Lipidomic Signatures Reveal Seasonal Shifts on the Relative Abundance of High-Valued Lipids from the Brown Algae Fucus vesiculosus
Abstract
:1. Introduction
2. Results
2.1. Recovery of Total Lipids
2.2. Identification of Polar Lipids Profile from Fucus vesiculosus
2.3. Seasonal Polar Lipidome Profiles
Seasonal Total Fatty Acids Profiles
2.4. Degree of Unsaturation of Membrane Lipids
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Biomass
4.3. Lipid Extraction
4.4. Polar Lipid Analysis by HILIC−LC−Q−Exactive-MS
4.5. Fatty Acid Analysis by GC−MS
4.6. Data Processing and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DBI | Double bond Index |
DGDG | Digalactosyl diacylglycerol |
DGMG | Digalactosyl monoacylglycerol |
DGTA | Diacylglyceryl-hydroxymethyltrimethyl-β-alanine |
DGTS | Diacylglyceryl-3-O-4-N,N,N-trimethyl-homoserine |
HILIC | Hydrophilic interaction liquid chromatography |
IMTA | Integrated multitrophic aquaculture |
LPC | Lyso-phosphatidylcholine |
LPE | Lyso-phosphatidylethanolamine |
LPG | Lyso-phosphatidylglycerol |
LPI | Lyso-phosphatidylinositol |
m/z | Mass to charge ratio |
MGDG | Monogalactosyl diacylglycerol |
MGMG | Monogalactosyl monoacylglycerol |
MGTA | Monoacylglyceryl-hydroxy methyl-trimethyl-β-alanine |
MGTS | Monocylglyceryl-3-O-4-(N,N,N-trimethyl) homoserine |
MS | Mass spectrometry |
MS/MS | Tandem mass spectrometry |
MUFA | Monounsaturated fatty acid |
PC | Phosphatidylcholine |
PE | Phosphatidylethanolamine |
PG | Phosphatidylglycerol |
PI | Phosphatidylinositol |
PL | Phospholipid |
PUFA | Polyunsaturated fatty acid |
RT | Retention time |
SFA | Saturated fatty acid |
SQDG | Sulfoquinovosyl diacylglycerol |
SQMG | Sulfoquinovosyl monoacylglycerol |
References
- Pereira, L. Edible Seaweeds of the World, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4987-3047-1. [Google Scholar]
- Zemke-White, W.L.; Ohno, M. World seaweed utilisation: An end-of-century summary. J. Appl. Phycol. 1999, 11, 369–376. [Google Scholar] [CrossRef]
- Morel, J.M.; Perrey, F.; Lejeune, R.; Goetz, P. Fucus vesiculosus L. Phytotherapie 2005, 3, 218–221. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Peteiro, C. Alginate Production from Marine Macroalgar, with Emphasis on Kelp Farming; Springer: Singapore, 2017; ISBN 9789811069109. [Google Scholar]
- Smit, A.J. Medicinal and pharmaceutical uses of seaweed natural products: A review. J. Appl. Phycol. 2004, 245–262. [Google Scholar] [CrossRef]
- Kristinsson, G.; Jónsdóttir, R. Novel Bioactive Seaweed Based Ingredients and Products; Nordic Innovation publication: Oslo, Norway, 2015; Available online: https://www.nordicinnovation.org/2016/novel-bioactive-seaweed-based-ingredients-and-products (accessed on 10 May 2019).
