Comparative Analyses of Metabolomic Fingerprints and Cytotoxic Activities of Soft Corals from the Colombian Caribbean
Abstract
:1. Introduction
2. Results
2.1. Processing and Untargeted Data Acquisition
2.2. Statistical Analysis
2.3. Annotation, Dereplication, and Identification of the Feature M287T644
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Soft Coral Material Collection and Identification
4.2.2. General Experimental Procedures
4.2.3. Soft Coral Extraction, Sample Preparation, and UPLC/MS Analyses
4.2.4. Metabolomic Procedure
4.2.5. Statistical Analyses
4.2.6. Cytotoxicity Assays
4.2.7. Structure Elucidation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blunt, J.; Copp, B.; Keyzers, R.; Munro, M.; Prinsep, M. Marine natural products. Nat. Prod. Rep. 2012, 29, 144–222. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.; Marfil, A.; Francesch, C.; Cuevas, M.; Alvarez, A.; Albericio, F. Productos naturales de origen marino. Investig. Cienc. 2007, 365, 75–83. [Google Scholar]
- Dyshlovoy, S.; Honecker, F. Marine Compounds and Cancer: 2017 Updates. Mar. Drugs 2018, 16, 41. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Torres, V.; Encinar, J.A.; Herranz López, M.; Pérez Sánchez, A.; Galiano, V.; Barrajón Catalán, E.; Micol, V. An updated review on marine anticancer compounds: The use of virtual screening for the discovery of small-molecule cancer drugs. Molecules 2017, 22, 1037. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D. Growing Pains for Metabolomics. Scientist 2005, 19, 25–28. [Google Scholar] [CrossRef]
- Ojima, I.; Chakravarty, S.; Inoue, T.; Lin, S.; He, L.; Horwitz, S.B.; Kuduk, S.D.; Danishefsky, S.J. A common pharmacophore for cytotoxic natural products that stabilize microtubules. Proc. Natl. Acad. Sci. USA 1999, 96, 4256–4261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa, H.; Valenzuela, A.L.; Ospina, L.F.; Duque, C. Anti-inflammatory effects of the gorgonian Pseudopterogorgia elisabethae collected at the Islands of Providencia and San Andrés (SW Caribbean). J. Inflamm. 2009, 6, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa, H.; Aristizabal, F.; Duque, C.; Kerr, R. Cytotoxic and antimicrobial activity of pseudopterosins and seco-pseudopterosins isolated from the octocoral Pseudopterogorgia elisabethae of San Andrés and Providencia Islands (Southwest Caribbean Sea). Mar. Drugs 2011, 9, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Correa, H. Estudios de Bioprospección del coral blando Pseudopterogorgia Elisabethae como Fuente de Sustancias con Actividad Biológica Fase IV. Ph.D. Thesis, National University of Colombia, Bogotá, Colombia, 2012. [Google Scholar]
- Marrero, J.; Rodríguez, A.D.; Baran, P.; Raptis, R.G. Ciereszkolide: Isolation and structure characterization of a novel rearranged cembrane from the caribbean sea plume Pseudopterogorgia kallos. Eur. J. Org. Chem. 2004, 3909–3912. [Google Scholar] [CrossRef]
- Look, S.A.; Fenical, W.; Jacobst, R.S.; Clardyt, J.O.N. The pseudopterosins: Anti-inflammatory and analgesic natural products from the sea whip Pseudopterogorgia elisabethae. Proc. Natl. Acad. Sci. USA 1986, 83, 6238–6240. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Gu, H.; Zhu, J.; Nagana Gowda, G.A.; Djukovic, D.; Chiorean, E.G.; Raftery, D. Combining NMR and LC/MS using backward variable elimination: Metabolomics analysis of colorectal cancer, polyps, and healthy controls. Anal. Chem. 2016, 88, 7975–7983. [Google Scholar] [CrossRef] [PubMed]
- Lindon, J.C.; Holmes, E.; Bollard, M.E.; Stanley, E.G.; Nicholson, J.K. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers 2004, 9, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Tistaert, C.; Chataigné, G.; Dejaegher, B.; Rivière, C.; Hoai, N.N.; Van, M.C.; Quetin-leclercq, J.; Heyden, Y. Vander Multivariate data analysis to evaluate the fingerprint peaks responsible for the cytotoxic activity of Mallotus species. J. Chromatogr. B 2012, 910, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Leal, M.C.; Madeira, C.; Brandão, C.A.; Puga, J.; Calado, R. Bioprospecting of marine invertebrates for new natural products—A chemical and zoogeographical perspective. Molecules 2012, 17, 9842–9854. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Rodríguez, A.D.; Baran, P.; Raptis, R.G. Dolabellane-type diterpenoids with antiprotozoan activity from a southwestern Caribbean gorgonian octocoral of the genus Eunicea. J. Nat. Prod. 2010, 73, 925–934. [Google Scholar] [CrossRef] [PubMed]
