Cnidarian Interaction with Microbial Communities: From Aid to Animal’s Health to Rejection Responses
Abstract
:1. Introduction to Cnidarian
2. Cnidarians Associated Microbial Communities
3. Tissue-Associated Microbial Communities
4. Mucus-Associated Microbial Communities
5. Innate Immune System as a Regulator in Maintaining Homeostasis between Animals and Their Resident Microbiota?
6. Antimicrobial Peptides, Multifunctionality, and Biotechnological Implications
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Boero, F.; Bouillon, J.; Piraino, S. The role of Cnidaria in evolution and ecology. Ital. J. Zool. 2005, 72, 65–71. [Google Scholar] [CrossRef]
- Petralia, R.S.; Mattson, M.P.; Yao, J. Aging and longevity in the simplest animals and the quest for immortality. Ageing Res. Rev. 2014, 16, 66–82. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, M. Tissue compatibility between colonies and between newly settled larvae of Pocillopora damicornis. Coral Reefs 1985, 4, 111–116. [Google Scholar] [CrossRef]
- Campbell, R.D.; Bibb, C. Transplantation in coelenterates. Transplant. Proc. 1970, 2, 202–211. [Google Scholar] [PubMed]
- Lubbock, R. Clone-specific cellular recognition in a sea anemone. Proc. Natl. Acad. Sci. USA 1980, 77, 6667–6669. [Google Scholar] [CrossRef] [PubMed]
- Soza-Ried, J.; Hotz-Wagenblatt, A.; Glatting, K.; del Val, C.; Fellenberg, K.; Bode, H.R.; Franck, U.; Hoheisel, J.; Frohme, M. The transcriptome of the colonial marine hydroid Hydractinia echinata. FEBS J. 2010, 277, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Wenger, Y.; Galliot, B. RNAseq versus genome-predicted transcriptomes: A large population of novel transcripts identified in an Illumina-454 Hydra transcriptome. BMC Genomics 2013, 14, 204–221. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.; Hemmrich, G.; Ball, E.E.; Hayward, D.; Khalturin, K.; Funayama, N.; Agata, K.; Bosch, T.C. The innate immune repertoire in cnidaria-ancestral complexity and stochastic gene loss. Genome Biol. 2007, 8, R59. [Google Scholar] [CrossRef] [PubMed]
- Putnam, N.H.; Srivastava, M.; Hellsten, U.; Dirks, B.; Chapman, J.; Salamov, A.; Terry, A.; Shapiro, H.; Lindquist, E.; Kapitonov, V.V.; et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007, 317, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.A.; Brokstei, P.B.; Voolstra, C.; Terry, A.Y.; Miller, D.J.; Szmant, A.M.; Coffroth, M.A.; Medina, M. Coral life history and symbiosis: Functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata. BMC Genomics 2010, 97, 1–16. [Google Scholar]
- Vidal-Dupiol, J.; Adjeroud, M.; Roger, E.; Foure, L.; Duval, D.; Mone, Y.; Ferrier, C.; Tambutte, E.; Tmabutte, S.; Zoccola, D.; et al. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms. BMC Physiol. 2009, 14, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Munn, C. Marine Microbiology: Ecology and Applications, 2nd ed.; CRC Press: New York, NY, USA, 2011; p. 364. [Google Scholar]
- Bevins, C.L.; Salzman, N. The potter’s wheel: The host’s role in sculpting its microbiota. Cell Mol. Life Sci. 2011, 68, 3675–3685. [Google Scholar] [CrossRef] [PubMed]
- McFall-Ngai, M. Adaptive immunity: Care for the community. Nature 2007, 7124, 153. [Google Scholar] [CrossRef] [PubMed]