- Ferdouse, F.; Lovstad Holdt, S.; Smith, R.; Murúa, P.; Yang, L. The global status of seaweed production, trade and utilization. FAO Globefish Res. Progr. 2017, 124, 1–57. [Google Scholar]
- Stévant, P.; Rebours, C.; Chapman, A. Seaweed aquaculture in Norway: Recent industrial developments and future perspectives. Aquac. Int. 2017, 25, 1373–1390. [Google Scholar] [CrossRef]
- Serrão, E.A.; Brawley, S.H.; Hedman, J.; Kautsky, L.; Samuelsson, G. Reproductive success of Fucus vesiculosus (Phaeophyceae) in the Baltic Sea. J. Phycol. 1999, 35, 254–269. [Google Scholar] [CrossRef]
- Abreu, M.H.; Pereira, R.; Sassi, J.F. Chapter 12: Marine Algae and the Global Food Industry. In Marine Algae—Biodiversity, Taxon, Environmental Assessment, Biotechnology, 1st ed.; Pereira, L., Magalhaes, J., Eds.; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9781466581678. [Google Scholar]
- Nitschke, U.; Walsh, P.; McDaid, J.; Stengel, D.B. Variability in iodine in temperate seaweeds and iodine accumulation kinetics of Fucus vesiculosus and Laminaria digitata (Phaeophyceae, Ochrophyta). J. Phycol. 2018, 54, 114–125. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011, 22, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Rubio, M.E.; Pérez-Jiménez, J.; Saura-Calixto, F. Dietary fiber and antioxidant capacity in Fucus vesiculosus products. Int. J. Food Sci. Nutr. 2009, 60, 23–34. [Google Scholar] [CrossRef]
- Herbreteau, F.; Coiffard, L.J.M.; Derrien, A.; De Roeck-Holtzhauer, Y. The fatty acid composition of five species of macroalgae. Bot. Mar. 1997, 40, 25–28. [Google Scholar] [CrossRef]
- Jones, A.L.; Harwood, J.L. Lipid composition of the brown algae Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry 1992, 31, 3397–3403. [Google Scholar] [CrossRef]
- Alam, M.; Chakravarti, A.; Ikawa, M. Lipid Composition of the brown alga Fucus Vesiculosus. J. Phycol. 1971, 7, 267–268. [Google Scholar]
- Peinado, I.; Girón, J.; Koutsidis, G.; Ames, J.M. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Res. Int. 2014, 66, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Bowen, K.J.; Harris, W.S.; Kris-Etherton, P.M. Omega-3 fatty acids and cardiovascular disease: Are there benefits? Curr. Treat. Opt. Cardiovasc. Med. 2016, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, K.H.M.; Guaratini, T.; Barros, M.P.; Falcão, V.R.; Tonon, A.P.; Lopes, N.P.; Campos, S.; Torres, M.A.; Souza, A.O.; Colepicolo, P.; et al. Metabolites from algae with economical impact. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 146, 60–78. [Google Scholar] [CrossRef]
- Guschina, I.A.; Harwood, J.L. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 2006, 45, 160–186. [Google Scholar] [CrossRef] [PubMed]
- Plouguerné, E.; De Souza, L.M.; Sassaki, G.L.; Cavalcanti, J.F.; Romanos, M.T.V.; da Gama, B.A.P.; Pereira, R.C.; Barreto-Bergter, E.; Villela Romanos, M.T.; da Gama, B.A.P.; et al. Antiviral Ssulfoquinovosyldiacylglycerols (SQDGs) from the Brazilian brown seaweed Sargassum vulg. Mar. Drugs 2013, 11, 4628–4640. [Google Scholar] [CrossRef] [PubMed]
- Stengel, D.B.; Connan, S.; Popper, Z.A. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnol. Adv. 2011, 29, 483–501. [Google Scholar] [CrossRef]
- Lopes, G.; Daletos, G.; Proksch, P.; Andrade, P.B.; Valentão, P. Anti-inflammatory potential of monogalactosyl diacylglycerols and a monoacylglycerol from the edible brown seaweed Fucus spiralis Linnaeus. Mar. Drugs 2014, 12, 1406–1418. [Google Scholar] [CrossRef]
- Plouguerné, E.; da Gama, B.A.P.; Pereira, R.C.; Barreto-Bergter, E. Glycolipids from seaweeds and their potential biotechnological applications. Front. Cell. Infect. Microbiol. 2014, 4, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Heavisides, E.; Rouger, C.; Reichel, A.; Ulrich, C.; Wenzel-Storjohann, A.; Sebens, S.; Tasdemir, D. Seasonal variations in the metabolome and bioactivity profile of Fucus vesiculosus extracted by an optimised, pressurised liquid extraction protocol. Mar. Drugs 2018, 16, 503. [Google Scholar] [CrossRef] [PubMed]
- Khotimchenko, S.V.; Yakovleva, I.M. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 2005, 66, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Gerasimenko, N.; Logvinov, S. Seasonal composition of lipids, fatty acids, pigments in the brown alga Sargassum pallidum: The potential for health. Open J. Mar. Sci. 2016, 6, 498–523. [Google Scholar] [CrossRef]
