Sulfur-Containing Carotenoids from A Marine Coral Symbiont Erythrobacter flavus Strain KJ5
Abstract
:1. Introduction
2. Results
2.1. Chromatography, UV–VIS and FT-IR Spectroscopy
2.2. Mass Spectrometry
2.3. Enzyme Activity
3. Discussion
4. Materials and Methods
4.1. Bacteria and Cell Growth
4.2. Carotenoids Extraction
4.3. HPLC Analysis
4.4. Absorption and FTIR Spectroscopy Measurement
4.5. MS/MS Analysis
4.6. Pigment Identification
4.7. Assay of the Enzyme Activity
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Britton, G. Structure and nomenclature of carotenoids. In Carotenoids in Photosynthesis; Young, A.J., Britton, G., Eds.; Springer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Galasso, C.; Corinaldesi, C.; Sansone, C. Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants 2017, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Zapata, M.; Jeffrey, S.W.; Wright, S.W.; Rodriguez, F.; Garrido, J.; Clementson, L. Photosynthetic pigments in 37 species (65 strains) of haptophyta: Implications for oceanography and chemotaxonomy. Mar. Ecol. Prog. Ser. 2004, 270, 83–102. [Google Scholar] [CrossRef]
- Mc Gee, D.; Archer, L.; Paskuliakova, A.; Mc Coy, G.R.; Fleming, G.T.A.; Gillespie, E.; Touzet, N. Rapid chemotaxonomic profiling for the identification of high-value carotenoids in microalgae. J. Appl. Phycol. 2017, 30, 385–399. [Google Scholar] [CrossRef]
- Zapata, M.; Rodriguez, F.; Garrido, J.L. Separation of chlorophylls and carotenoids from marine phytoplankton: A new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 2000, 195, 29–45. [Google Scholar] [CrossRef]
- Serive, B.; Nicolau, E.; Berard, J.B.; Kaas, R.; Pasquet, V.; Picot, L.; Cadoret, J.P. Community analysis of pigment patterns from 37 microalgae strains reveals new carotenoids and porphyrins characteristic of distinct strains and taxonomic groups. PLoS ONE 2017, 12, e0171872. [Google Scholar] [CrossRef] [PubMed]
- Blankenship, R.E. Molecular Mechanisms of Photosynthesis; Blackwell Science Ltd.: Oxford, UK, 2002. [Google Scholar]
- Shiba, T.; Simidu, U. Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int. J. Syst. Bacteriol. 1982, 32, 211–217. [Google Scholar] [CrossRef]
- Yurkov, V.; Stackebrandt, E.; Holmes, A.; Fuerst, J.; Hugenholtz, P.; Golecki, J.; Gad’on, N.; Gorlenko, V.M.; Kompantseva, E.I.; Drews, G. Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int. J. Syst. Bacteriol. 1994, 44, 427–434. [Google Scholar] [CrossRef]
- Denner, E.B.M. Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int. J. Syst. Evol. Microbiol. 2002, 52, 1655–1661. [Google Scholar] [PubMed]
- Yoon, J.H.; Kim, H.; Kim, I.G.; Kang, K.H.; Park, Y.H. Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int. J. Syst. Evol. Microbiol. 2003, 53, 1169–1174. [Google Scholar] [CrossRef]
- Yoon, J.H.; Kang, K.H.; Oh, T.K.; Park, Y.H. Erythrobacter aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 2004, 54, 1981–1985. [Google Scholar] [CrossRef]
- Yoon, J.H.; Oh, T.K.; Park, Y.H. Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 2005, 55, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Kang, K.H.; Yeo, S.H.; Oh, T.K. Erythrobacter luteolus sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int. J. Syst. Evol. Microbiol. 2005, 55, 1167–1170. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.P.; Bowman, J.P.; Lysenko, A.M.; Zhukova, N.V.; Gorshkova, N.M.; Kuznetsova, T.A.; Kalinovskaya, N.I.; Shevchenko, L.S.; Mikhailov, V.V. Erythrobacter vulgaris sp. nov., a novel organism isolated from the marine invertebrates. Syst. Appl. Microbiol. 2005, 28, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Xin, Y.; Yu, Y.; Zhang, J.; Zhou, Y.; Liu, H.; Tian, J.; Li, Y. Erythrobacter nanhaisediminis sp. nov., isolated from marine sediment of the South China Sea. Int. J. Syst. Evol. Microbiol. 2010, 60, 2215–2220. [Google Scholar] [CrossRef]