- Nyholm, S.V.; Graf, J. Knowing your friends: Invertebrate innate immunity fosters beneficial bacterial symbioses. Nat. Rev. Microbiol. 2012, 10, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Nichols, S.A.; Dayel, M.J.; King, N. Genomic, phylogenetic, and cell biological insights into metazoan origins. In Animal Evolution: Genes, Genomes, Fossils and Trees; Telford, M.J., Littlewood, D.T.J., Eds.; Oxford University Press: New York, NY, USA, 2009; pp. 24–32. [Google Scholar]
- Alegado, R.A.; Brown, L.W.; Cao, S.; Dermenjian, R.K.; Zuzow, R.; Fairclough, S.R.; Clardy, J.; King, N. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife 2009, 15, 1:e00013. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.T.; Sperandio, V. Inter-kingdom signalling: Communication between bacteria and their hosts. Nat. Rev. Microbiol. 2008, 6, 111–120. [Google Scholar] [CrossRef] [PubMed]
- McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.; Carey, H.V.; Domazet-Loso, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; et al. Animals in a bacterial world: a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 2013, 110, 3229–3236. [Google Scholar] [CrossRef] [PubMed]
- Pradeu, T.A. Mixed self: The role of symbiosis in development. Biol. Theory 2011, 6, 80–88. [Google Scholar] [CrossRef]
- Bosch, T.C.; McFall-Ngai, M.J. Metaorganisms as the new frontier. Zoology 2011, 114, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.A. The mechanics of community assembly and succession. J. Theor. Biol. 1990, 47, 213–233. [Google Scholar] [CrossRef]
- Rosenberg, E.; Koren, O.; Reshef, L.; Efrony, R.; Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 2007, 5, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Kimes, N.E.; Johnson, W.R.; Torralba, M.; Nelson, K.E.; Weil, E.; Morris, P.J. The Montastraea faveolata microbiome: Ecological and temporal influences on a Caribbean reef-building coral in decline. Environ. Microbiol. 2013, 15, 2082–2094. [Google Scholar] [CrossRef] [PubMed]
- Kelman, D.; Kashman, Y.; Rosenberg, E.; Kushmar, A.; Loya, Y. Antimicrobial activity of Red Sea corals. Mar. Biol. 2006, 149, 357–363. [Google Scholar] [CrossRef]
- Ritchie, K.B. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 2006, 32, 1–14. [Google Scholar] [CrossRef]
- Di Salvo, L.H. Isolation of bacteria from the corallum of Porites lobata (Vaughn) and its possible significance. Am. Zool. 1969, 9, 735–740. [Google Scholar] [CrossRef]
- Ritchie, K.B.; Smith, G.W. Microbial communities of coral surface mucopolysaccharide layers. In Coral Health and Disease; Rosenberg, E., Loya, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 259–263. [Google Scholar]
- Rohwer, F.; Seguritan, V.; Azam, F.; Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 2002, 243, 1–10. [Google Scholar] [CrossRef]
- Sunagawa, S.; Woodley, C.M.; Medina, M. Threatened corals provide underexplored microbial habitats. PLoS ONE 2005, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Frias-Lopez, J.; Zerkle, A.L.; Bonheyo, G.T.; Fouke, B.W. Partitioning of bacterial communities between sea-water and healthy, black band diseased, and dead coral surfaces. Appl. Environ. Microbiol. 2002, 68, 2214–2228. [Google Scholar] [CrossRef] [PubMed]
- Bourne, D.G.; Munn, C.B. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ. Microbiol. 2005, 7, 1162–1174. [Google Scholar] [CrossRef] [PubMed]