- Gerasimenko, N.I.; Skriptsova, A.V.; Busarova, N.G.; Moiseenko, O.P. Effects of the season and growth stage on the contents of lipids and photosynthetic pigments in brown alga Undaria pinnatifida. Russ. J. Plant Physiol. 2011, 58, 885–891. [Google Scholar] [CrossRef]
- Kendel, M.; Couzinet-Mossion, A.; Viau, M.; Fleurence, J.; Barnathan, G.; Wielgosz-Collin, G. Seasonal composition of lipids, fatty acids, and sterols in the edible red alga Grateloupia turuturu. J. Appl. Phycol. 2012, 25, 425–432. [Google Scholar] [CrossRef]
- Blažina, M.; Iveša, L.; Najdek, M. Caulerpa racemosa: Adaptive varieties studied by fatty acid composition (Northern Adriatic Sea, Vrsar, Croatia). Eur. J. Phycol. 2009, 44, 183–189. [Google Scholar] [CrossRef]
- Nelson, M.M.; Phleger, C.F.; Nichols, P.D. Seasonal lipid composition in macroalgae of the Northeastern Pacific Ocean. Bot. Mar. 2002, 45, 58–65. [Google Scholar] [CrossRef]
- Schmid, M.; Guihéneuf, F.; Stengel, D.B. Plasticity and remodelling of lipids support acclimation potential in two species of low-intertidal macroalgae, Fucus serratus (Phaeophyceae) and Palmaria palmata (Rhodophyta). Algal Res. 2017, 26, 104–114. [Google Scholar] [CrossRef]
- Harwood, J.L.; Guschina, I.A. The versatility of algae and their lipid metabolism. Biochimie 2009, 91, 679–684. [Google Scholar] [CrossRef]
- Rickert, E.; Wahl, M.; Link, H.; Richter, H.; Pohnert, G. Seasonal variations in surface metabolite composition of Fucus vesiculosus and Fucus serratus from the Baltic Sea. PLoS ONE 2016, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Dubacq, J.P.; Thomas, J.C.; Giraud, G. Seasonal variations of triacylglycerols and fatty acids in Fucus serratus. Phytochemistry 1996, 43, 49–55. [Google Scholar] [CrossRef]
- Melo, T.; Alves, E.; Azevedo, V.; Martins, A.S.; Neves, B.; Domingues, P.; Calado, R.; Abreu, M.H.; Domingues, M.R. Lipidomics as a new approach for the bioprospecting of marine macroalgae—Unraveling the polar lipid and fatty acid composition of Chondrus crispus. Algal Res. 2015, 8, 181–191. [Google Scholar] [CrossRef]
- da Costa, E.; Melo, T.; Moreira, A.S.P.; Alves, E.; Domingues, P.; Calado, R.; Abreu, M.H.M.H.; Domingues, M.R. Decoding bioactive polar lipid profile of the macroalgae Codium tomentosum from a sustainable IMTA system using a lipidomic approach. Algal Res. 2015, 12, 388–397. [Google Scholar] [CrossRef]
- Da Costa, E.; Melo, T.; Moreira, A.S.P.A.; Bernardo, C.; Helguero, L.; Ferreira, I.; Cruz, M.T.M.; Rego, A.M.A.; Domingues, P.; Calado, R.; et al. Valorization of lipids from Gracilaria sp. through lipidomics and decoding of antiproliferative and anti-inflammatory Activity. Mar. Drugs 2017, 15, 62. [Google Scholar] [CrossRef] [PubMed]
- da Costa, E.; Azevedo, V.; Melo, T.; Rego, A.M.; Evtuguin, D.V.; Domingues, P.; Calado, R.; Pereira, R.; Abreu, M.H.; Domingues, M.R. High-resolution lipidomics of the early life stages of the red seaweed Porphyra dioica. Molecules 2018, 23, 187. [Google Scholar] [CrossRef]
- Lopes, D.; Moreira, A.S.P.; Rey, F.; da Costa, E.; Melo, T.; Maciel, E.; Rego, A.; Abreu, M.H.; Domingues, P.; Calado, R.; et al. Lipidomic signature of the green macroalgae Ulva rigida farmed in a sustainable integrated multi-trophic aquaculture. J. Appl. Phycol. 2018, 2, 1369–1381. [Google Scholar] [CrossRef]
- Najdek, M.; Iveša, L.; Paliaga, P.; Blažina, M.; Čelig, A. Changes in the fatty acid composition of Fucus virsoides J. Agardh in response to the type of substratum. Acta Adriat. 2014, 55, 19–30. [Google Scholar]
- Van Ginneken, V.J.T.; Helsper, J.P.F.G.; de Visser, W.; Van Keulen, H.; Brandenburg, W.A. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas. Lipids Health Dis. 2011, 10, 104. [Google Scholar] [CrossRef]
- Miyashita, K.; Mikami, N.; Hosokawa, M. Chemical and nutritional characteristics of brown seaweed lipids: A review. J. Funct. Foods 2013, 5, 1507–1517. [Google Scholar] [CrossRef]
