Optimization of Extraction Conditions and Characterization of Pepsin-Solubilised Collagen from Skin of Giant Croaker (Nibea japonica)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single Factor Results
2.1.1. Effect of Enzyme Concentration on the Extraction Yield of PSC
2.1.2. Effect of Solid-Liquid Ratio on the Extraction Yield of PSC
2.1.3. Effect of Hydrolysis Time on the Extraction Yield of PSC
2.2. Optimization of Extraction Parameters of PSC Using RSM
2.2.1. Response Surface Analysis
2.2.2. Validation of the Models
2.3. SDS-PAGE Analysis
2.4. Amino Acid Composition of PSC
2.5. UV-Visible Spectroscopy
2.6. Fourier Transforms Infrared Spetroscopy (FTIR) Analysis
2.7. Effects of pH and Sodium Chloride on PSC Solubility
3. Materials and Methods
3.1. Materials and Chemical Reagent
3.2. Extraction of PSC from Nibea japonica Skin
3.3. Experimental Design and Statistical Analysis
3.4. SDS-PAGE Analysis
3.5. Amino Acid Composition of PSC
3.6. UV-Visible Spectroscopy of PSC
3.7. FTIR Spectra of PSC
3.8. Effects of pH and Sodium Chloride on PSC Solubility
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tang, Y.P.; Yang, X.L.; Hang, B.J.; Li, J.T.; Huang, L.; Huang, F.; Xu, Z.N. Efficient production of hydroxylated human-like collagen via the co-expression of three key genes in Escherichia coli Origami (DE3). Appl. Biochem. Biotechnol. 2016, 178, 1458–1470. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Benjakul, S. Extraction and characterisation of pepsin-solubilised collagen from the skin of unicorn leatherjacket (Aluterus monocerous). Food Chem. 2010, 120, 817–824. [Google Scholar] [CrossRef]
- Jeon, E.Y.; Choi, B.-H.; Jung, D.; Hwang, B.H.; Cha, H.J. Natural healing-inspired collagen-targeting surgical protein glue for accelerated scarless skin regeneration. Biomaterials 2017, 134, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Yang, P.; Zhou, C.X.; Li, S.D.; Hong, P.Z. Marine collagen peptides from the skin of Nile Tilapia (Oreochromis niloticus): Characterization and wound healing evaluation. Mar. Drugs 2017, 15, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, G.S.; Sachdev, M. Recent advances in corneal collagen cross-linking. Indian J. Ophthalmol. 2017, 65, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Portalatin, N.; Kilmer, C.E.; Panitch, A.; Liu, J.C. Characterization of collagen type I and II blended hydrogels for articular cartilage tissue engineering. Biomacromolecules 2016, 17, 3145–3152. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Volpicelli, E.J. Bioinspired collagen scaffolds in cranial bone regeneration: From bedside to bench. Adv. Healthc. Mater. 2017, 6, 1700232–1700252. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.Y.; Stoichevska, V.; Vashi, A.; Howell, L.; Fehr, F.; Dumsday, G.J.; Werkmeister, J.A.; Ramshaw, J.A.M. Non-animal collagens as new options for cosmetic formulation. Int. J. Cosmet. Sci. 2015, 37, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, Y.-M.; Chi, C.-F.; Luo, H.-Y.; Deng, S.-G.; Ma, J.