Potential Utilization of a Polysaccharide from the Marine Algae Gayralia oxysperma, as an Antivenom for Viperidae Snakebites
Abstract
:1. Introduction
2. Results
2.1. Inhibition of Go3 on In Vitro Assays of B. jararaca or L. muta Venoms
2.2. Inhibition by Go3 of Ex Vivo Plasma Coagulation of L. muta Venom
2.3. Neutralization of Hemorrhage and Edema Caused by B. jararaca or L. muta Venoms
2.4. Neutralization of B. jararaca Venom Lethality by Go3
2.5. Neutralization L. muta Venom Myotoxicity by Go3
3. Discussion
4. Materials and Methods
4.1. Snake Venom, Animals, and Other Materials
4.2. Collection of G. oxysperma Specimens
4.3. Extraction and Purification of Go3 Sulfated Heterorhamnans Fraction
4.4. In Vitro Assays
4.4.1. Antihemolytic Activity
4.4.2. Antiproteolytic Activity
4.4.3. Anticoagulant Activity
4.4.4. Ex Vivo Coagulation Tests
4.5. In Vivo Assays
4.5.1. Antihemorrhagic Activity
4.5.2. Antiedematogenic Activity
4.5.3. Antilethality Activity
4.5.4. Antimyotoxic Activity
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Warrel, D.A. Snake bite. Lancet 2010, 375, 77–88. [Google Scholar] [CrossRef]
- Williams, D.; Gutiérrez, J.M.; Harrison, R.; Warrell, D.A.; White, J.; Winkel, K.D.; Gopalakrishnakone, P. The Global Snake Bite Initiative: An antidote for snake bite. Lancet 2010, 375, 89–91. [Google Scholar] [CrossRef]
- Jeane, R.B.; Monteiro, H.S.A.; Machado, L.G.; Guarnieri, M.C.; Ximenes, R.M.; Nojosa, D.M.B.; Luna, K.P.O.; Zingali, R.B.; Netto, C.C.; Gutiérrez, J.M.; et al. Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil. J. Proteomics 2015, 114, 93–114. [Google Scholar]
- Warrell, D.A. Snakebites in Central and South America: Epidemiology, clinical features, and clinical management. In The Venomous Reptiles of the Western Hemisphere; Campbell, J.A., Lamar, W.W., Eds.; Comstock Publishing Associates: Ithaca, NY, USA; London, UK, 2004; Volume 2, pp. 709–761. [Google Scholar]
- Bertolozi, M.R.; Scalena, C.M.A.; França, F.O.S. Vulnerabilities in snakebites in São Paulo, Brazil. Rev. Saúde Pública 2015, 49, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Leon, G.; Burnouf, T. Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals 2011, 39, 129–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, F.; Loria, G.D.; Salazar, A.; Gutiérrez, J.M. Intramuscular administration of antivenoms in experimental envenomation by Bothrops asper: Comparison between Fab and IgG. Toxicon 2003, 41, 237–244. [Google Scholar] [CrossRef]
- Kemparaju, K.; Girish, K.S.; Nagaraju, S. Hyaluronidases, a Neglected Class of Glycosidases from Snake Venom Beyond a Spreading Factor. In Handbook of Venoms and Toxins of Reptiles; Mackessy, S.P., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 237–254. [Google Scholar]
- Chippaux, J.P.; Goyffon, M. Antivenoms and immunotherapy. Toxicon 1998, 36, 823–846. [Google Scholar] [CrossRef]
- Knudsen, C.; Laustsen, A.H. Recent Advances in Next Generation Snakebite Antivenoms. Trop. Med. Infect. Dis. 2018, 3, 42. [Google Scholar] [CrossRef] [PubMed]
- Luiz, M.B.; Pereira, S.S.; Prado, N.D.R.; Gonçalves, N.R.; Kayano, A.M.; Moreira-Dill, L.S.; Sobrinho, J.C.; Zanchi, F.B.; Fuly, A.L.; Fernandes, C.F.; et al. Camelid Single-Domain Antibodies (VHHs) against Crotoxin: A Basis for Developing Modular Building Blocks for the Enhancement of Treatment or Diagnosis of Crotalic Envenoming. Toxins 2018, 10, 142. [Google Scholar] [CrossRef] [PubMed]
