Xanthophyllomyces dendrorhous-Derived Astaxanthin Regulates Lipid Metabolism and Gut Microbiota in Obese Mice Induced by A High-Fat Diet
Abstract
:1. Introduction
2. Results
2.1. Effects of X. dendrorhous-Derived Astaxanthin on Lipid Metabolism and Gut Microbiota
2.1.1. Body Weight and Lipid Content
2.1.2. Gut Microbiota
2.2. Effects of X. Dendrorhous on Lipid Metabolism and Gut Microbiota
2.2.1. Body Weight and Lipid Content
2.2.2. Gut Microbiota
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. X. Dendrorhous and Astaxanthin
4.3. Animals and Diet
4.4. Sample Collection
4.5. Assays of Biochemical Parameters
4.6. Gut Microbiota Analysis
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schmidt, I.; Sgchewe, H.; Gassel, S.; Jin, C.; Buckingham, J.; Humbelin, M.; Sandmann, G.; Schrader, J. Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl. Microbiol. Biotechnol. 2011, 89, 555–571. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, S.; Abbaszadeh, F.; Dargahi, L.; Jorjani, M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res. 2018, 136, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Farruggia, C.; Kim, M.B.; Bae, M.; Lee, Y.; Pham, T.X.; Yang, Y.; Han, M.J.; Park, Y.K.; Lee, J.Y. Astaxanthin exerts anti-inflammatory and antioxidant effects in macrophages in NRF2-dependent and independent manners. J. Nutr. Biochem. 2018, 62, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.C.; Chen, S.C.; Chen, P.C. Astaxanthin attenuated thrombotic risk factors in type 2 diabetic patients. J. Funct. Food 2019, 53, 22–27. [Google Scholar] [CrossRef]
- Dona, G.; Andrisani, A.; Tibaldi, E.; Brunati, A.M.; Sabbadin, C.; Armanini, D.; Ambrosini, G.; Ragazzi, E.; Bordin, L. Astaxanthin Prevents Human Papillomavirus L1 Protein Binding in Human Sperm Membranes. Mar. Drugs 2018, 16, 247. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, A.L.; Pang, Y.P.; Cheng, X.J.; Xu, T.; Li, X.R.; Liu, J.; Zhang, Y.Y.; Liu, Y. Astaxanthin Attenuates Environmental Tobacco Smoke-Induced Cognitive Deficits: A Critical Role of p38 MAPK. Mar. Drugs 2019, 17, 24. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.; Cysewski, G. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 2000, 18, 160–167. [Google Scholar] [CrossRef]
- Andrewes, A.G.; Starr, M.P. (3R,3′R)-astaxanthin from the yeast Phaffia rhodozyma. Phytochemistry 1976, 15, 1009–1011. [Google Scholar] [CrossRef]
- Visser, H.; Ooyen, A.J.J.V.; Verdoes, J.C. Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res. 2004, 4, 221–231. [Google Scholar] [CrossRef]
- Naguib, Y.M. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem. 2000, 48, 1150–1154. [Google Scholar] [CrossRef]
- Liu, S.; Liu, B.; Wang, H.; Xiao, S.; Li, Y.; Wang, J. Production of astaxanthin at moderate temperature in Xanthophyllomyces dendrorhous using a two-step process. Eng. Life Sci. 2018, 18, 706–710. [Google Scholar] [CrossRef]
- Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature 2001, 409, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Calle, E.E.; Rudolf, K. Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 2004, 4, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Kopelman, P.G. Obesity as a medical problem. Nature 2000, 404, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Mayumi, I.; Tomoyuki, K.; Jiro, T.; Kazunaga, Y. Effects of astaxanthin in obese mice fed a high-fat diet. J. Agric. Chem. Soc. Jpn. 2007, 71, 893–899. [Google Scholar]
- Belzer, C.; de Vos, W.M. Microbes inside—From diversity to function: The case of Akkermansia. ISME J. 2012, 6, 1449. [Google Scholar] [CrossRef] [PubMed]
- Derrien, M.; Belzer, C.; Vos, W.M.D. Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 2017, 106, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef] [Green Version]
- Avci, E.; Kiris, T.; Demirtas, A.O.; Kadi, H. Relationship between high-density lipoprotein cholesterol and the red cell distribution width in patients with coronary artery disease. Lipids Health Dis. 2018, 17, 53. [Google Scholar] [CrossRef] [Green Version]
- Bhuvaneswari, S.; Arunkumar, E.; Viswanathan, P.; Anuradha, C.V. Astaxanthin restricts weight gain, promotes insulin sensitivity and curtails fatty liver disease in mice fed a obesity-promoting diet. Process Biochem. 2010, 45, 1406–1414. [Google Scholar] [CrossRef]
- Aoi, W.; Naito, Y.; Takanami, Y.; Ishii, T.; Kawai, Y.; Akagiri, S.; Kato, Y.; Osawa, T.; Yoshikawa, T. Astaxanthin improves muscle lipid metabolism in exercise via inhibitory effect of oxidative CPT I modification. Biochem. Biophys. Res. Commun. 2008, 366, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Tanabe, H.; Matsumoto, A.; Takagi, M.; Umegaki, K.; Amagaya, S.; Takahashi, J. Astaxanthin functions differently as a selective peroxisome proliferator-activated receptor γ modulator in adipocytes and macrophages. Biochem. Pharmacol. 2012, 84, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Bibiloni, R.; Knauf, C.; Neyrinck, A.M.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef]
- Lee, P.; Yacyshyn, B.R.; Yacyshyn, M.B. Gut microbiota and obesity: An opportunity to alter obesity through faecal microbiota transplant (FMT). Diabetes Obes. Metab. 2019, 21, 479–490. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Na-Ri, S.; Tae Woong, W.; Jin-Woo, B. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar]
- Amandine, E.; Clara, B.; Lucie, G.; Ouwerkerk, J.P.; Céline, D.; Bindels, L.B.; Yves, G.; Muriel, D.; Muccioli, G.G.; Delzenne, N.M. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar]
- Coral-Hinostroza, G.N.; Ytrestøyl, T.; Ruyter, B.; Bjerkeng, B. Plasma appearance of unesterified astaxanthin geometrical E/Z and optical R/S isomers in men given single doses of a mixture of optical 3 and 3′R/S isomers of astaxanthin fatty acyl diesters. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2004, 139, 99–110. [Google Scholar] [CrossRef]
- Østerlie, M.; Bjerkeng, B.; Liaaen-Jensen, S. Plasma appearance and distribution of astaxanthin E/Z and R/S isomers in plasma lipoproteins of men after single dose administration of astaxanthin. J. Nutr. Biochem. 2000, 11, 482–490. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Leng, P.; Hu, Z. Feasible and effective reuse of municipal sludge for vegetation restoration: Physiochemical characteristics and microbial diversity. Sci. Rep. 2019, 9, 879. [Google Scholar] [CrossRef] [PubMed]