- Lee, Y.S.; Lee, D.H.; Kahng, H.Y.; Kim, E.M.; Jung, J.S. Erythrobacter gangjinensis sp. nov., a marine bacterium isolated from seawater. Int. J. Syst. Evol. Microbiol. 2010, 60, 1413–1417. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.T.; Park, S.; Oh, T.K.; Yoon, J.H. Erythrobacter marinus sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 2012, 62, 2050–2055. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.x.; Lai, P.Y.; Lee, O.O.; Zhou, X.j.; Miao, L.; Wang, H.; Qian, P.Y. Erythrobacter pelagi sp. Nov., a member of the family erythrobacteraceae isolated from the Red Sea. Int. J. Syst. Evol. Microbiol. 2011, 62, 1348–1353. [Google Scholar] [CrossRef]
- Yoon, B.J.; Lee, D.H.; Oh, D.C. Erythrobacter jejuensis sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 2013, 63, 1421–1426. [Google Scholar] [CrossRef]
- Subhash, Y.; Tushar, L.; Sasikala, C.; Ramana Ch, V. Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from dry soil of a solar saltern. Int. J. Syst. Evol. Microbiol. 2013, 63, 4524–4532. [Google Scholar] [CrossRef]
- Jung, Y.T.; Park, S.; Lee, J.S.; Yoon, J.H. Erythrobacter lutimaris sp. nov., isolated from a tidal flat sediment. Int. J. Syst. Evol. Microbiol. 2014, 64, 4184–4190. [Google Scholar] [CrossRef]
- Zhuang, L.; Liu, Y.; Wang, L.; Wang, W.; Shao, Z. Erythrobacter atlanticus sp. nov., a bacterium from ocean sediment able to degrade polycyclic aromatic hydrocarbons. Int. J. Syst. Evol. Microbiol. 2015, 65, 3714–3719. [Google Scholar] [CrossRef]
- Lei, X.; Zhang, H.; Chen, Y.; Li, Y.; Chen, Z.; Lai, Q.; Zhang, J.; Zheng, W.; Xu, H.; Zheng, T. Erythrobacter luteus sp. nov., isolated from mangrove sediment. Int. J. Syst. Evol. Microbiol. 2015, 65, 2472–2478. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Jung, Y.T.; Choi, S.J.; Yoon, J.H. Erythrobacter aquimixticola sp. nov., isolated from the junction between the ocean and a freshwater spring. Int. J. Syst. Evol. Microbiol. 2017, 67, 2964–2969. [Google Scholar] [CrossRef] [PubMed]
- Li, D.D.; Zhang, Y.Q.; Peng, M.; Wang, N.; Wang, X.J.; Zhang, X.Y.; Li, P.Y.; Xie, B.B.; Chen, X.L.; Zhang, Y.Z.; et al. Erythrobacter xanthus sp. nov., isolated from surface seawater of the South China Sea. Int. J. Syst. Evol. Microbiol. 2017, 67, 2459–2464. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Liu, Y.; Wang, N.; Xu, B.; Liu, K.; Shen, L.; Gu, Z.; Guo, B.; Zhou, Y.; Liu, H. Erythrobacter arachoides sp. nov., isolated from ice core. Int. J. Syst. Evol. Microbiol. 2017, 67, 4235–4239. [Google Scholar] [CrossRef] [PubMed]
- Takaichi, S.; Shimada, K.; Ishidsu, J. Carotenoids from the aerobic photosynthetic bacterium, Erythrobacter longus: β-carotene and its hydroxyl derivatives. Arch. Microbiol. 1990, 153, 118–122. [Google Scholar] [CrossRef]
- Takaichi, S.; Furihata, K.; Ishidzu, J.I.; Shimada, K. Carotenoid sulphates from the aerobic photosynthetic bacterium, Erythrobacter longus. Phytochemistry 1991, 30, 3411–3415. [Google Scholar] [CrossRef]
- Wusqy, N.K.; Limantara, L.; Karwur, F.F. Exploration, isolation and quantification of β-carotene from bacterial symbion of Acropora sp. Microbiol. Indones. 2014, 8, 58–64. [Google Scholar] [CrossRef]
- Kanesaki, Y.; Setiyono, E.; Pringgenies, D.; Moriuchi, R.; Brotosudarmo, T.H.P.; Awai, K. Compleate genome sequence of the marine bacterium Erythrobacter flavus strain KJ5. Microbiol. Resour. Announc. 2019, 8, e00140-19. [Google Scholar] [CrossRef]