- Denner, E.B.M.; Smith, G.; Busse, H.J.; Shumann, P.; Narzt, T.; Polson, S.W.; Lubitz, W.; Richardson, L.L. Aurantimonas coralicida sp. nov, the causative agent of white plague type II on Caribbean scleractinian corals. Int. J. Syst. Evol. Microbiol. 2003, 53, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Roder, C.; Arif, C.; Bayer, T.; Aranda, M.; Daniels, C.; Shibl, A.; Chavanich, S.; Voolstra, C.R. Bacterial profiling of white plague disease in a comparative coral species framework. ISME J. 2014, 8, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Pantos, O.; Cooney, R.P.; Le Tissier, M.D.A.; Barer, M.R.; O’Donnell, A.G.; Bythell, J.C. The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastrea annularis. Environ. Microbiol. 2003, 5, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, E.; Ben-Haim, Y. Microbial diseases of corals and global warming. Environ. Microbiol. 2002, 4, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Kushmaro, A.; Loya, Y.; Fine, M.; Rosenberg, E. Bacterial infection and coral bleaching. Nature 1996, 380, 396. [Google Scholar] [CrossRef]
- Toren, A.; Landau, L.; Kushmaro, A.; Loya, Y.; Rosenberg, E. Effect of temperature on adhesion of Vibrio strain AK-1 to Oculina patagonica and on coral bleaching. Appl. Environ. Microbiol. 1998, 64, 1379–1384. [Google Scholar] [PubMed]
- Banin, E.; Israely, T.; Fine, M.; Loya, Y.; Rosenberg, E. Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiol. Lett. 2001, 199, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Ben-Haim, Y.; Thompson, F.L.; Thompson, C.C.; Cnockaert, M.C.; Hoste, B.; Swings, J.; Rosenberg, E. Vibrio coralliilyticus sp nov, a temperature dependent pathogen of the coral Pocillopora damicornis. Int. J. Syst. Evol. Microbiol. 2003, 53, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Richardson, L.L. Coral diseases: What is really known? Trends Ecol. Evol. 1998, 13, 438–443. [Google Scholar] [CrossRef]
- Rosenberg, E.; Kellog, C.A.; Rohwer, R. Coral Microbiology. Oceanography 2007, 20, 146–154. [Google Scholar] [CrossRef]
- Rosenberg, E.; Falkovitz, L. The Vibrio shiloi/Oculina patagonica model system of coral bleaching. Annu. Rev. Microbiol. 2004, 58, 143–159. [Google Scholar] [CrossRef] [PubMed]
- Reshef, L.; Kore, O.; Loya, Y.; Zilber-Rosenberg, I.; Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 2006, 8, 2068–2073. [Google Scholar] [CrossRef] [PubMed]
- Schrezenmeir, J.; de Vrese, M. Probiotics, prebiotics, and symbiotics–approaching a definition. Am. J. Clin. Nutr. 2001, 73, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Mao-Jones, J.; Ritchie, K.B.; Jones, L.E.; Ellner, S.P. How microbial community composition regulates coral disease development. PLoS Biol. 2010, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Nyholm, S.V.; McFall-Ngai, M.J. The winnowing: Establishing the squid-vibrio symbiosis. Nat. Rev. Microbiol. 2004, 2, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Mazmanian, S.K.; Liu, C.; Tzianabos, A.O.; Kasper, D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005, 122, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.; Lee, S.M.; Shen, Y.; Khosravi, A.; Mazmanian, S.K. Host-bacterial symbiosis in health and disease. Adv. Immunol. 2010, 107, 243–274. [Google Scholar] [PubMed]
- Bosch, T.C. Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu. Rev. Microbiol. 2013, 67, 499–518. [Google Scholar] [CrossRef] [PubMed]