- Los, D.A.; Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta Biomembr. 2004, 1666, 142–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, N.; Los, D.A. Membrane Fluidity and Temperature Perception. Plant Physiol. 2016, 115, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Kostetsky, E.Y.; Goncharova, S.N.; Sanina, N.M.; Shnyrov, V.L. Season influence on lipid composition of marine macrophytes. Bot. Mar. 2004, 47, 134–139. [Google Scholar] [CrossRef]
- Goncharova, S.N.; Kostetsky, E.Y.; Sanina, N.M. The effect of seasonal shifts in temperature on the lipid composition of marine macrophytes. Russ. J. Plant Physiol. 2004, 2, 169–175. [Google Scholar] [CrossRef]
- Zheng, G.; Tian, B.; Zhang, F.; Tao, F.; Li, W. Plant adaptation to frequent alterations between high and low temperatures: Remodelling of membrane lipids and maintenance of unsaturation levels. Plant Cell Environ. 2011, 34, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M. Betaine ether-linked glycerolipids. Prog. Lipid Res. 1996, 35, 1–51. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Rozentsvet, O.A.; Pechenkina, E.E. Glycolipids, phospholipids and fatty acids of brown algae species. Phytochemistry 1990, 29, 3417–3421. [Google Scholar] [CrossRef]
- Smith, K.L.; Harwood, J.L. Lipids and lipid metabolism in the brown alga, Fucus serratus. Phytochemistry 1984, 23, 2469–2473. [Google Scholar] [CrossRef]
- Schmid, M.; Guihéneuf, F.; Stengel, D.B. Fatty acid contents and profiles of 16 macroalgae collected from the Irish Coast at two seasons. J. Appl. Phycol. 2014, 26, 451–463. [Google Scholar] [CrossRef]
- Gerasimenko, N.I.; Busarova, N.G.; Moiseenko, O.P. Age-dependent changes in the content of lipids, fatty acids, and pigments in brown alga Costaria costata. Russ. J. Plant Physiol. 2010, 57, 62–68. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. (Maywood) 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Phar. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Fleurence, J.; Gutbier, G.; Mabeau, S.; Leray, C. Fatty acids from 11 marine macroalgae of the French Brittany coast. J. Appl. Phycol. 1994, 6, 527–532. [Google Scholar] [CrossRef]
- Burri, L.; Hoem, N.; Banni, S.; Berge, K. Marine omega-3 phospholipids: Metabolism and biological activities. Int. J. Mol. Sci. 2012, 13, 15401–15419. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.S.H.; Nielsen, N.S.; Baron, C.P.; Jacobsen, C. Marine phospholipids: The current understanding of their oxidation mechanisms and potential uses for food fortification. Crit. Rev. Food Sci. Nutr. 2017, 57, 2057–2070. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Albers, R.; Antoine, J.-M.; Blum, S.; Ferns, G.A.; Folkerts, G.; Bourdet-Sicard, R.; Friedmann, P.S.; Frost, G.S.; Guarner, F.; et al. Inflammatory disease processes and interactions with nutrition. Br. J. Nutr. 2009, 101, S2–S14. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2014, 10, 81–98. [Google Scholar] [CrossRef]
- Traversier, M.; Gaslondes, T.; Milesi, S.; Michel, S.; Delannay, E. Polar lipids in cosmetics: Recent trends in extraction, separation, analysis and main applications. Phytochem. Rev. 2018, 17, 1179–1210. [Google Scholar] [CrossRef]
- Banskota, A.H.; Stefanova, R.; Gallant, P.; McGinn, P.J. Mono-and digalactosyldiacylglycerols: Potent nitric oxide inhibitors from the marine microalga Nannochloropsis granulata. J. Appl. Phycol. 2013, 25, 349–357. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, E.-H.; Lee, C.; Kim, M.-H.; Rho, J.-R. Two new monogalactosyl diacylglycerols from brown alga Sargassum thunbergii. Lipids 2007, 42, 395–399. [Google Scholar] [CrossRef]
- Arunkumar, K.; Rengasamy, R. The antibacterial compound sulphoglycerolipid 1-0 palmitoyl-3-0 (6 -sulpho-a-quinovopyranosyl)-glycerol from Sargassum wightii Greville (Phaeophyceae). Bot. Mar. 2005, 48, 441–445. [Google Scholar] [CrossRef]
- Inès, M.; Dhouha, G. Glycolipid biosurfactants: Potential related biomedical and biotechnological applications. Carbohydr. Res. 2015, 416, 59–69. [Google Scholar] [CrossRef]
- Murphy, R.C. Tandem Mass Spectrometry of Lipids; New Developments in Mass Spectrometry No. 4; Royal Society of Chemistry: London, UK, 2015; ISBN 978-11-84973-827-9. [Google Scholar]
- Lyons, J.M.; Wheaton, T.A.; Pratt, H.K. Relationship between the physical nature of mitochondrial membranes and chilling sensitivity in plants. Plant Physiol. 1964, 39, 262–268. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 10 May 2019).