- Juliadiningtyas, A.D.; Pringgenies, D.; Heriyanto, H.; Salim, K.P.; Radjasa, O.K.; Shioi, Y.; Limantara, L.; Brotosudarmo, T.H.P. Preliminary investigation of the carotenoids composition of Erythrobacter sp. strain KJ5 by high-performance liquid chromatography and mass spectrometry. Philipp. J. Sci. 2018, 147, 93–100. [Google Scholar]
- Shioi, Y. Growth characteristics and substrate specificity of aerobic photosynthetic bacterium, Erythrobacter sp. (OCh 114). Plant Cell Physiol. 1986, 27, 567–572. [Google Scholar]
- Takaichi, S. Distribution and biosynthesis of carotenoids. In The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration; Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 28, pp. 97–117. [Google Scholar]
- Matsumura, H.; Takeyama, H.; Kusakabe, E.; Burgess, J.G.; Matsunaga, T. Cloning, sequencing and expressing the carotenoid biosynthesis genes, lycopene cyclase and phytoene desaturase, from the aerobic photosynthetic bacterium Erythrobacter longus sp. strain OCh101 in Escherichia coli. Gene 1997, 189, 169–174. [Google Scholar] [CrossRef]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Carotenoids Handbook; Birkhäuser Basel: Basel, Switzerland, 2004. [Google Scholar]
- Shioi, Y.; Fukae, R.; Sasa, T. Chlorophyll analysis by high-performance liquid chromatography. Biochem. Biophys. Acta 1983, 722, 72–79. [Google Scholar] [CrossRef]
- Yokoyama, A.; Izumida, H.; Shizuri, Y. New carotenoid sulfates isolated from a marine bacterium. Biosci. Biotech. Biochem. 1996, 60, 1877–1878. [Google Scholar] [CrossRef]
- Charles, L.; Pepin, D. Electrospray ion chromatography–tandem mass spectrometry of oxyhalides at sub-ppb levels. Anal. Chem. 1998, 70, 353–359. [Google Scholar] [CrossRef]
- Goncalves, A.G.; Ducatti, D.R.; Grindley, T.B.; Duarte, M.E.; Noseda, M.D. ESI-MS differential fragmentation of positional isomers of sulfated oligosaccharides derived from carrageenans and agarans. J. Am. Soc. Mass Spectrom. 2010, 21, 1404–1416. [Google Scholar] [CrossRef] [Green Version]
- Thanh, T.T.; Tran, V.T.; Yuguchi, Y.; Bui, L.M.; Nguyen, T.T. Structure of fucoidan from brown seaweed turbinaria ornata as studied by electrospray ionization mass spectrometry (ESIMS) and small angle X-ray scattering (SAXS) techniques. Mar. Drugs 2013, 11, 2431–2443. [Google Scholar] [CrossRef]
- Nuzzo, G.; Gallo, C.; d’Ippolito, G.; Manzo, E.; Ruocco, N.; Russo, E.; Carotenuto, Y.; Costantini, M.; Zupo, V.; Sardo, A.; et al. UPLC-MS/MS identification of sterol sulfates in marine diatoms. Mar. Drugs 2018, 17, 10. [Google Scholar] [CrossRef]
- Rivera, S.M.; Christou, P.; Canela-Garayoa, R. Identification of carotenoids using mass spectrometry. Mass Spectrom. Rev. 2014, 33, 353–372. [Google Scholar] [CrossRef]
- Van Breemen, R.B.; Dong, L.; Pajkovic, N.D. Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. Int. J. Mass Spectrom. 2012, 312, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Nishida, Y.; Adachi, K.; Kasai, H.; Shizuri, Y.; Shindo, K.; Sawabe, A.; Komemushi, S.; Miki, W.; Misawa, N. Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2′-β-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls. Appl. Environ. Microbiol. 2005, 71, 4286–4296. [Google Scholar] [CrossRef] [PubMed]
- Iwai, M.; Maoka, T.; Ikeuchi, M.; Takaichi, S. 2,2′-β-hydroxylase (CrtG) is involved in carotenogenesis of both nostoxanthin and 2-hydroxymyxol 2′-fucoside in Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol. 2008, 49, 1678–1687. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wu, X.; Li, O.; Qian, C.; Gao, H. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461. PLoS ONE 2012, 7, e35099. [Google Scholar] [CrossRef]