- Franzenburg, S.; Fraune, S.; Altrock, P.M.; Kunzel, S.; Baines, J.F.; Traulsen, A.; Bosch, T. Bacterial colonization of Hydra hatchlings follows a robust temporal pattern. ISME J. 2013, 7, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Fraune, S.; Bosch, T.C.G. Why bacteria matter in animal development and evolution. BioEssays 2010, 32, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Fraune, S.; Abe, Y.; Bosch, T. Disturbing epithelial homeostasis in the metazoan Hydra leads to drastic changes in associated microbiota. Environ. Microbiol. 2009, 11, 2361–2369. [Google Scholar] [CrossRef] [PubMed]
- Hemmrich, G.; Anokhin, B.; Zacharias, H.; Bosc, T.C.G. Molecular phylogenetics in Hydra, a classical model in evolutionary developmental biology. Mol. Phylogenet. Evol. 2007, 44, 281–290. [Google Scholar] [CrossRef] [PubMed]
- van de Water, J.; Lamb, J.B.; van Oppen, M.J.H.; Willis, B.L.; Bourne, D.G. Comparative immune responses of corals to stressors associated with offshore reef-based tourist platforms. Conserv. Physiol. 2015, 3, cov032. [Google Scholar] [CrossRef] [PubMed]
- van de Water, J.A.J.M.; Melkonian, R.; Junca, H.; Voolstra, C.R.; Reynaud, S.; Allemand, D.; Ferrier-Pagès, C. Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale. Sci. Rep. 2016, 6, 27277. [Google Scholar] [CrossRef] [PubMed]
- Bayer, T.; Arif, C.; Ferrier-Pagès, C.; Zoccola, D.; Aranda, M.; Voolstra, C. Bacteria of the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral Eunicella cavolini. Mar. Ecol. Prog. Ser. 2013, 479, 75–84. [Google Scholar] [CrossRef]
- La Rivière, M.; Garrabou, J.; Bally, M. Evidence for host specificity among dominant bacterial symbionts in temperate gorgonian corals. Coral Reefs 2015, 34, 1087–1098. [Google Scholar] [CrossRef]
- Neave, M.J.; Apprill, A.; Ferrier-Pagès, C.; Voolstra, C.R. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl. Microbiol. Biotechnol. 2016, 100, 8315–8324. [Google Scholar] [CrossRef] [PubMed]
- Wessels, W.; Sprungala, S.; Watson, S.A.; Miller, D.J.; Bourne, D.G. The microbiome of the octocoral Lobophytum pauciflorum: Minor differences between sexes and resilience to short-term stress. FEMS Microbiol. Ecol. 2017, 93, fix013. [Google Scholar] [CrossRef] [PubMed]
- van de Water, J.A.J.M.; Voolstra, C.R.; Rottier, C.; Cocito, S.; Peirano, A.; Allemand, D.; Ferrier-Pagès, C. Seasonal stability in the microbiomes of temperate gorgonians and the red coral Corallium rubrum across the Mediterranean Sea. Microb. Ecol. 2018, 75, 274–288. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, T.D.; Thurber, R.V.; Gates, R.D. The future of coral reefs: a microbial perspective. Trends Ecol. Evol. 2010, 25, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.; Bamford, O.S.; Freeman, J.B.; Teidman, D.J. A study on the homing habit of the limpet. Anim. Behav. 1969, 117, 330–339. [Google Scholar] [CrossRef]
- McFarlane, I.D. Trail-following and trail-searching behaviour in homing of the intertidal gastropod mollusc, Onchidium verruculatum. Mar. Behav. Physiol. 1980, 7, 95–108. [Google Scholar]
- Wild, C.; Huettel, M.; Klueter, A.; Kremb, S.G.; Rasheed, M.Y.; Jørgensen, B.B. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 2004, 428, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Baier, R.E.; Gucinski, H.; Meenaghan, M.A.; Wirth, J.; Glantz, P.Q. Biophysical studies of mucosal surfaces. In Oral Interfacial Reactions of Bone, Soft Tissue and Saliva, Proceedings of a workshop, Marstrand, Sweden, 9–11 November 1984; IRL Press: Oxford, UK, 1984; pp. 83–95. [Google Scholar]