- Rstudio Team. RStudio: Integrated Development Environment for R; RStudio, Inc.: Boston, MA, USA, 2015; Available online: http://www.rstudio.com/ (accessed on 10 May 2019).
- Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 2015, 43, 251–257. [Google Scholar] [CrossRef]
- Murdoch, D.; Chow, E.D. Ellipse: Functions for Drawing Ellipses and Ellipse-Like Confidence Regions, R Package Version 0.4.1; 2018. Available online: https://rdrr.io/cran/ellipse/ (accessed on 10 May 2019).
- Kolde, R. Pheatmap: Pretty Heatmaps. R Package. Version 1.0.12. 2019. Available online: https://CRAN.R-project.org/package=pheatmap (accessed on 10 May 2019).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: http://ggplot2.org. pagina (accessed on 10 May 2019).
- Wickham, H. The Split-apply-combine strategy for data analysis. J. Stat. Softw. 2011, 40, 1–29. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation, R Package Version 0.7.8; 2018. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 10 May 2019).
- Wickham, H.; Henry, L. Tidyr: Easily Tidy Data with “Spread()” and “Gather()” Functions. 2018. Available online: https://CRAN.R-project.org/package=tidyr (accessed on 10 May 2019).
Galactolipids [M + NH4]+ | ||
Observed m/z | Lipid Species (C:N) | Fatty Acyl Chain |
Monogalactosyl diacylglycerol - MGDG | ||
746.5765 | MGDG (32:1) | 18:1/14:0, 16:1/16:0 |
768.5621 | MGDG (34:4) | 18:4/16:0, 18:3/16:1 |
770.5764 | MGDG (34:3) | 18:3/16:0 |
772.5935 | MGDG (34:2) | 18:2/16:0, 18:1/16:1 |
774.6074 | MGDG (34:1) | 18:1/16:0 |
788.5307 | MGDG (36:8) | 18:4/18:4 |
790.5459 | MGDG (36:7) | 18:3/18:4 |
792.5614 | MGDG (36:6) | 18:3/18:3 |
794.5772 | MGDG (36:5) | 18:2/18:3, 20:5/16:0 |
796.5929 | MGDG (36:4) | 20:4/16:0, 18:2/18:2 |
814.5449 | MGDG (38:9) | 20:5/18:4 |
816.5608 | MGDG (38:8) | 20:5/18:3, 20:4/18:4 |
818.5766 | MGDG (38:7) | 20:5/18:2, 20:4/18:3 |
820.5926 | MGDG (38:6) | 20:5/18:1, 20:4/18:2 |
822.6073 | MGDG (38:5) | 20:4/18:1 |
824.6235 | MGDG (38:4) | 20:4/18:0 |
842.5751 | MGDG (40:9) | 20:5/20:4 |
844.594 | MGDG (40:8) | 20:4/20:4 |
Monogalactosyl monoacylglycerol - MGMG | ||
536.3795 | MGMG (18:1) | |
530.3329 | MGMG (18:4) | |
532.3488 | MGMG (18:3) | |
534.3642 | MGMG (18:2) | |
Digalactosyl diacylglycerol - DGDG | ||
906.6148 | DGDG (32:2) | 14:0/18:2 |
908.6305 | DGDG (32:1) | 14:0/18:1, 16:0/16:1 |
930.6135 | DGDG (34:4) | * |
932.6305 | DGDG (34:3) | 18:3/16:0 |
934.6461 | DGDG (34:2) | 18:2/16:0, 18:1/16:1 |
936.6618 | DGDG (34:1) | 18:1/16:0 |
938.678 | DGDG (34:0) | 18:0/16:0 |
952.5992 | DGDG (36:7) | 18:3/18:4 |
954.6148 | DGDG (36:6) | 18:3/18:3 |
956.6305 | DGDG (36:5) | 20:5/16:0, 18:2/18:3 |
