Two Novel Aspochalasins from the Gut Fungus Aspergillus sp. Z4
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation, Extraction, and Isolation of Strain Z4
- Tricochalasin A (1): colorless solid; −2.39 (c 0.67, MeOH); UV (MeOH) λmax (log ε) 204 (3.4), 245 (1.6) nm; IR(film) νmax 3391, 2931, 1753, 1681, 1452, 1380, 1189, 1095 cm−1; 1H and 13C data see Table 1; HR-ESIMS m/z 554.3107 [M + H]+, calcd. 554.3073 for C32H44NO7.
- Aspochalasin A2 (2): colorless solid; 8.08 (c 0.98, CHCl3); UV (MeOH) λmax (log ε) 202 (3.6) nm; IR(KBr) νmax 3454, 3273, 2924, 2852, 1709, 1435, 1384, 1324, 1263, 1142 cm−1; 1H and 13C data see Table 1; HR-ESIMS m/z 418.2589 [M + H]+, calcd. 418.2549 for C24H36NO5.
- Aspochalasins D (3): colorless solid; UV (MeOH) λmax (log ε) 204 (3.1) nm.
- Aspergillulactone (4): colorless solid; UV (MeOH) λmax (log ε) 204 (3.6), 245 (1.3) nm.
- Aspochalasins T (5): colorless solid; UV (MeOH) λmax (log ε) 205 (3.7) nm.
3.4. Preparation of MTPA Esters
- 1a:1H NMR (500 MHz, pyridine-d5): δ 6.68 (1H, H-13), δ 1.37 (1H, H-16a), δ 7.86 (1H, H-17), δ 4.51 (1H, H-18), δ 2.77 (1H, H-19), δ 4.95 (1H, H-27a), δ 4.03 (1H, H-30), δ 4.32 (1H, H-32).
- 1b:1H NMR (500 MHz, pyridine-d5): δ 6.72 (1H, H-13), δ 1.42 (1H, H-16a), δ 7.92 (1H, H-17), δ 4.09 (1H, H-18), δ 2.71 (1H, H-19), δ 4.93 (1H, H-27a), δ 4.01 (1H, H-30), δ 4.25 (1H, H-32).
- 2a:1H NMR (500 MHz, pyridine-d5): δ 5.42 (1H, H-7), δ 3.26 (1H, H-8), δ 1.79 (3H, H-12), δ 6.61 (1H, H-13), δ 2.35 (1H, H-15a), δ 2.25 (1H, H-17a), δ 2.14 (1H, H-19a).
- 2b:1H NMR (500 MHz, pyridine-d5): δ 5.40 (1H, H-7), δ 3.24 (1H, H-8), δ 1.76 (3H, H-12), δ 6.55 (1H, H-13), δ 2.19 (1H, H-15a), δ 2.55 (1H, H-17a), δ 2.40 (1H, H-19a).
3.5. Cytotoxicity Bioassays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scherlach, K.; Boettger, D.; Remme, N.; Hertweck, C. The chemistry and biology of cytochalasans. Nat. Prod. Rep. 2010, 27, 869–886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ge, H.; Xie, D.; Chen, R.; Zou, J.H.; Tao, X.; Dai, J. Periconiasins A–C, new cytotoxic cytochalasans with an unprecedented 9/6/5 tricyclic ring system from endophytic fungus periconia sp. Org. Lett. 2013, 15, 1674–1677. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, P.B.; Hanna, B.; Ohl, S.; Sellner, L.; Zenz, T.; Dohner, H.; Stilgenbauer, S.; Larsen, T.O.; Lichter, P.; Seiffert, M. Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic leukemia cells by targeting the cytoskeleton. Leukemia 2014, 28, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.X.; Wijeratne, E.M.K.; Bigelow, D.; Pierson, L.S.; Vanetten, H.D.; Guantilaka, A.A.L. Aspochalasins I, J, and K: Three new cytotoxic cytochalasans of Aspergillus flavipes from the rhizosphere of Ericameria laricifolia of the sonoran desert. J. Nat. Prod. 2004, 67, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Rochfort, S.; Ford, J.; Ovenden, S.; Wan, S.S.; George, S.; Wildman, H.; Tait, R.M.; Meurer-Grimes, B.; Cox, S.; Coates, J.; et al. A novel aspochalasin with HIV-1 integrase inhibitory activity from Aspergillus flavipes. J. Antibiot. 2005, 58, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Hua, C.Y.; Yang, Y.H.; Sun, L.; Dou, H.; Tan, R.X.; Hou, Y.Y. Chaetoglobosin F, a small molecule compound, possesses immunomodulatory properties on bone marrow-derived dendritic cells via TLR9 signaling pathway. Immunobiology 2013, 218, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, W.P.; Zhang, P.; Ruan, W.B.; Zhu, X.D. Nematicidal Activity of Chaetoglobosin A Poduced by Chaetomium globosum NK102 against Meloidogyne incognita. J. Agric. Food Chem. 2013, 61, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Qiao, K.J.; Chooi, Y.H.; Tang, Y. Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1. Metab. Eng. 2011, 13, 723–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumann, J.; Hertweck, C. Molecular basis of cytochalasan biosynthesis in fungi: Gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J. Am. Chem. Soc. 2007, 129, 9564–9565. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Swenson, D.C.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F. Chaetochalasin A: A new bioactive metabolite from Chaetomium brasiliense. Tetrahedron. Lett. 1998, 39, 7633–7636. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Pei, Y.H.; Hua, H.M.; Feng, B.M. Aspergillin PZ, a novel isoindole-alkaloid from Aspergillus awamori. J. Antibiot. 2002, 55, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.J.; Zhu, T.J.; Wei, H.J.; Zhang, G.J.; Wang, H.; Gu, Q.Q. Spicochalasin A and New Aspochalasins from the Marine-Derived Fungus Spicaria elegans. Eur. J. Org. Chem. 2009, 18, 3045–3051. [Google Scholar] [CrossRef]
- Zhu, H.C.; Chen, C.M.; Tong, Q.Y.; Li, X.N.; Yang, J.; Xue, Y.B.; Luo, Z.W.; Wang, J.P.; Yao, G.M.; Zhang, Y.H. Epicochalasines A and B: Two bioactive merocytochalasans bearing caged epicoccine dimer units from Aspergillus flavipes. Angew. Chem. Int. Ed. 2016, 55, 3486–3490. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, Z.; Ding, W.; Ye, B.; Wang, P.; Xu, J. Aspochalazine A, a novel polycyclic aspochalasin from the fungus Aspergillus sp. Z4. Tetrahedron Lett. 2017, 58, 2405–2408. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, S.; Ding, W.; Wang, P.; Yang, X.; Xu, J. Methylthio-aspochalasins from a marine-derived fungus Aspergillus sp. Mar. Drugs 2014, 12, 5124–5131. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Z.; Zhao, S.Z.; Yang, X.W. A new cyclopeptide metabolite of marine gut fungus from Ligia oceanica. Nat. Prod. Res. 2014, 28, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.M.; Zhao, S.Z.; Liu, Y.; Ding, W.J.; Qiu, F.; Xu, J.Z. Asperginine, an unprecedented alkaloid from the marine-derived fungus Aspergillus sp. Nat. Prod. Commun. 2015, 10, 1363–1364. [Google Scholar] [PubMed]
- Wang, T.; Zhang, Y.; Pei, Y.h. Two novel trichothecenes from Myrothecium roridum. Med. Chem. Res. 2007, 16, 155–161. [Google Scholar] [CrossRef]
- Ding, G.; Wang, H.; Li, L.; Chen, A.J.; Chen, L.; Chen, H.; Zhang, H.; Liu, X.; Zou, Z. Trichoderones A and B: Two pentacyclic cytochalasans from the plant endophytic fungus Trichoderma gamsii. Eur. J. Org. Chem. 2012, 2012, 2516–2519. [Google Scholar] [CrossRef]
- Liu, R.; Gu, Q.; Zhu, W.; Cui, C.; Fan, G.; Fang, Y.; Zhu, T.; Liu, H. 10-Phenyl-[12]-cytochalasins Z7, Z8, and Z9 from the marine-derived fungus Spicaria elegans. J. Nat. Prod. 2006, 69, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Tong, Q.; Zhu, H.; Tan, D.; Zhang, J.; Xue, Y.; Yao, G.; Luo, Z.; Wang, J.; Wang, Y.; et al. Nine new cytochalasan alkaloids from Chaetomium globosum TW1-1 (Ascomycota, Sordariales). Sci. Rep. 2016, 6, 18711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.J.; Shao, C.L.; Wu, L.Y.; Chen, M.; Wang, K.L.; Zhao, D.L.; Sun, X.P.; Chen, G.Y.; Wang, C.Y. Bioactive phenylalanine derivatives and cytochalasins from the soft coral-derived fungus, Aspergillus elegans. Mar. Drugs 2013, 11, 2054–2068. [Google Scholar] [CrossRef] [PubMed]