-Y. Isolation and characterization of collagen and antioxidant collagen peptides from scales of croceine croaker (Pseudosciaena crocea). Mar. Drugs 2013, 11, 4641–4661. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-R.; Chi, C.-F.; Li, L.; Wang, B. Purification and identification of antioxidant peptides from protein hydrolysate of scalloped hammerhead (Sphyrna lewini) Cartilage. Mar. Drugs 2017, 15, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.; Amin Mohammadifar, M.; Mohammad Mortazavian, A.; Milad, R.; Jahan, B.G.; Zohre, D. Extraction optimization of pepsin-soluble collagen from eggshell membrane by response surface methodology (RSM). Food Chem. 2016, 190, 186–193. [Google Scholar]
- Pakkanen, O.; Hamalainen, E.R.; Kivirikko, K.I.; Myllyharju, J. Assembly of stable human type I and III collagen molecules from hydroxylated recombinant chains in the yeast Pichia pastoris—Effect of an engineered C-terminal oligomerization domain foldon. J. Biol. Chem. 2003, 278, 32478–32483. [Google Scholar] [CrossRef] [PubMed]
- Baez, J.; Olsen, D.; Polarek, J.W. Recombinant microbial systems for the production of human collagen and gelatin. Appl. Microbiol. Biotechnol. 2005, 69, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.; Rezaei, M.; Jafarpour, A.; Undeland, I. Sequential extraction of gel-forming proteins, collagen and collagen hydrolysate from gutted silver carp (Hypophthalmichthys molitrix), a biorefinery approach. Food Chem. 2018, 242, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.R.; Wang, B.; Chi, C.F.; Zhang, Q.H.; Gong, Y.D.; Tang, J.J.; Luo, H.Y.; Ding, G.F. Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius). Food Hydrocoll. 2013, 31, 103–113. [Google Scholar] [CrossRef]
- Sittichoke, S.; Soottawat, B.; Kishimura, H. Comparative study on molecular characteristics of acid soluble collagens from skin and swim bladder of seabass (Lates calcarifer). Food Chem. 2013, 138, 2435–2441. [Google Scholar]
- Zhao, Y.-Q.; Zeng, L.; Yang, Z.-S.; Huang, F.-F.; Ding, G.-F.; Wang, B. Anti-fatigue effect by peptide fraction from protein hydrolysate of croceine croaker (Pseudosciaena crocea) swim bladder through inhibiting the oxidative reactions including DNA damage. Mar. Drugs 2016, 14, 221. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Sun, L.; Zhang, Y.; Liu, G. Antihypertensive Effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides on renovascular hypertension. Mar. Drugs 2012, 10, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Li, X.Y.; Wang, J.T.; Hu, S.X.; Jiang, Y.D.; Zhong, X.D. Effect of dietary lipid level on growth, feed utilization and body composition of juvenile giant croaker Nibea japonica. Aquaculture 2014, 434, 145–150. [Google Scholar] [CrossRef]
- Li, X.Y.; Wang, J.T.; Han, T.; Hu, S.X.; Jiang, Y.D. Effects of dietary carbohydrate level on growth and body composition of juvenile giant croaker Nibea japonica. Aquac. Res. 2015, 46, 2851–2858. [Google Scholar] [CrossRef]
- Bakar, J.; Mohamad, R.U.H.; Mat, H.D.; Qurni, S.A.; Harvinder, K. Collagen Extraction from Aquatic Animals. WIPO Patent WO2010074552 A1, 23 December 2008. [Google Scholar]