- Laustsen, A.H.; Dorrestijn, N. Integrating Engineering, Manufacturing, and Regulatory Considerations in the Development of Novel Antivenoms. Toxins 2018, 10, 309. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, F.F.; James, R.K.; Rashedul, M.A.; Syeda, R.J.; Mahbub, S.; Mia, M.M.K. Ethnopharmacological Survey of Medicinal Plants Used by Traditional Healers and Indigenous People in Chittagong Hill Tracts, Bangladesh, for the Treatment of Snakebite. Evid. Based Complement. Alternat. Med. 2015, 23, 871–875. [Google Scholar]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2014, 31, 160–258. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, V.R.; Rouseva, M.; Kolarova, J.; Serkedjieva, R.; Rachel, V.; Maolova, N. Isolation of a polysaccharide with antiviral effect from Ulva lactuca. Prep. Biochem. 1994, 242, 83–97. [Google Scholar] [CrossRef]
- Lee, J.B.; Hayashi, K.; Hayashi, T.; Sankawa, U.; Maeda, M. Antiviral activities against HSV-1, HCMV, and HIV-1 of rhamnan sulfate from Monostroma latissimum. Planta Med. 1999, 65, 439–441. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Hayashi, K.; Maeda, M.; Hayashi, T. Antiherpetic activities of sulfated polysaccharides from green algae. Planta Med. 2004, 70, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Harada, N.; Maeda, M. Chemical structure of antithrombin-active Rhamnan sulfate from Monostrom nitidum. Biosci. Biotechnol. Biochem. 1998, 62, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Mao, W.J.; Fang, F.; LI, H.Y.; SUN, H.H.; Chen, Y.; Qi, X.H. Chemical characteristics and anticoagulant activities of a sulfated polysaccharide and its fragments from Monostroma latissimum. Carbohydr. Polym. 2008, 71, 428–434. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, Q.; Zhao, T.; Hu, R.; Zhang, K.; Li, Z. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg. Med. Chem. Lett. 2006, 1, 2441–2445. [Google Scholar] [CrossRef] [PubMed]
- Pengzhan, Y.; Quanbin, Z.; Ning, L.; Zuhong, X.; Yanmei, W.; Zhien, L. Polysaccharydes from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity. J. App. Phycol. 2003, 15, 21–27. [Google Scholar] [CrossRef]
- Pengzhan, Y.; Ning, L.; Xiguang, l.; Gegei, Z.; Quanbin, Z.; Pengcheng, L. Antihiperlipidemic effects of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Pharmacol. Res. 2003, 48, 543–549. [Google Scholar] [CrossRef]
- Freitas, M.B.; Ferreira, L.G.; Hawerroth, C.; Duarte, M.E.; Noseda, M.D.; Stadnik, M.J. Ulvans induce resistance against plant pathogenic fungi independently of their sulfation degree. Carbohydr. Polym. 2015, 133, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Pellizzari, F.; Oliveira, M.C.; Medeiros, A.; Yokoya, N.S.; Oliveira, E.C. Morphology, ontogeny, and phylogenetic position of Gayralia brasiliensis sp. nov. (Ulotrichales, Chlorophyta) from the southern coast of Brazil. Bot. Mar. 2013, 56, 197. [Google Scholar] [CrossRef]
- Pellizzari, F.; Reis, R.P. Seaweed cultivation on the Southern and Southeastern Brazilian Coast. Braz. J. Pharmacogn. 2011, 21, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Cassolato, J.E.F.; Noseda, M.D.; Pujol, C.A.; Pellizzari, F.M.; Damonte, E.B.; Duarte, M.E.R. Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma. Carbohydr. Res. 2008, 343, 3085–3095. [Google Scholar] [CrossRef] [PubMed]
