12.5 | [38] | |
Antifungal (MIC μg/mL) A. niger 6.25; C. albicans 6.25; F. oxysporum f.sp. cubense 12.5 | |||
Cytotoxic: (IC50 μg/mL) KB 0.63; KBv200 1.05 | |||
Stemphyperylenol | Antibacterial: (MIC μg/mL) P. aeruginosa 12.5; S. ventriculi 3.12; S. aureus 25.0 | [38] | |
Antifungal: (MIC μg/mL) A. niger 50.0; C. albicans 6.25 | |||
Cytotoxic: (IC50 μg/mL) KB 20.20; KBv200 44.35 | |||
Benzophenone Analogs | |||
Arugosin I | [32] | ||
Penicillenone | Cytotoxic: (IC50 μM) P388 1.38 | [32] | |
Phenols, Biphenyls | |||
4-(2′,3′-Dihydroxy-3′-ethyl-butanoxy)-phenethanol | Cytotoxic: (IC50 μM) MG-63 35, Tca8113 26 | [34] | |
2,4-Dihydroxy-6-methylbenzoic acid (R = COOH) 5-Methylbenzene-1,3-diol (R = H) | [41] | ||
4′-(S)-(3,5-Dihydroxyphenyl)-4′-hydroxy-6′-methylcyclopent-1′-en-5′-one | [41] | ||
6′-Methyl-[1,1′-biphenyl]-3,3′,4′,5-tetraol | α-Glucosidase inhibitor (IC50 μM) 2.2 | [41] | |
Benzofurans | |||
5-Carboxyphthalide | [23] | ||
1-(5-Hydroxy-7-methoxy-benzofuran-3-yl)-ethanone | Antibacterial: (MIC μg/mL) B. subtilis 50; E. coli 50; S. aureus 25; S. epidermidis 50 | [24] | |
5-Hydroxy-7-methoxy-2-methyl-benzofuran-3-carboxylic acid | Antibacterial (MIC μg/mL) B. subtilis 25; E. coli 50; S. aureus 25; S. epidermidis 25 | [24] | |
Isocoumarins | |||
Aspergillumarin A * | α-Glucosidase inhibitor (IC50 μM) 38.1 | [24] | |
Aspergillumarin B * (R1 = R2 = H) Penicimarin B * (R1 = CH3, R2 = H) Penicimarin C * (R1 = CH3, R2 = OH) | α-Glucosidase inhibitors (IC50 μM) 193.1, 431.4, 266.3 1 | [24] | |
6,8-Dihydroxy-3,4-dimethyl-isocoumarin (R1 = H, R2 = H, R3 = CH3) 6,8-Dihydroxy-5-methoxy-3-methyl-isochromen-1-one (R1 = H, R2 = CH3, R3 = H) 6-Hydroxy-8-methoxy-3,4-dimethylisocoumarin (R1 = CH3, R2 = H, R3 = CH3) | α-Glucosidase inhibitor (IC50 μM) 34.4, 89.4, 585.7 1 | [24] | |
3-(4,5-Dihydroxy-pentyl)-8-hydroxy-isochroman-1-one | α-Glucosidase inhibitor (IC50 μM) 162.5 | [24] | |
5,6-Dihydroxy-3-(4-hydroxy-pentyl)-isochroman-1-one | α-Glucosidase inhibitor (IC50 μM) 142.1 | [24] | |
6-Hydroxy-4-(1-hydroxy-ethyl)-8-methoxy-isocoumarin 2 (R1 = CH3, R2 = H) Sescandelin (R1 = R2 = H) 5,6,8-Trihydroxy-4-(1-hydroxy-ethyl)-isocoumarin (R1 = H, R2 = OH) | α-Glucosidase inhibitor (IC50 μM) 537.3 | [24] | |
6-Hydroxy-4-hydroxymethyl-8-methoxy-3-methyl-isocoumarin (R = CH3) Sescandelin B * (R = H) | α-Glucosidase inhibitors (IC50 μM) 302.6, 17.2 1 | [24] | |
Isobutyric acid 5,7-dihydroxy-2-methyl-4-oxo-3,4-dihydro-naphththalen-1-yl methyl ester | α-Glucosidase inhibitor (IC50 μM) 140.8 | [24] | |
Deoxytalaroflavone | Antibacterial (S. aureus) | [33] | |
7-Hydroxy-deoxytalaroflavone | Antibacterial (S. aureus, m.r.-S. aureus) | [33] | |
Azaphilones | |||
7-Epiaustdiol (R = H) 8-O-Methylepiaustdiol (R = CH3) | Antibacterial: (MIC μg/mL) E. coli > 100, 25; P. aeruginosa 6.26, 25.0; S. ventriculi 25.0, 50; S. aureus 12.6, 50.0 1 | [38] | |