958.6461 | DGDG (36:4) | 20:4/16:0, 18:2/18:2 |
960.6623 | DGDG (36:3) | 18:1/18:2 |
962.678 | DGDG (36:2) | 18:1/18:1 |
964.6936 | DGDG (36:1) | 18:1/18:0 |
976. 5997 | DGDG (38:9) | 20:5/18:4 |
978.6144 | DGDG (38:8) | 20:5/18:3, 20:4/18:4 |
980.6289 | DGDG (38:7) | 20:4/18:3, 20:5/18:2 |
982.6448 | DGDG (38:6) | 20:4/18:2, 20:5/18:1 |
984.6594 | DGDG (38:5) | 20:4/18:1 |
986.6767 | DGDG (38:4) | 20:4/18:0 |
Digalactosyl monoacylglycerol - DGMG | ||
672.417 | DGMG (16:0) | |
692.3857 | DGMG (18:4) | |
694.4014 | DGMG (18:3) | |
696.417 | DGMG (18:2) | |
698.4327 | DGMG (18:1) | |
Sulfolipids [M – H]– | ||
Sulfoquinovosyl monoacylglycerol - SQMG | ||
527.2515 | SQMG (14:0) | |
553.2664 | SQMG (16:1) | |
555.2829 | SQMG (16:0) | |
577.2673 | SQMG (18:3) | |
579.2832 | SQMG (18:2) | |
581.2984 | SQMG (18:1) | |
Sulfoquinovosyl diacylglycerol - SQDG | ||
737.4495 | SQDG (28:0) | 14:0/14:0 |
763.4648 | SQDG (30:1) | 16:0/14:1 |
765.4804 | SQDG (30:0) | 16:0/14:0 |
787.4646 | SQDG (32:3) | 18:3/14:0 |
789.4804 | SQDG (32:2) | 18:2/14:0 |
791.4958 | SQDG (32:1) | 18:1/14:0 |
793.5099 | SQDG (32:0) | 18:0/14:0 |
813.4803 | SQDG (34:4) | 18:3/16:1 |
815.4958 | SQDG (34:3) | 18:3/16:0 |
817.5107 | SQDG (34:2) | 18:2/16:0 |
819.5269 | SQDG (34:1) | 18:1/16:0 |
839.4977 | SQDG (36:5) | 20:5/16:0 |
841.5106 | SQDG (36:4) | 20:4/16:0 |
Phospholipids [M + H]+ | ||
Observed m/z | Lipid species (C:N) | Fatty acyl chain |
Phosphatidylcholine - PC | ||
730.538 | PC (32:2) | 16:1/16:1 |
756.55 | PC (34:3) | 16:1/18:2 |
758.5689 | PC (34:2) | 16:0/18:2, 16:1/18:1 |
760.5835 | PC (34:1) | |
780.553 | PC (36:5) | 18:2/18:3 |
784.585 | PC (36:3) | 18:1/18:2 |
786.6005 | PC (36:2) | 18:1/18:1 |
804.5545 | PC (38:7) | |
806.5683 | PC (38:6) | |
808.5831 | PC (38:5) | |
Lyso-phosphatidylcholine - LPC | ||
494.3241 | LPC (16:1) | |
496.3392 | LPC (16:0) | |
522.3556 | LPC (18:1) | |
Phospholipids [M − H]− | ||
Observed m/z | Lipid species (C:N) | Fatty acyl chain |
Phosphatidylglycerol - PG | ||
717.471 | PG (32:2) | 16:0/16:2, 16:1/16:1 |
719.4868 | PG (32:1) | 16:1/16:0, 14:0/18:1 |
721.5033 | PG (32:0) | 16:0/16:0, 14:0/18:0 |
741.4713 | PG (34:4) | 16:1/18:3 |
743.4862 | PG (34:3) | 16:0/18:3, 16:1/18:2 |
745.5018 | PG (34:2) | 16:0/18:2 |
747.5183 | PG (34:1) | 16:1/18:0 |
749.5324 | PG (34:0) | 16:0/18:0 |
769.4987 | PG (36:4) | 16:0/20:4, 18:2/18:2 |
771.516 | PG (36:3) | 18:1/18:2 |
773.5321 | PG (36:2) | 18:1/18:1 |
Lyso-phosphatidylglycerol - LPG | ||
481.2569 | LPG (16:1) | |
483.2733 | LPG (16:0) | |
509.2887 | LPG (18:1) | |
Phosphatidylinositol - PI | ||
831.4984 | PI (34:3) | 16:0/18:3 |