- Ropellato, J.; Carvalho, M.M.; Ferreira, L.G.; Noseda, D.; Zuconellib, A.R.; Gonçalves, D.G.; Ducattia, J.B.R.; Kenskib, N.C.; Nasatoa, S.L.; Winnischoferb, M.B.; et al. Sulfated heterorhamnans from the green seaweed Gayralia oxysperma: Partial depolymerization, chemical structure and antitumor activity. Carbohydr. Polym. 2015, 117, 476–485. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.C.; Ferreira, L.G.; Duarte, M.E.; Noseda, M.D.; Sanchez, E.F.; Fuly, A.L. Sulfated Galactan from Palisada flagellifera Inhibits Toxic Effects of Lachesis muta Snake Venom. Mar. Drugs 2015, 13, 3761–3775. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.C.; Ferreira, L.G.; Duarte, M.E.; Fujii, M.T.; Sanchez, E.F.; Noseda, M.; Fuly, A.L. Protective Effect of the Sulfated Agaran Isolated from the Red Seaweed Laurencia aldingensis Against Toxic Effects of the Venom of the Snake, Lachesis muta. Mar. Biotechnol. 2016, 18, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Angulo, Y.; Lomonte, B. Inhibitory effect of fucoidan on the activities of crotaline snake venom myotoxic phospholipases A2. Biochem. Pharmacol. 2003, 66, 1993–2000. [Google Scholar] [CrossRef]
- Azofeifa, K.; Angulo, Y.; Lomonte, B. Ability of fucoidan to prevent muscle necrosis induced by snake venom myotoxins: Comparison of high-and low-molecular weight fractions. Toxicon 2008, 51, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Fan, H.W.; Silvera, C.L.; Ângulo, Y. Stability, distribution and use of antivenoms for snakebite envenomation in Latin America: Report of a workshop. Toxicon 2009, 53, 625–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, J.B.; Faiz, M.A.; Rahman, M.R.; Jalil, M.M.; Ahsan, M.F.; Theakston, R.D.; Warrell, D.A.; Kuch, U. Developed no signs of systemic envenoming. Trans. R. Soc. Trop. Med. Hyg. 2010, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.M.; Ticli, F.K.; Marcussi, S.; Lourenço, M.V.; Januário, A.H.; Sampaio, S.V.; Giglio, J.R.; Lomonte, B.; Pereira, O.S. Medicinal plants with inhibitory properties against snake venoms. Curr. Med. Chem. 2005, 12, 2625–2641. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 2002, 19, 1–48. [Google Scholar] [PubMed]
- da Silva, N.M.; Arruda, E.Z.; Murakami, Y.; Moraes, R.A.; El-Kik, C.Z.; Tomaz, M.A.; Fernandes, F.F.; Oliveira, C.Z.; Soares, A.M.; Giglio, J.R.; et al. Evaluation of three Brazilian antivenom ability to antagonize myonecrosis and hemorrhage induced by Bothrops snake venoms in a mouse model. Toxicon 2007, 50, 196–205. [Google Scholar] [CrossRef] [PubMed]
- da Silva, S.L.; Calgarotto, A.K.; Maso, V.; Damico, D.C.; Baldasso, P.; Veber, C.L.; Villar, J.Á.; Oliveira, A.R.; Comar, J.R.; Oliveira, K.M.; et al. Molecular modeling and inhibition of phospholipase A2 by polyhydroxy phenolic compounds. Eur. J. Med. Chem. 2007, 684, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.S.; Sang, Y.X.; Sun, G.Q.; Li, T.Y.; Gong, Z.S.; Wang, X.H. Characterization and bioactivities of a novel polysaccharide obtained from Gracilariopsis lemaneiformis. Anais da Academia Brasileira de Ciências 2017, 89, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Ciancia, M.; Quintana, I.; Cerezo, A.S. Overview of anticoagulant activity of sulfated polysaccharides from seaweeds in relation to their structures, focusing on those of green seaweeds. Curr. Med. Chem. 2010, 17, 2503–2529. [Google Scholar] [CrossRef] [PubMed]