Antifungal: (MIC μg/mL) A. niger 25.0, 50.0; C. albicans 12.5, 25.0 1 | |||
Cytotoxic: (IC50 μg/mL) KB 20.04, 16.37; KBv200 19.32, 37.16 1 | |||
Monascorubramine | [26] | ||
Monascorubrin | [26] | ||
Pinazaphilone A | α-Glucosidase inhibitor (IC50 μM) 81.7 | [41] | |
Pinazaphilone B (R1 = CH3, R2 = OH) Sch 1385568 * (R1 = OH, R2 = CH3) | α-Glucosidase inhibitor (IC50 μM) 28.0 | [41] | |
Sequoiamonascin D | [32] | ||
Sequoiatone A | [32] | ||
Sequoiatone B | [32] | ||
Nonadrides | |||
Glauconic acid * | [26] | ||
Phenalenone Derivatives | |||
Bacillosporin A * (R = CH3CO) Bacillosporin B * (R = H) | α-Glucosidase inhibitors (IC50 μM) 33.55, 95.81 1 | [23,32] | |
Bacillosporin C * | [32] | ||
9-Demethyl FR-901235 | [32] | ||
Chromones | |||
(2′S *)-2-(2′-Hydroxypropyl)-5-methyl-7,8-dihydroxy-chromone | Antibacterial (MIC μM) Salmonella 2.0 | [23] | |
Cyclohexenones | |||
Leptosphaerone C | Cytotoxic: (IC50 μM) A-549 1.45 | [32] | |
Flavonoids | |||
(2R,3S)-Pinobanksin-3-cinnamate | Neuroprotective | [35] | |
Alkaloids | |||
Talaramide | Antimycobacterial: (IC50 μM) PknG kinase inhibitor 55 | [25] | |
ZG-1494α * | [26] | ||
Terpenes | |||
15-Hydroxy-6α,12-epoxy-7β,10αH,11βH-spiroax-4-ene-12-one | Cytotoxic: (IC50 μM) MG-63 55nM, Tca8113 10, WRL-68 58 | [34] | |
15-α-Hydroxy-(22E,24R)-ergosta-3,5,8(14),22-tetraen-7-one | Cytotoxic: glioma cell lines (IC50 μM) U251 3.2, BT-325 4.1, SHG-44 2.3 | [35] | |
Purpuride * | [26] | ||
Steperoxide B (=merulin A) (R = H) | Toxic to brine shrimp | [27] | |
Talaperoxide A (R = CH3CO) | Cytotoxic: (IC50 μM) HeLa 7.97, 13.7; HepG2 6.79, 12.93; MCF-7 4.17, 19.77; MDA-MB-435 1.90, 11.78; PC-3 1.82, 5.70 1 | ||
Talaperoxide B | Toxic to brine shrimp Cytotoxic: (IC50 μM) HeLa 1.73, HepG2 1.29; MCF-7 1.33; MDA-MB-435 2.78; PC-3 0.89 | [27] | |
Talaperoxide C | Toxic to brine shrimp Cytotoxic: (IC50 μM) HeLa 12.71; HepG2 15.11; MCF-7 6.63; MDA-MB-435 2.64; PC-3 4.34 | [27] | |
Talaperoxide D | Toxic to brine shrimpCytotoxic: (IC50 μM) HeLa 1.31; HepG2 0.90; MCF-7 1.92; MDA-MB-435 0.91; PC-3 0.70 | [27] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoletti, R.; Salvatore, M.M.; Andolfi, A. Secondary Metabolites of Mangrove-Associated Strains of Talaromyces. Mar. Drugs 2018, 16, 12. https://doi.org/10.3390/md16010012
Nicoletti R, Salvatore MM, Andolfi A. Secondary Metabolites of Mangrove-Associated Strains of Talaromyces. Marine Drugs. 2018; 16(1):12. https://doi.org/10.3390/md16010012
Chicago/Turabian StyleNicoletti, Rosario, Maria Michela Salvatore, and Anna Andolfi. 2018. "Secondary Metabolites of Mangrove-Associated Strains of Talaromyces" Marine Drugs 16, no. 1: 12. https://doi.org/10.3390/md16010012
APA StyleNicoletti, R., Salvatore, M. M., & Andolfi, A. (2018). Secondary Metabolites of Mangrove-Associated Strains of Talaromyces. Marine Drugs, 16(1), 12. https://doi.org/10.3390/md16010012