- Kornprobst, J.M.; Sallenave, C.; Barnathan, G. Sulfated compounds from marine organisms. Comp. Biochem. Physiol. B 1998, 119, 1–51. [Google Scholar] [PubMed]
- Teles, Y.C.F.; Souza, M.S.R.; Souza, M.F.V. Sulphated flavonoids: Biosynthesis, structures, and biological activities. Molecules 2018, 23, 480. [Google Scholar] [CrossRef]
- Almeida, J.R.; Correia-da-Silva, M.; Sousa, E.; Antunes, J.; Pinto, M.; Vasconcelos, V.; Cunha, I. Antifouling potential of nature-inspired sulfated compounds. Sci. Rep. 2017, 7, 42424. [Google Scholar] [CrossRef] [PubMed]
- Mourao, P.A. Perspective on the use of sulfated polysaccharides from marine organisms as a source of new antithrombotic drugs. Mar. Drugs 2015, 13, 2770–2784. [Google Scholar] [CrossRef]
- Matsumura, E.; Nakagawa, A.; Tomabechi, Y.; Ikushiro, S.; Sakaki, T.; Katayama, T.; Yamamoto, K.; Kumagai, H.; Sato, F.; Minami, H. Microbial production of novel sulphated alkaloids for drug discovery. Sci. Rep. 2018, 8, 7980. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Rodriguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2012–2013: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2017, 15, 273. [Google Scholar]
- Oeschger, R.; Vetter, R.D. Sulfide detoxification and tolerance in Halicryptus spinulosus (priapulida): A multiple strategy. Mar. Ecol. Prog. Ser. 1992, 86, 167–179. [Google Scholar] [CrossRef]
- Downs, C.A.; Fauth, J.E.; Downs, V.D.; Ostrander, G.K. In vitro cell-toxicity screening as an alternative animal model for coral toxicology: Effects of heat stress, sulfide, rotenone, cyanide, and cuprous oxide on cell viability and mitochondrial function. Ecotoxicology 2010, 19, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Richardson, L.L.; Miller, A.W.; Broderick, E.; Kaczmarsky, L.; Gantar, M.; Stanic, D.; Sekar, R. Sulfide, microcystin, and the etiology of black band disease. Dis. Aquat. Org. 2009, 87, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.; Tian, R.M.; Zhou, G.; Tong, H.; Wong, Y.H.; Zhang, W.; Chui, A.P.Y.; Xie, J.Y.; Qiu, J.W.; Ang, P.O.; et al. Exploring coral microbiome assemblages in the South China Sea. Sci. Rep. 2018, 8, 2428. [Google Scholar] [CrossRef] [PubMed]
- Littman, R.A.; Willis, B.L.; Pfeffer, C.; Bourne, D.G. Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the great barrier reef. FEMS Microbiol. Ecol. 2009, 68, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Lema, K.A.; Willis, B.L.; Bourne, D.G. Amplicon pyrosequencing reveals spatial and temporal consistency in diazotroph assemblages of the Acropora millepora microbiome. Environ. Microbiol. 2014, 16, 3345–3359. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Q.; Zhang, S.; Huang, H.; Yang, J.; Tian, X.P.; Long, L.J. Highly heterogeneous bacterial communities associated with the south china sea reef corals Porites lutea, Galaxea fascicularis and Acropora millepora. PLoS ONE 2013, 8, e71301. [Google Scholar] [CrossRef] [PubMed]
- Raina, J.B.; Tapiolas, D.; Motti, C.A.; Foret, S.; Seemann, T.; Tebben, J.; Willis, B.L.; Bourne, D.G. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 2016, 4, e2275. [Google Scholar] [CrossRef]
- Simo, R. Production of atmospheric sulfur by oceanic plankton: Biogeochemical, ecological and evolutionary links. Trends Ecol. Evol. 2001, 16, 287–294. [Google Scholar] [CrossRef]
- Zheng, Q.; Koblížek, M.; Beatty, J.T.; Jiao, N. Evolutionary Divergence of Marine Aerobic Anoxygenic Phototrophic Bacteria as Seen from Diverse Organisations of Their Photosynthesis Gene Clusters. In Advances in Botanical Research Genome Evolution of Photosynthetic Bacteria; Beatty, J.T., Ed.; Academic Press: Amsterdam, The Netherlands, 2013; Volume 66, pp. 359–383. [Google Scholar]