- Vishchuk, O.S.; Ermakova, S.P.; Zvyagintseva, T.N. The effect of sulfated (1→3)-alpha-l-fucan from the brown alga Saccharina cichorioides Miyabe on resveratrol-induced apoptosis in colon carcinoma cells. Mar. Drugs 2013, 11, 194–212. [Google Scholar] [CrossRef] [PubMed]
- Fuly, A.L.; de Miranda, A.L.; Zingali, R.B.; Guimarães, J.A. Purification and characterization of a phospholipase A2 isoenzyme isolated from Lachesis muta snake venom. Biochem. Pharmacol. 2002, 63, 1589–1597. [Google Scholar] [CrossRef]
- Garcia, E.S.; Guimaraes, J.A.; Prado, J.L. Purification and characterization of a sulfhydryl-dependent protease from Rhodnius prolixus midgut. Arch. Biochem. Biophys. 1978, 188, 315–322. [Google Scholar] [CrossRef]
- Kondo, H.; Kondo, S.; Ikezawa, H.; Murata, R. Studies of the quantitative method for determination of hemorrhagic activity of Habu snake venom. J. Med. Sci. Biol. 1960, 13, 43–52. [Google Scholar] [CrossRef]
- Yamakawa, M.; Nozani, M.; Hokama, Z. Animal, Plant and Microbial. Toxins 1976, 49, 97–120. [Google Scholar]
- Melo, P.A.; Suarez-Kurtz, G. Release of sarcoplasmic enzymes from skeletal muscle by Bothrops jararacussu venom: Antagonism by heparin and by the serum of South American marsupials. Toxicon 1988, 26, 87–95. [Google Scholar] [CrossRef]
Groups | Coagulation Test (sec) | |
---|---|---|
aPTT (s) | PT (s) | |
Go3 + saline a | 44 ± 0.5 * | 18 ± 0.4 |
L. muta + saline a | 800 ± 0.1 * | 800 ± 0.1 * |
L. muta + Go3 b | 45 ± 0.3 * | 21 ± 0.4 |
Saline a | 27 ± 0.7 | 19 ± 0.6 |
Groups | Survival Time for Different Protocols (min) | ||||
---|---|---|---|---|---|
Incubation a | Prevention b | Treatment c | |||
30 min | 15 min | 30 min | 15 min | 30 min | |
B. jararaca venom + saline | 110 ± 20 | 101± 15 | 101 ± 11 | 101 ± 17 | 101 ± 18 |
B. jararaca venom + Go3 | 350 ± 25 * | 205 ± 27 * | 215 ± 17 * | 206 ± 21 * | 189 ± 22 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Silva, A.C.R.; Duarte, M.E.R.; Noseda, M.D.; Ferreira, L.G.; Cassolato, J.E.F.; Sanchez, E.F.; Fuly, A.L. Potential Utilization of a Polysaccharide from the Marine Algae Gayralia oxysperma, as an Antivenom for Viperidae Snakebites. Mar. Drugs 2018, 16, 412. https://doi.org/10.3390/md16110412
Da Silva ACR, Duarte MER, Noseda MD, Ferreira LG, Cassolato JEF, Sanchez EF, Fuly AL. Potential Utilization of a Polysaccharide from the Marine Algae Gayralia oxysperma, as an Antivenom for Viperidae Snakebites. Marine Drugs. 2018; 16(11):412. https://doi.org/10.3390/md16110412
Chicago/Turabian StyleDa Silva, Ana Cláudia Rodrigues, Maria Eugenia Rabello Duarte, Miguel Daniel Noseda, Luciana Garcia Ferreira, Juliana Emanuela Fogari Cassolato, Eladio Flores Sanchez, and Andre Lopes Fuly. 2018. "Potential Utilization of a Polysaccharide from the Marine Algae Gayralia oxysperma, as an Antivenom for Viperidae Snakebites" Marine Drugs 16, no. 11: 412. https://doi.org/10.3390/md16110412
APA StyleDa Silva, A. C. R., Duarte, M. E. R., Noseda, M. D., Ferreira, L. G., Cassolato, J. E. F., Sanchez, E. F., & Fuly, A. L. (2018). Potential Utilization of a Polysaccharide from the Marine Algae Gayralia oxysperma, as an Antivenom for Viperidae Snakebites. Marine Drugs, 16(11), 412. https://doi.org/10.3390/md16110412