833.5175 | PI (34:2) | 16:0/18:2 |
835.5339 | PI (34:1) | 16:0/18:1 |
837.5491 | PI (34:0) | 16:0/18:0 |
857.5196 | PI (36:4) | 16:0/20:4 |
859.5352 | PI (36:3) | 18:0/18:3 |
861.5505 | PI (36:2) | 18:0/18:2, 18:1/18:1 |
863.5674 | PI (36:1) | 18:0/18:1 |
Lyso-Phosphatidylinositol - LPI | ||
597.306 | LPI (18:1) | |
Phosphatidylethanolamine | ||
686.4758 | PE (32:2) | 14:0/18:2, 16:1/16:1 |
714.5067 | PE (34:2) | 16:1/18:1 |
716.5227 | PE (34:1) | 16:0/18:1 |
762.5073 | PE (38:6) | 18:2/20:4 |
764.5232 | PE (38:5) | 18:1/20:4 |
784.4918 | PE (40:9) | 20:4/20:5 |
786.5076 | PE (40:8) | 20:4/20:4 |
Lyso-Phosphatidylethanolamine - LPE | ||
498.2613 | LPE (20:5) | |
500.2779 | LPE (20:4) |
Betaine lipids [M + H]+ | ||
Observed m/z | Lipid species (C:N) | Fatty acyl chain |
Diacylglyceryl trimethyl-homoserine - DGTS | ||
656.5468 | DGTS (28:0) | 14:0/14:0 |
682.5628 | DGTS (30:1) | 14:0/16:1 |
684.5787 | DGTS (30:0) | 14:0/16:0 |
704.5458 | DGTS (32:4) | 16:0/16:4 |
706.5617 | DGTS (32:3) | 14:0/18:3, 16:0/16:3 |
708.5778 | DGTS (32:2) | 16:0/16:2 |
710.5933 | DGTS (32:1) | 14:0/18:1, 16:0/16:1 |
732.5774 | DGTS (34:4) | 16:0/18:4 |
734.5932 | DGTS (34:3) | 16:0/18:3 |
736.6083 | DGTS (34:2) | 16:0/18:2 |
738.624 | DGTS (34:1) | 16:0/18:1 |
762.6248 | DGTS (36:3) | 18:0/18:3 |
764.6405 | DGTS (36:2) | 18:0/18:2 |
Monoacylglyceryl trimethyl-homoserine - MGTS | ||
446.347 | MGTS (14:0) | |
472.3632 | MGTS (16:1) | |
474.3792 | MGTS (16:0) | |
494.3477 | MGTS (18:4) | |
496.3634 | MGTS (18:3) | |
498.3796 | MGTS (18:2) | |
500.3943 | MGTS (18:1) | |
Diacylglyceryl hydroxymethyl-trimethyl-β-alanine - DGTA | ||
656.547 | DGTA (28:0) | 14:0/14:0 |
680.5433 | DGTA (30:2) | |
682.5623 | DGTA (30:1) | 14:0/16:1 |
684.5782 | DGTA (30:0) | 14:0/16:0 |
704.5464 | DGTA (32:4) | 14:0/18:4 |
706.5625 | DGTA (32:3) | 14:0/18:3 |
708.5778 | DGTA (32:2) | 14:0/18:2 |
710.5933 | DGTA (32:1) | 14:0/18:1, 16:0/16:1 |
732.5776 | DGTA (34:4) | **14:0/20:4 |
734.5935 | DGTA (34:3) | 14:0/20:3, 16:0/18:3 |
736.6091 | DGTA (34:2) | 14:0/20:2, 16:0/18:2 |
738.6241 | DGTA (34:1) | 16:0/18:1 |
758.5925 | DGTA (36:5) | 16:0/20:5 |
760.6085 | DGTA (36:4) | **16:0/20:4 |
762.6246 | DGTA (36:3) | 16:0/20:3 |
764.6406 | DGTA (36:2) | 18:1/18:1 |
784.6084 | DGTA (38:6) | 18:2/20:4 |
786.6235 | DGTA (38:5) | 18:1/20:4 |
Monoacylglyceryl hydroxymethyl-trimethyl-β-alanine - MGTA | ||
446.3464 | MGTA (14:0) | |
472.3618 | MGTA (16:1) | |
474.3777 | MGTA (16:0) | |
494.3463 | MGTA (18:4) | |
496.3623 | MGTA (18:3) | |
498.3778 | MGTA (18:2) | |
500.3941 | MGTA (18:1) | |
520.3619 | MGTA (20:5) | |
522.3779 | MGTA (20:4) | |
524.3958 | MGTA (20:3) |