- Chen, M.C.M.; Chao, P.Y.; Huang, M.Y.; Yang, J.H.; Yang, Z.W.; Lin, K.H.; Yang, C.M. Chlorophyllase activity in green and non-green tissues of variegated plants. S. Afr. J. Bot. 2012, 81, 44–49. [Google Scholar] [CrossRef] [Green Version]
Peak No | Identification | tR (min) | λmax (nm) | Capacity Factor (k’) | Molecular Ion | Fragment Ion | Ref. | Strain | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | ||||||||
1 | Erythroxanthin sulfate | 15.3 | 464 | 8.71 | 677.5 [M − Na]− | 80.3 [SO3]−, 97.3 [HSO4 ]−, 597.6 [M − SO3]− | [29,36] | − | + | − |
2 | Ketonostoxanthin | 17.0 | 463, 475 | 9.83 | 614.6 [M]+ | 596.0 [M − 18]+ | [36] | − | − | + |
3 | Nostoxanthin sulfate | 17.6 | (427), 452, 480 | 10.18 | 679.6 [M − Na]− | 97.3 [HSO4]− | [36] | + | − | − |
4 | Caloxanthin sulfate | 19.9 | (427), 453, 480 | 11.69 | 663.6 [M − Na]− | 97.2 [HSO4]− | [29,36] | + | + | − |
5 | Nostoxanthin | 20.8 | (427), 452, 480 | 12.27 | 600.5 [M]+ | 508.6 [M − 92]+ | [28,36] | + | + | + |
6 | Caloxanthin sulfate isomer | 21.9 | (427), 453, 480 | 12.94 | 663.4 [M − Na]− | 97.3 [HSO4]− | − | + | − | − |
7 | Ketonostoxanthin cis isomer | 22.7 | 353, 454, (472) | 13.46 | 614.5 [M]+ | 596.4 [M − 18]+, 582.4 [M − 32]+ | − | − | − | + |
8 | Zeaxanthin sulfate | 24.0 | (427), 453, 481 | 14.31 | 647.5 [M − Na]− | 97.6 [HSO4]− | − | + | − | − |
9 | Caloxanthin | 25.0 | (427), 453, 480 | 14.92 | 584.4 [M]+ | 492.0 [M − 92]+ | [28,36] | + | + | + |
10 | Unidentified | 27.0 | 468 | 16.20 | 582.5 [M]+ | 536.5 [M − 46]+, 490.3 [M − 92]+ | − | − | − | + |
11 | Zeaxanthin sulfate cis isomer | 27.1 | 331, (427), 452, 476 | 16.27 | 647.6 [M − Na]− | 97.2 [HSO4]− | − | + | − | − |
12 | Bacterio- rubixanthinal | 27.8 | 510 | 16.68 | 596.5 [M]− | 550.4 [M − 46]− | [28,36] | − | + | − |
13 | Zeaxanthin | 28.5 | (426), 453, 478 | 17.15 | 568.5 [M]+ | 476.5 [M − 92]+ | [5,28,32] | + | + | + |
14 | Zeaxanthin isomer | 32.6 | (426), 453, 479 | 19.77 | 568.5 [M]+ | 476.6 [M − 92]+ | − | + | − | − |
15 | β-cryptoxanthin | 33.4 | (426), 453, 479 | 20.24 | 552.5 [M]+ | 460.4 [M − 92]+ | [28,36] | + | − | − |
16 | BChl a | 33.6 | 362, 601, 769 | 20.39 | 911.3 [M]+ | 783.5 [M − 128]+ | [8] | − | + | − |
17 | β-carotene cis isomer | 36.7 | 340, (425), 449, 474 | 22.37 | 536.1 [M]+ | 444.4 [M − 92]+ | − | + | − | − |
18 | β-carotene | 37.2 | (426), 452, 478 | 22.71 | 536.5 [M]+ | 444.3 [M − 92]+ | [5,28,32] | + | + | + |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setiyono, E.; Heriyanto; Pringgenies, D.; Shioi, Y.; Kanesaki, Y.; Awai, K.; Brotosudarmo, T.H.P. Sulfur-Containing Carotenoids from A Marine Coral Symbiont Erythrobacter flavus Strain KJ5. Mar. Drugs 2019, 17, 349. https://doi.org/10.3390/md17060349
Setiyono E, Heriyanto, Pringgenies D, Shioi Y, Kanesaki Y, Awai K, Brotosudarmo THP. Sulfur-Containing Carotenoids from A Marine Coral Symbiont Erythrobacter flavus Strain KJ5. Marine Drugs. 2019; 17(6):349. https://doi.org/10.3390/md17060349
Chicago/Turabian StyleSetiyono, Edi, Heriyanto, Delianis Pringgenies, Yuzo Shioi, Yu Kanesaki, Koichiro Awai, and Tatas Hardo Panintingjati Brotosudarmo. 2019. "Sulfur-Containing Carotenoids from A Marine Coral Symbiont Erythrobacter flavus Strain KJ5" Marine Drugs 17, no. 6: 349. https://doi.org/10.3390/md17060349
APA StyleSetiyono, E., Heriyanto, Pringgenies, D., Shioi, Y., Kanesaki, Y., Awai, K., & Brotosudarmo, T. H. P. (2019). Sulfur-Containing Carotenoids from A Marine Coral Symbiont Erythrobacter flavus Strain KJ5. Marine Drugs, 17(6), 349. https://doi.org/10.3390/md17060349