- Somasundaram, T.; Anguchamy, V.; Muthuvel, A. Isolation and characterization of acid and pepsin-solubilized collagen from the skin of sailfish (Istiophorus platypterus). Food Res. Int. 2013, 54, 1499–1505. [Google Scholar]
- El-Rashidy, A.A.; Gad, A.; Abu-Hussein, A.G.; Habib, S.I.; Badr, N.A.; Hashem, A.A. Chemical and biological evaluation of Egyptian Nile Tilapia (Oreochromis niloticas) fish scale collagen. Int. J. Biol. Macromol. 2015, 79, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Rui Duan, R. Characterisation of acid-soluble and pepsin-solubilised collagen from frog (Rana nigromaculata) skin. Int. J. Biol. Macromol. 2017, 101, 638–642. [Google Scholar] [CrossRef] [PubMed]
- Nokelainen, M.; Tu, H.; Vuorela, A.; Notbohm, H.; Kivirikko, K.I.; Myllyharju, J. High-level production of human type I collagen in the yeast Pichia pastoris. Yeast 2001, 18, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Ramshaw, J.A.M.; Shah, N.K.; Brodsky, B. Gly-X-Y tripeptide frequencies in collagen: A context for host-guest triple-helical peptides. J. Struct. Biol. 1998, 122, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.G.; Nidheesh, T.; Suresh, P.V. Comparative study on characteristics and in vitro fibril formation ability of acid and pepsin soluble collagen from the skin of catla (Catla catla) and rohu (Labeo rohita). Food Res. Int. 2015, 76, 804–812. [Google Scholar]
- Doyle, B.B.; Bendit, E.G.; Blout, E.R. Infrared spectroscopy of collagen and collagen-like polypeptides. Biopolymers 1975, 14, 937–957. [Google Scholar] [CrossRef] [PubMed]
- Muyonga, J.H.; Cole, C.G.B.; Duodu, K.G. Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chem. 2004, 86, 325–332. [Google Scholar] [CrossRef]
- Liu, H.Y.; Han, J.; Guo, S.D. Characteristics of the gelatin extracted from Channel Catfish (Ictalurus Punctatus) head bones. LWT-Food Sci. Technol. 2009, 42, 540–544. [Google Scholar] [CrossRef]
- Yuqing, T.; Chang, S.K.C. Isolation and characterization of collagen extracted from channel catfish (Ictalurus punctatus) skin. Food Chem. 2018, 242, 147–155. [Google Scholar]
- Dasong, L.; Li, L.; Regenstein, J.M.; Peng, Z. Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chem. 2012, 133, 1441–1448. [Google Scholar]
- Jamall, I.S.; Finelli, V.N.; Hee, S.S.Q. A simple method to determine nanogram levels of 4-hydroxyproline in biological tissues. Anal. Biochem. 1981, 112, 70–75. [Google Scholar] [CrossRef]
- Tang, Y.P.; Zhang, G.M.; Wang, Z.; Liu, D.; Zhang, L.L.; Zhou, Y.F.; Huang, J.; Yu, F.M.; Yang, Z.S.; Ding, G.F. Efficient synthesis of a (S)-fluoxetine intermediate using carbonyl reductase coupled with glucose dehydrogenase. Bioresour. Technol. 2017, 250, 457–463. [Google Scholar] [CrossRef] [PubMed]
Runs | Enzyme Concentration (X1) | Solid-Liquid Ratio (X2) | Hydrolysis Time (X3) | PSC Yield (%) (Y) |
---|---|---|---|---|
1 | 0 | 0 | 0 | 83.88 |
2 | 0 | 1 | −1 | 81.38 |
3 | −1 | 1 | 0 | 76.01 |
4 | 0 | 1 | 1 | 82.78 |
5 | 1 | 1 | 0 | 82.36 |
6 | 0 | 0 | 0 | 83.39 |
7 | −1 | 0 | −1 | 75.97 |
8 | 0 | −1 | −1 | 75.24 |
9 | 0 | −1 | 1 | 80.85 |
10 | 1 | 0 | −1 | 80.95 |
11 | 1 | 0 | 1 | 82.91 |
12 | 1 | −1 | 0 | 80.25 |