- Clare, A.S. Marine natural product antifoulants: Status and potential. Biofouling 1995, 9, 211–229. [Google Scholar] [CrossRef]
- Stabili, L.; Schirosi, R.; Licciano, M.; Giangrande, A. The mucus of Sabella spallanzanii (Annelida, Polychaeta): Its involvement in chemical defence and fertilization success. J. Exp. Mar. Biol. Ecol. 2009, 374, 144–149. [Google Scholar] [CrossRef]
- Stabili, L.; Schirosi, R.; Di Benedetto, A.; Merendino, A.; Villanova, L.; Giangrande, A. First insights into the biochemistry of Sabella spallanzanii (Annelida: Polychaeta) mucus: A potentially unexplored resource for applicative purposes. J. Mar. Biol. Assoc. UK 2011, 91, 199–208. [Google Scholar] [CrossRef]
- Stabili, L.; Schirosi, R.; Licciano, M.; Giangrande, A. Role of Myxicola infundibulum (Polychaeta, Annelida) mucus: From bacterial control to nutritional home site. J. Exp. Mar. Biol. Ecol. 2014, 46, 344–349. [Google Scholar] [CrossRef]
- Stabili, L.; Schirosi, R.; Parisi, M.G.; Piraino, S.; Cammarata, M. The mucus of Actinia equina (Anthozoa, Cnidaria): An unexplored resource for potential applicative purposes. Mar. Drugs 2015, 13, 5276–5296. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Tasumi, S.; Tsutsui, S.; Okamoto, M.; Suetake, H. Molecular diversity of skin mucus lectins in fish. Comp. Biochem. Physiol. B 2003, 136, 723–730. [Google Scholar] [CrossRef]
- Coffroth, M.A. Mucus sheet formation on poritid corals: An evaluation of coral mucus as a nutrient source on reefs. Mar. Biol. 1990, 105, 39–49. [Google Scholar] [CrossRef]
- Calow, P. Why some metazoan mucus secretions are more susceptible to microbial attack than others. Am. Nat. 1979, 114, 149–152. [Google Scholar] [CrossRef]
- Chimetto, L.A.; Brocchi, M.; Gondo, M.; Thompson, C.C.; Gomez-Gil, B.; Thompson, F.L. Genomic diversity of vibrios associated with the Brazilian coral Mussismilia hispida and its sympatric zoanthids (Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi). J. Appl. Microbiol. 2009, 106, 1818–1826. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.P.D.; Araujo, S.D.; Reis, A.M.; Moura, R.L.; Francini-Filho, R.B.; Pappas, G.; Rodrigues, T.B.; Thompson, F.L.; Kruger, R.H. Bacterial community associated with healthy and diseased reef coral Mussismilia hispida from Eastern Brazil. Microb. Ecol. 2010, 59, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Ducklow, H.W.; Mitchell, R. Bacterial populations and adaptations in the mucus layers of living corals. Limnol. Oceanogr. 1979, 24, 715–725. [Google Scholar] [CrossRef]
- Koren, O.; Rosenberg, E. Bacteria Associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl. Environ. Microbiol. 2006, 72, 5254–5259. [Google Scholar] [CrossRef] [PubMed]
- Rohwer, F.; Breitbart, M.; Jara, J.; Azam, F.; Knowlton, N. Diversity of bacteria associated with the Caribbean coral Montastraea franski. Coral Reefs 2001, 20, 85–95. [Google Scholar]
- Wegley, L.; Edwards, R.; Rodriguez-Brito, B.; Liu, H.; Rohwer, F. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ. Microbiol. 2007, 29, 2707–2719. [Google Scholar] [CrossRef] [PubMed]
- Menezes, C.B.; Bonugli-Santos, R.C.; Miqueletto, P.B.; Passarini, M.R.Z.; Silva, C.H.D.; Justo, M.R.; Leal, R.R.; Fantinatti-Garboggini, F.; Oliveira, V.M.; Berlinck, R.G.S.; et al. Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state. Brazil Microbiol. Res. 2010, 165, 466–482. [Google Scholar] [CrossRef] [PubMed]