- Maille, G.; Qin, C.; Siuzdak, G. Nonlinear Data Alignment for UPLC—MS and HPLC—MS Based Metabolomics: Quantitative Analysis of Endogenous and Exogenous Metabolites in Human Serum. Anal. Chem. 2006, 78, 3289–3295. [Google Scholar] [CrossRef]
- Szymanska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics 2012, 14. [Google Scholar] [CrossRef] [PubMed]
- Rantalainen, M.; Cloarec, O.; Nicholson, J.K.; Holmes, E.; Trygg, J. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemiometr. 2006, 20, 341–351. [Google Scholar] [CrossRef]
- Goecks, J.; Nekrutenko, A.; Taylor, J.; Afgan, E.; Ananda, G.; Baker, D.; Blankenberg, D.; Chakrabarty, R.; Coraor, N.; Goecks, J.; et al. Galaxy: A comprehensive approach for supporting accessible, reproducible and transparent computational research in the life sciences. Genome Biol. 2010, 11, 13. [Google Scholar] [CrossRef]
- Haug, K.; Salek, R.M.; Conesa, P.; Hastings, J.; De Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-Serra, P.; et al. MetaboLights—An open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2013, 41, 781–786. [Google Scholar] [CrossRef]
- Hostettman, K. Methods in Plant Biochemistry. Assays for Bioactivity; Academic Press: London, UK, 1991. [Google Scholar]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Moltu, S.J.; Sachse, D.; Blakstad, E.W.; Strømmen, K.; Nakstad, B.; Almaas, A.N.; Westerberg, A.C.; Rønnestad, A.; Brække, K.; Veierød, M.B.; et al. Urinary metabolite profiles in premature infants show early postnatal metabolic adaptation and maturation. Nutrients 2014, 6, 1913–1930. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Yeh, K.W.; Lin, G.; Chiang, M.H.; Yang, S.C.; Chao, W.J.; Yao, T.C.; Tsai, M.H.; Hua, M.C.; Liao, S.L.; et al. Metabolomics reveals dynamic metabolic changes associated with age in early childhood. PLoS ONE 2016, 11, e0149823. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful. Nucleic Acids Res. 2015, 43, W251–W257. [Google Scholar] [CrossRef] [PubMed]
- Hubert, J.; Nuzillard, J.M.; Renault, J.H. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochem. Rev. 2017, 16, 55–95. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information Eduenone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/10424127 (accessed on 25 September 2018).
- National Center for Biotechnology Information Dolabellatrienone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/10469260 (accessed on 25 September 2018).
- Wolf, S.; Schmidt, S.; Müller Hannemann, M.; Neumann, S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform. 2010, 1, 43. [Google Scholar] [CrossRef]
- Look, S.A.; Fenical, W. New Bicyclic Diterpenoids from the Caribbean Gorgonian Octocoral Eunicea calyculata. J. Org. Chem. 1982, 47, 4129–4134. [Google Scholar] [CrossRef]
- Patel, S.; Gheewala, N.; Suthar, A.; Shah, A. In-Vitro cytotoxicity activity of Solanum Nigrum extract against Hela cell line and Vero cell line. Int. J. Pharm. Pharm. Sci. 2009, 1, 38–47. [Google Scholar]
- Gao, Y.; Xiao, W.; Liu, H.C.; Wang, J.R.; Yao, L.G.; Ouyang, P.K.; Wang, D.C.; Guo, Y.W. Clavirolide G, a new rare dolabellane-type diterpenoid from the Xisha soft coral Clavularia viridis. Chin. Chem. Lett. 2017, 28, 905–908. [Google Scholar] [CrossRef]
- Shen, Y.C.; Pan, Y.L.; Ko, C.L.; Kuo, Y.H.; Chen, C.Y. New dolabellanes from the Taiwanese soft coral clavularia inflata. J. Chin. Chem. Soc. 2003, 50, 471–476. [Google Scholar] [CrossRef]
- Chang, K.C.; Duh, C.Y.; Chen, I.S.; Tsai, I.L. A cytotoxic butenolide, two new dolabellane diterpenoids, a chroman and a benzoquinol derivative formosan Casearia membranacea. Planta Med. 2003, 69, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Duh, C.Y.; Chia, M.C.; Wang, S.K.; Chen, H.J.; El-Gamal, A.A.H.; Dai, C.F. Cytotoxic dolabellane diterpenes from the Formosan soft coral Clavularia inflata. J. Nat. Prod. 2001, 64, 1028–1031. [Google Scholar] [CrossRef] [PubMed]