13 | 0 | 0 | 0 | 83.91 |
14 | −1 | 0 | 1 | 76.53 |
15 | −1 | −1 | 0 | 74.44 |
Source | Sum of Squares | df | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Model | 216.13 | 9 | 24.01 | 69.10 | 0.0001 |
X1 | 99.83 | 1 | 99.83 | 287.24 | <0.0001 |
X2 | 17.26 | 1 | 17.26 | 49.66 | 0.0009 |
X3 | 25.45 | 1 | 25.45 | 73.24 | 0.0004 |
X1X2 | 0.053 | 1 | 0.053 | 0.15 | 0.7125 |
X1X3 | 1.37 | 1 | 1.37 | 3.94 | 0.1040 |
X2X3 | 2.58 | 1 | 2.58 | 7.41 | 0.0417 |
X12 | 50.13 | 1 | 50.13 | 144.23 | <0.0001 |
X22 | 15.17 | 1 | 15.17 | 43.65 | 0.0012 |
X32 | 13.15 | 1 | 13.15 | 37.83 | 0.0017 |
Residual | 1.74 | 5 | 0.35 | ||
Lack of fit | 1.57 | 3 | 0.52 | 6.13 | 0.1435 |
Pure Error | 0.17 | 2 | 0.085 | ||
Cor Total | 217.86 | 14 | |||
R2 | 0.9526 | ||||
Adj R2 | 0.9777 |
Amino Acid | Nibea japonica Skin PSC | Calf Skin Collagen [23] | Type I Collagen of Porcine Skin [24] | Type I Collagen of Human [25] |
---|---|---|---|---|
Aspartic acid | 43 | 45 | 44 | 43 |
Threonine | 20 | 18 | 16 | 17 |
Serine | 29 | 33 | 33 | 33 |
Glutamic acid | 73 | 75 | 72 | 71 |
Glycine | 348 | 330 | 341 | 335 |
Alanine | 128 | 119 | 115 | 111 |
Cysteine | 0 | 0 | 0 | 0 |
Valine | 19 | 21 | 22 | 26 |
Methionine | 10 | 6 | 6 | 6 |
Isoleucine | 9 | 11 | 10 | 9 |
Leucine | 25 | 23 | 22 | 23 |
Tyrosine | 3 | 3 | 1 | 2 |
Phenylalanine | 6 | 3 | 12 | 12 |
Histidine | 8 | 5 | 5 | 6 |
Lysine | 30 | 26 | 27 | 23 |
Arginine | 51 | 50 | 48 | 50 |
Proline | 116 | 121 | 123 | 120 |
Hydroxyproline | 75 | 94 | 97 | 103 |
Imino acid | 191 | 215 | 220 | 223 |
Independent Factors | Symbol | Level of Factor | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Enzyme concentration (U/g) | X1 | 800 | 1200 | 1600 |
Solid-liquid ratio (v/w) | X2 | 1:45 | 1:55 | 1:65 |
Hydrolysis time (h) | X3 | 6 | 8 | 10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, F.; Zong, C.; Jin, S.; Zheng, J.; Chen, N.; Huang, J.; Chen, Y.; Huang, F.; Yang, Z.; Tang, Y.; et al. Optimization of Extraction Conditions and Characterization of Pepsin-Solubilised Collagen from Skin of Giant Croaker (Nibea japonica). Mar. Drugs 2018, 16, 29. https://doi.org/10.3390/md16010029
Yu F, Zong C, Jin S, Zheng J, Chen N, Huang J, Chen Y, Huang F, Yang Z, Tang Y, et al. Optimization of Extraction Conditions and Characterization of Pepsin-Solubilised Collagen from Skin of Giant Croaker (Nibea japonica). Marine Drugs. 2018; 16(1):29. https://doi.org/10.3390/md16010029
Chicago/Turabian StyleYu, Fangmiao, Chuhong Zong, Shujie Jin, Jiawen Zheng, Nan Chen, Ju Huang, Yan Chen, Fangfang Huang, Zuisu Yang, Yunping Tang, and et al. 2018. "Optimization of Extraction Conditions and Characterization of Pepsin-Solubilised Collagen from Skin of Giant Croaker (Nibea japonica)" Marine Drugs 16, no. 1: 29. https://doi.org/10.3390/md16010029
APA StyleYu, F., Zong, C., Jin, S., Zheng, J., Chen, N., Huang, J., Chen, Y., Huang, F., Yang, Z., Tang, Y., & Ding, G. (2018). Optimization of Extraction Conditions and Characterization of Pepsin-Solubilised Collagen from Skin of Giant Croaker (Nibea japonica). Marine Drugs, 16(1), 29. https://doi.org/10.3390/md16010029