Physiological Indexes | HFD | HFD_ASX | HFD_2ASX | ND |
---|---|---|---|---|
Weight gain (g) | 16.90 ± 2.65 a | 15.58 ± 1.95 a | 13.06 ± 2.10 b | 14.09 ± 3.66 a,b |
Energy intake (kcal/group/week) | 426.37 ± 60.92 a | 379.81 ± 47.53 a,b | 444.31 ± 118.35 a | 321.72 ± 47.35 b |
Fat index% | 11.48 ± 1.70 a | 5.91 ± 2.35 b,c | 4.39 ± 0.64 b | 6.69 ± 1.12 c |
Plasma triglyceride (mmol/L) | 0.76 ± 0.28 a | 0.48 ± 0.12 b | 0.39 ± 0.14 b | 0.52 ± 0.14 b |
Plasma cholesterol (mmol/L) | 5.21 ± 1.01 a | 5.28 ± 1.17 a | 3.86 ± 1.21 b | 3.82 ± 0.54 b |
Liver triglyceride (μmol/g) | 33.13 ± 7.82 a | 29.81 ± 5.53 a | 24.45 ± 6.10 b | 24.60 ± 4.55 b |
Liver cholesterol (μmol/g) | 18.20 ± 2.30 a | 13.72 ± 2.70 b | 13.31 ± 1.62 b | 13.39 ± 2.09 b |
Physiological Indexes | HFD’ | HFD’_XD | HFD’_2XD | ND’ |
---|---|---|---|---|
Weight gain (g) | 18.08 ± 3.08 a | 17.26 ± 2.95 a | 13.63 ± 2.70 b | 14.47 ± 2.85 b |
Energy intake (kcal/group/week) | 419.36 ± 46.08 a | 413.13 ± 72.88 a | 408.23 ± 87.34 a | 354.62 ± 55.41 b |
Fat index% | 6.97 ± 1.87 a | 3.58 ± 0.67 b | 3.28 ± 0.86 b | 4.21 ± 1.46 b |
Plasma triglyceride (mmol/L) | 1.06 ± 0.24 a | 0.48 ± 0.10 b | 0.59 ± 0.13 b | 0.56 ± 0.10 b |
Plasma cholesterol (mmol/L) | 5.22 ± 0.73 a | 3.86 ± 1.59 b | 4.69 ± 0.29 b | 4.39 ± 0.67 b |
Liver triglyceride (μmol/g) | 28.26 ± 2.43 a | 23.38 ± 2.95 b | 22.20 ± 1.56 b | 25.33 ± 5.80 b |
Liver cholesterol (μmol/g) | 19.02 ± 2.1 a | 12.63 ± 1.0 b | 11.90 ± 2.0 b | 9.54 ± 0.63 c |
Group | Ingredient |
---|---|
HFD | High-fat diet (Base diet + 24% fat) |
HFD_ASX | High-fat diet + astaxanthin (0.005%) |
HFD_2ASX | High-fat diet + astaxanthin (0.01%) |
ND | Normal diet |
HFD’ | High-fat diet (Base diet + 24% fat) |
HFD’_XD | High-fat diet + X. dendrorhous (10% w/w) |
HFD’_2XD | High-fat diet + X. dendrorhous (20% w/w) |
ND’ | Normal diet |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, S.; Wang, H.; Xiao, S.; Li, C.; Li, Y.; Liu, B. Xanthophyllomyces dendrorhous-Derived Astaxanthin Regulates Lipid Metabolism and Gut Microbiota in Obese Mice Induced by A High-Fat Diet. Mar. Drugs 2019, 17, 337. https://doi.org/10.3390/md17060337
Wang J, Liu S, Wang H, Xiao S, Li C, Li Y, Liu B. Xanthophyllomyces dendrorhous-Derived Astaxanthin Regulates Lipid Metabolism and Gut Microbiota in Obese Mice Induced by A High-Fat Diet. Marine Drugs. 2019; 17(6):337. https://doi.org/10.3390/md17060337
Chicago/Turabian StyleWang, Jihui, Shiwen Liu, Han Wang, Shan Xiao, Cheng Li, Ying Li, and Bingnan Liu. 2019. "Xanthophyllomyces dendrorhous-Derived Astaxanthin Regulates Lipid Metabolism and Gut Microbiota in Obese Mice Induced by A High-Fat Diet" Marine Drugs 17, no. 6: 337. https://doi.org/10.3390/md17060337
APA StyleWang, J., Liu, S., Wang, H., Xiao, S., Li, C., Li, Y., & Liu, B. (2019). Xanthophyllomyces dendrorhous-Derived Astaxanthin Regulates Lipid Metabolism and Gut Microbiota in Obese Mice Induced by A High-Fat Diet. Marine Drugs, 17(6), 337. https://doi.org/10.3390/md17060337