Winter | Spring | |||
---|---|---|---|---|
Fatty acids | Mean (%) | ±SD | Mean (%) | ±SD |
14:0 | 10.9 | 1.08 | 6.58 | 1.48 |
16:0 | 17.2 | 1.98 | 20.8 | 2.12 |
16:1n-7 | 1.55 | 0.05 | 1.41 | 0.1 |
18:0 | 1.64 | 0.25 | 6.09 | 0.43 |
18:1 | 25.3 | 0.69 | 28.1 | 1.44 |
18:2n-6 | 8.78 | 0.22 | 6.62 | 0.49 |
18:3n-6 | 0.89 | 0.41 | 0.7 | 0.11 |
18:3n-3 | 7.13 | 0.58 | 3.92 | 0.34 |
18:4n-3 | 4.35 | 0.51 | 2.71 | 0.19 |
20:0 | 0.35 | 0.11 | 0.59 | 0.14 |
20:2n-6 | 0.71 | 0.04 | 0.7 | 0.15 |
20:3n-6 | 0.71 | 0.09 | 0.7 | 0.17 |
20:4n-6 | 10.7 | 0.96 | 13.5 | 1.81 |
20:5n-3 | 6.69 | 0.94 | 4.75 | 0.47 |
22:0 | 0.5 | 0.07 | 0.65 | 0.25 |
24:0 | 1.11 | 0.23 | 0.90 | 0.22 |
Others | 1.49 | 1.30 | ||
Σ SFA | 31.7 | 35.6 | ||
ΣΜUFA | 26.9 | 29.5 | ||
Σ PUFA | 40.0 | 33.6 | ||
AA/EPA | 1.60 | 2.84 | ||
Σn−6/Σn−3 | 1.20 | 1.95 | ||
Ratio (Unsat/Sat) | 2.11 | 1.77 |
Lipid Class | DBI | ||
---|---|---|---|
Winter | Spring | RC (%) | |
MGDG | 6.90 | 5.89 | 15% |
MGMG | 2.75 | 2.75 | 0.0% |
DGDG | 5.70 | 5.36 | 6.3% |
DGMG | 2.57 | 2.12 | 18% |
SQDG | 1.33 | 1.00 | 25% |
SQMG | 1.35 | 1.10 | 19% |
PI | 2.07 | 1.47 | 29% |
PC | 3.32 | 2.70 | 19% |
PG | 2.74 | 2.27 | 17% |
PE | 7.20 | 4.80 | 33% |
DGTS | 1.94 | 1.77 | 9.0% |
MGTS | 1.67 | 1.49 | 11% |
DGTA | 1.89 | 1.54 | 19% |
MGTA | 2.05 | 1.79 | 13% |
Fatty acids | 1.66 | 1.53 | 7.8% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa, E.; Domingues, P.; Melo, T.; Coelho, E.; Pereira, R.; Calado, R.; Abreu, M.H.; Domingues, M.R. Lipidomic Signatures Reveal Seasonal Shifts on the Relative Abundance of High-Valued Lipids from the Brown Algae Fucus vesiculosus. Mar. Drugs 2019, 17, 335. https://doi.org/10.3390/md17060335
da Costa E, Domingues P, Melo T, Coelho E, Pereira R, Calado R, Abreu MH, Domingues MR. Lipidomic Signatures Reveal Seasonal Shifts on the Relative Abundance of High-Valued Lipids from the Brown Algae Fucus vesiculosus. Marine Drugs. 2019; 17(6):335. https://doi.org/10.3390/md17060335
Chicago/Turabian Styleda Costa, Elisabete, Pedro Domingues, Tânia Melo, Elisabete Coelho, Rui Pereira, Ricardo Calado, Maria H. Abreu, and M. Rosário Domingues. 2019. "Lipidomic Signatures Reveal Seasonal Shifts on the Relative Abundance of High-Valued Lipids from the Brown Algae Fucus vesiculosus" Marine Drugs 17, no. 6: 335. https://doi.org/10.3390/md17060335
APA Styleda Costa, E., Domingues, P., Melo, T., Coelho, E., Pereira, R., Calado, R., Abreu, M. H., & Domingues, M. R. (2019). Lipidomic Signatures Reveal Seasonal Shifts on the Relative Abundance of High-Valued Lipids from the Brown Algae Fucus vesiculosus. Marine Drugs, 17(6), 335. https://doi.org/10.3390/md17060335