- Chimetto, L.A.; Brocchi, M.; Thompson, C.C.; Martins, R.C.; Ramos, H.R.; Thompson, F.L. Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida. Syst. Appl. Microbiol. 2008, 31, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Chimetto, L.A.; Cleenwerck, I.; Alves, N.; Silva, B.S.; Brocchi, M.; Willems, A.; De Vos, P.; Thompson, F.L. Vibrio communis sp nov, isolated from the marine animals Mussismilia hispida, Phyllogorgia dilatata, Palythoa caribaeorum, Palythoa variabilis and Litopenaeus vannamei. Int. J. Syst. Evol. Microbiol. 2011, 61, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Azam, F.; Smith, D.C.; Steward, G.F.; Hagström, A. Bacteria–organic matter coupling and its significance for oceanic carbon cycling. Microb. Ecol. 1993, 28, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.S.; Hawkins, S.J.; Jones, H.D. Pedal mucus and its influence on the microbial food supply of two intertidal gastropods, Patella vulgata L and Littorina littorea (L). J. Exp. Mar. Biol. Ecol. 1992, 161, 57–77. [Google Scholar] [CrossRef]
- Herndl, G.J.; Peduzzi, P. Potential microbial utilisation rates of sublittoral gastropod mucus trails. Limnol. Oceanogr. 1989, 34, 780–784. [Google Scholar] [CrossRef]
- Peduzzi, P.; Herndl, G.J. Mucus trails in the rocky intertidal: A highly active microenvironment. Mar. Ecol. Prog. Ser. 1991, 75, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Imrie, D.W. The role of pedal mucus in the feeding behaviour of Littorina littorea (L). In Proceedings of the 3rd International Symposium on Littorinid Biology, Dale Fort Field Center, Wales, UK, 5–12 September 1990; Grahame, J., Mill, P.J., Reid, D.G., Eds.; The Malacological Society of London: London, UK, 1992; p. 221. [Google Scholar]
- Nissimov, J.R.E.; Munn, C.B. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microb. Lett. 2009, 292, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Charlotte, E.; Kvennefors, E.; Sampayo, E.; Kerr, C.; Vieira, G.; Roff, G.; Barnes, A. Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microb. Ecol. 2012, 63, 605–618. [Google Scholar]
- Lee, O.O.; Qian, P.Y. Potential control of bacterial epibiosis on the surface of the sponge Mycale adhaerens. Aquat. Microb. Ecol. 2004, 34, 11–21. [Google Scholar] [CrossRef]
- Holmström, C.; Kjelleberg, S. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol. 1999, 30, 285. [Google Scholar] [CrossRef]
- Rosenstiel, P.; Philipp, E.E.; Schreiber, S.; Bosch, T.C. Evolution and function of innate immune receptors insights from marine invertebrates. J. Innate. Immun. 2009, 1, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Hoegh-Guldberg, O.; Fine, M. Coral bleaching following wintry weather. Limnol. Oceanogr. 2005, 50, 265–271. [Google Scholar] [CrossRef]
- Brown, B.E. Coral bleaching: Causes and consequences. Coral Reefs 1997, 16, 129–138. [Google Scholar] [CrossRef]
- Glynn, P.W. Coral-reef bleaching-ecological perspectives. Coral Reefs 1993, 12, 1–17. [Google Scholar] [CrossRef]
- Rosenberg, E.; Kushmaro, A.; Kramarsky-Winter, E.; Banin, E.; Yossi, L. The role of microorganisms in coral bleaching. ISME J. 2009, 3, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Kushmaro, A.; Kramarsky-Winter, E. Bacteria as a source of coral nutrition. In Coral Health and Disease; Rosenberg, E., Loya, Y., Eds.; Springer: New York, NY, USA, 2004; pp. 231–241. [Google Scholar]