- Frederickm, M. Bayer the Shallow-Water Octocorallia of the West Indian Region: A Manual for Marine Biologists; Smithsonian Institution: Washington, DC, USA, 1988. [Google Scholar]
- Sánchez, J.A.; Wirshing, H.H. A field key to the identification of tropical western Atlantic zooxanthellate octocorals (Octocorallia: Cnidaria). Caribb. J. Sci. 2005, 41, 508–522. [Google Scholar]
- Sánchez, J.A. Sistemática Filogenética del Género Eunicea Lamouroux, 1816 (Octocorallia: Gorgonacea: Plexauridae) con Aspectos Sobre la Historia Natural de Algunas Especies en el Caribe Colombiano. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 1998. [Google Scholar]
- Sánchez, J.A.; Lasker, H.R. Patterns of morphological integration in marine modular organisms: Supra-module organization in branching octocoral colonies. R. Soc. 2003, 270, 2039–2044. [Google Scholar] [CrossRef] [PubMed]
- Sangster, T.; Major, H.; Plumb, R.; Wilson, A.; Wilson, I. A pragmatic and readily implemented quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst 2006, 131, 1075. [Google Scholar] [CrossRef]
- Godzien, J.; Alonso-Herranz, V.; Barbas, C.; Armitage, E.G. Controlling the quality of metabolomics data: New strategies to get the best out of the QC sample. Metabolomics 2015, 11, 518–528. [Google Scholar] [CrossRef]
- Dunn, W.; Broadhurst, D.; Edison, A.; Guillou, C.; Viant, M.; Bearden, D.; Beger, R. Quality assurance and quality control processes: Summary of a metabolomics community questionnaire. Metabolomics 2017, 13, 6. [Google Scholar] [CrossRef]
- Gorrochategui, E.; Jaumot, J.; Lacorte, S.; Tauler, R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC Trends Anal. Chem. 2016, 82, 425–442. [Google Scholar] [CrossRef]
- Brown, M.; Dunn, W.B.; Dobson, P.; Patel, Y.; Winder, C.L.; Francis-McIntyre, S.; Begley, P.; Carroll, K.; Broadhurst, D.; Tseng, A.; et al. Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst 2009, 134, 1322. [Google Scholar] [CrossRef]
- Gromski, P.S.; Muhamadali, H.; Ellis, D.I.; Xu, Y.; Correa, E.; Turner, M.L.; Goodacre, R. A tutorial review: Metabolomics and partial least squares-discriminant análisis—A marriage of convenience or a shotgun wedding. Anal. Chim. Acta 2015, 879, 10–23. [Google Scholar] [CrossRef]
- Iwagawa, T.; Hashimoto, K.; Yokogawa, Y.; Okamura, H.; Nakatani, M.; Doe, M.; Morimoto, Y.; Takemura, K. Cytotoxic biscembranes from the soft coral Sarcophyton glaucum. J. Nat. Prod. 2009, 72, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. J. Immunol. Methods 1986, 89, 271–277. [Google Scholar] [CrossRef]
- Al-Ghamdi, S.S. Time and dose dependent study of doxorubicin induced DU-145 cytotoxicity. Drug Metab. Lett. 2008, 2, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, K.S.; Pawar, A.; Aphale, S.R.; Moghe, A.S. Effect of vesicular encapsulation on in-vitro cytotoxicity of ciclopirox olamine. Int. J. Drug Deliv. 2012, 4, 139–146. [Google Scholar] [CrossRef]
PLS-DA Parameters | |||
---|---|---|---|
Cell Lines | Q2 | R2 | Q2/R2 |
SiHa | 0.43 | 0.67 | 0.64 |
A549 | 0.34 | 0.65 | 0.52 |
PC3 | −0.23 | 0.78 | −0.29 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santacruz, L.; Thomas, O.P.; Duque, C.; Puyana, M.; Tello, E. Comparative Analyses of Metabolomic Fingerprints and Cytotoxic Activities of Soft Corals from the Colombian Caribbean. Mar. Drugs 2019, 17, 37. https://doi.org/10.3390/md17010037
Santacruz L, Thomas OP, Duque C, Puyana M, Tello E. Comparative Analyses of Metabolomic Fingerprints and Cytotoxic Activities of Soft Corals from the Colombian Caribbean. Marine Drugs. 2019; 17(1):37. https://doi.org/10.3390/md17010037
Chicago/Turabian StyleSantacruz, Liliana, Olivier P. Thomas, Carmenza Duque, Mónica Puyana, and Edisson Tello. 2019. "Comparative Analyses of Metabolomic Fingerprints and Cytotoxic Activities of Soft Corals from the Colombian Caribbean" Marine Drugs 17, no. 1: 37. https://doi.org/10.3390/md17010037
APA StyleSantacruz, L., Thomas, O. P., Duque, C., Puyana, M., & Tello, E. (2019). Comparative Analyses of Metabolomic Fingerprints and Cytotoxic Activities of Soft Corals from the Colombian Caribbean. Marine Drugs, 17(1), 37. https://doi.org/10.3390/md17010037