- Tomikawa, T.; Shin-ya, K.; Kinoshita, T.; Miyajima, A.; Seto, H.; Hayakawa, Y. Selective cytotoxicity and stereochemistry of aspochalasin D. J. Antibiot. 2001, 54, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Rukachaisirikul, V.; Rungsaiwattana, N.; Klaiklay, S.; Phongpaichit, S.; Borwornwiriyapan, K.; Sakayaroj, J. γ-Butyrolactone, cytochalasin, cyclic carbonate, eutypinic acid, and phenalenone derivatives from the soil fungus Aspergillus sp. PSU-RSPG185. J. Nat. Prod. 2014, 77, 2375–2382. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.J.; Zhu, T.J.; Chen, L.; Gu, Q.Q. Three new aspochalasin derivatives from the marine-derived fungus Spicaria elegans. Chin. Chem. Lett. 2010, 21, 824–826. [Google Scholar] [CrossRef]
- Wang, F.; Hua, H.M.; Pei, Y.H.; Chen, D.; Jing, Y.K. Triterpenoids from the resin of Styrax tonkinensis and their antiproliferative and differentiation effects in human leukemia HL-60 cells. J. Nat. Prod. 2006, 69, 807–810. [Google Scholar] [CrossRef] [PubMed]
Pos. | 1 | 2 | ||
---|---|---|---|---|
δCa, Type | δH (J in Hz) b | δCa, Type | δH (J in Hz) b | |
1 | 176.4, C | 172.4, C | ||
2 | 6.10, brs | 5.96, brs | ||
3 | 52.9, CH | 2.97, m | 52.4, CH | 2.99, m |
4 | 53.9, CH | 2.81, t (4.4) | 52.3, CH | 2.56, dd (8.5,7.1) |
5 | 35.9, CH | 2.67, brs | 34.8, CH | 2.80, brs |
6 | 140.6, C | 140.9, C | ||
7 | 125.6, CH | 5.45, brs | 123.5, CH | 5.29, brs |
8 | 42.9, CH | 3.61, d (12.1) | 41.1, CH | 3.36, d (10.3) |
9 | 68.9, C | 86.5, C | ||
10 | 47.2, CH2 | 1.49, m; 1.25, m | 46.8, CH2 | 1.83, m; 1.23, m |
11 | 14.4, CH3 | 1.18, d (7.1) | 14.3, CH3 | 1.19, d (7.3) |
12 | 20.5, CH3 | 1.77, s | 20.1, CH3 | 1.77, s |
13 | 125.1, CH | 5.70, d (11.4) | 123.8, CH | 5.94, d (10.3) |
14 | 135.9, C | 138.2, C | ||
15 | 36.9, CH2 | 2.07, m | 33.1, CH2 | 2.27, m; 2.14, m |
16 | 29.3, CH | 1.50, m; 1.30, m | 75.1, CH | 4.42, brs |
17 | 68.6, CH | 4.35, d (6.3) | 32.3, CH2 | 2.04, m; 2.28, m |
18 | 88.8, CH | 3.86, d (11.3) | 208.9, C | |
19 | 44.0, CH | 2.25, m | 29.0, CH2 | 2.32, m; 3.02, m |
20 | 47.7, CH | 3.51, dd (4.9, 11.0) | 34.1, CH2 | 2.62, m; 2.44, m |
21 | 214.2, C | 171.9, C | ||
22 | 26.0, CH | 1.53, m | 25.6, CH | 1.59, m |
23 | 21.2, CH3 | 0.93, d (6.4) | 21.1, CH3 | 0.92, d (6.5) |
24 | 24.2, CH3 | 0.96, d (6.4) | 23.8, CH3 | 0.94, d (6.5) |
25 | 16.1, CH3 | 1.57, s | 17.7, CH3 | 1.56, s |
26 | 109.4, CH | 5.91, d (3.9) | ||
27 | 73.1, CH2 | 4.79, m | ||
28 | 158.1, C | |||
29 | 127.6, C | |||
30 | 51.4, CH | 3.59, m | ||
31 | 197.0, C | |||
32 | 77.3, CH | 4.42, dd (3.6, 11.1) | ||
33 | 14.0, CH3 | 1.85, s |
Compounds | PC3 Cell Line (IC50 in μM) |
---|---|
1 | >36 |
2 | >40 |
3 | 11.14 |
4 | >40 |
5 | >40 |
ADR | 5.09 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ding, W.; Wang, P.; Xu, J. Two Novel Aspochalasins from the Gut Fungus Aspergillus sp. Z4. Mar. Drugs 2018, 16, 343. https://doi.org/10.3390/md16100343
Li X, Ding W, Wang P, Xu J. Two Novel Aspochalasins from the Gut Fungus Aspergillus sp. Z4. Marine Drugs. 2018; 16(10):343. https://doi.org/10.3390/md16100343
Chicago/Turabian StyleLi, Xinyang, Wanjing Ding, Pinmei Wang, and Jinzhong Xu. 2018. "Two Novel Aspochalasins from the Gut Fungus Aspergillus sp. Z4" Marine Drugs 16, no. 10: 343. https://doi.org/10.3390/md16100343
APA StyleLi, X., Ding, W., Wang, P., & Xu, J. (2018). Two Novel Aspochalasins from the Gut Fungus Aspergillus sp. Z4. Marine Drugs, 16(10), 343. https://doi.org/10.3390/md16100343