- Titlyanov, E.A.; Titlyanova, T.V.; Leletkin, V.A.; Tsukahara, J.; van Woesik, R.; Yamazato, K. Degradation of zooxanthellae and regulation of their density in hermatypic corals. Mar. Ecol. Progr. Ser. 1996, 139, 167–178. [Google Scholar] [CrossRef]
- Davy, S.; Allemand, D.; Weis, V. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 2012, 76, 229–261. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, K.P.; Shaba, S.; Joyner, J.L.; Porter, J.W.; Lipp, E.K. Human pathogen shown to cause disease in the threatened eklhorn coral Acropora palmata. PLoS ONE 2011, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.P.; Parry, H.; Spicer, J.I.; Hutchinso, T.H.; Pipe, R.K.; Widdicombe, S. Immunological function in marine invertebrates: Responses to environmental perturbation. Fish Shellfish Immunol. 2011, 30, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
- Otero-González, A.J.; Magalhães, B.S.; Garcia-Villarino, M.; López-Abarrategui, C.; Sousa, D.A.; Dias, S.C.; Franco, O.L. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. FASEB J. 2010, 24, 1320–1334. [Google Scholar] [CrossRef] [PubMed]
- Gochfeld, J.; Aeby, G.S. Antibacterial chemical defenses in Hawaiian corals provide possible protection from disease. Mar. Ecol. Prog. Ser. 2008, 362, 119–128. [Google Scholar] [CrossRef]
- Ganz, T. The role of antimicrobial peptides in innate immunity. Intergr. Comp. Biol. 2003, 43, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Kim, K. Antimicrobial activity in gorgonian corals (Coelenterate, Octocorallia). Coral Reefs 1994, 13, 75–80. [Google Scholar] [CrossRef]
- Rodríguez, A.D.; Ramírez, C.; Rodríguez, I.I.; González, E. Novel antimycobacterial benzoxazole alkaloids, from the west Indian Sea whip Pseudopterogorgia elisabethae. Org. Lett. 1999, 121, 527–530. [Google Scholar] [CrossRef]
- Correa, H.; Haltli, B.; Duque, C.; Kerr, R. Bacterial communities of the gorgonian Octocoral Pseudopterogorgia elisabethae. Microb. Ecol. 2013, 66, 972–985. [Google Scholar] [CrossRef] [PubMed]
- Shapo, J.L.; Moeller, P.D.; Galloway, S.B. Antimicrobial activity in the common seawhip, Leptogorgia virgulata (Cnidaria: Gorgonaceae). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 148, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Harvell, C.D.; Kim, P.D.; Smith, G.W.; Merkel, S.M. Fungal disease resistance of Caribbean sea fan corals (Gorgonia spp.). Mar. Biol. 2000, 136, 256–267. [Google Scholar] [CrossRef]
- Kim, K.; Kim, P.D.; Alker, A.P.; Harvell, C.D. Chemical resistance of gorgonian corals against fungal infection. Mar. Biol. 2000, 137, 393–401. [Google Scholar] [CrossRef]
- Chen, G.; Swem, L.R.; Swem, D.L.; Stauff, D.L.; O’Loughlin, C.T.; Jeffrey, P.D.; Bassler, B.L.; Hughson, F.M. A strategy for antagonizing quorum sensing. Mol. Cell 2011, 42, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; La, M.P.; Tang, H.; Pan, W.H.; Sun, P.; Krohn, K.; Yi, Y.H.; Li, L.; Zhang, W. Bioactive briarane diterpenoids from the South China Sea gorgonian Dichotella gemmacea. Bioorg. Med. Chem. Lett. 2012, 22, 4368–4372. [Google Scholar] [CrossRef] [PubMed]
- Kelman, D.; Kushmaro, A.; Loya, Y.; Kashman, Y.; Benayahu, Y. Antimicrobial activity of a Red Sea soft coral, Parerythropo-dium fulvum fulvum: Reproductive and developmental considerations. Mar. Ecol. Prog. Ser. 1998, 169, 87–89. [Google Scholar] [CrossRef]
- Saxby, T.; Dennison, W.C.; Hoegh-Guldberg, O. Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar. Ecol. Prog. Ser. 2003, 248, 85–97. [Google Scholar] [CrossRef]
- Palla, F.; Barresi, G.; Giordano, A.; Schiavone, S.; Trapani, M.R.; Rotolo, V.; Parisi, M.G.; Cammarata, M. Cold-active molecules for a sustainable preservation and restoration of historic-artistic manufacts. IJCS 2016, 7, 239–246. [Google Scholar]
- Trapani, M.R.; Parisi, M.G.; Parrinello, D.; Sanfratello, M.A.; Benenati, G.; Palla, F.; Cammarata, M. Specific inflammatory response of Anemonia sulcata (Cnidaria) after bacterial injection causes tissue reaction and enzymatic activity alteration. J. Invertebr. Pathol. 2016, 135, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Anderluh, G.; Macek, P. Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 2002, 40, 111–124. [Google Scholar] [CrossRef]
- Parisi, M.G.; Trapani, M.R.; Cammarata, M. Granulocytes of sea anemone Actinia equina (Linnaeus, 1758) body fluid contain and release cytolysins forming plaques of lysis. Invert. Surviv. J. 2014, 11, 39–46. [Google Scholar]
- Minagawa, S.; Ishida, M.; Nagashima, Y. Primary structure of a potassium channel toxin from the sea anemone Actinia equina. FEBS Lett. 1998, 427, 149–151. [Google Scholar] [CrossRef]
- Lesser, M.P.; Stochaj, W.R.; Tapley, D.W.; Shick, J.M. Bleaching in coral reef anthozoans: Effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 1995, 8, 225–232. [Google Scholar] [CrossRef]
- Leclerc, M. Humoral factors in marine invertebrates. In Molecular and Subcellular Biology: Invertebrate Immunology; Rinkevich, B., Muller, W.E.G., Eds.; Springer: Berlin, Germany, 1996; pp. 1–9. [Google Scholar]
Disease | Pathogen | Coral Host |
---|---|---|
Black band | Roseofilum reptotaenium, Desulfovibrio, Beggiatoa sp. | Several |
White band I | Gram (-) bacterium | Several |
White band II * | Vibrio carchariae | Acropora sp. |
Aspergillosis * | Aspergillus sidowii | Gorgonians (sea fans) |
White pox * | Serratia marcescens | Acropora palmata |
Bleaching * | Vibrio shiloi | Oculina patagonica |
Bleaching and lysis * | Vibrio corallilyticus | Pocillopora damicornis |
Yellow blotch | Vibrio alginolyticus | Monastraea sp. |
Red band | Oscillatoria sp. and other cyanobacteria | Several |
Dark spots I | Vibrio sp. ?. | Several |
Dark bands | ? | Several |
White plague (Eilat) | Thalassomonas loyana | Several |
White plague | Aurantimonas coralicida | Several |
White plague I | Gram (-) bacterium | Several |
Porites ulcerative white spots | Vibrio sp. | Several |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stabili, L.; Parisi, M.G.; Parrinello, D.; Cammarata, M. Cnidarian Interaction with Microbial Communities: From Aid to Animal’s Health to Rejection Responses. Mar. Drugs 2018, 16, 296. https://doi.org/10.3390/md16090296
Stabili L, Parisi MG, Parrinello D, Cammarata M. Cnidarian Interaction with Microbial Communities: From Aid to Animal’s Health to Rejection Responses. Marine Drugs. 2018; 16(9):296. https://doi.org/10.3390/md16090296
Chicago/Turabian StyleStabili, Loredana, Maria Giovanna Parisi, Daniela Parrinello, and Matteo Cammarata. 2018. "Cnidarian Interaction with Microbial Communities: From Aid to Animal’s Health to Rejection Responses" Marine Drugs 16, no. 9: 296. https://doi.org/10.3390/md16090296
APA StyleStabili, L., Parisi, M. G., Parrinello, D., & Cammarata, M. (2018). Cnidarian Interaction with Microbial Communities: From Aid to Animal’s Health to Rejection Responses. Marine Drugs, 16(9), 296. https://doi.org/10.3390/md16090296