Cytotoxic Sesquiterpenoid Quinones and Quinols, and an 11-Membered Heterocycle, Kauamide, from the Hawaiian Marine Sponge Dactylospongia elegans
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Structural Characterization
2.2. Biological Evaluation of the Isolated Compounds
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Chemicals and Reagents
3.3. Biological Material
3.4. Extraction and Isolation of Metabolites from Dactylospongia Elegans
3.5. Kauamide (10)
3.6. Hydrolysis of Kauamide (10) and Advanced Marfey’s Analysis
3.7. NMR Shift Computations
3.8. BACE1 Assay
3.9. Cytotoxicity Assays
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bergmann, W.; Feeney, R.J. Contributions to the study of marine products. Xxxii. The nucleosides of sponges. I.1. J. Org. Chem. 1951, 16, 981–987. [Google Scholar] [CrossRef]
- Mehbub, M.F.; Lei, J.; Franco, C.; Zhang, W. Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Mar. Drugs 2014, 12, 4539–4577. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.M.S. Marine Pharmacology. Available online: http://marinepharmacology.midwestern.edu/clinPipeline.htm (accessed on 24 April 2016).
- Hardy, J.; Higgins, G. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Goedert, M.; Spillantini, M.G. A century of Alzheimer’s disease. Science 2006, 314, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Luibrand, R.T.; Erdman, T.R.; Vollmer, J.J.; Scheuer, P.J.; Finer, J.; Clardy, J. Ilimaquinone, a sesquiterpenoid quinone from a marine sponge. Tetrahedron 1979, 35, 609–612. [Google Scholar] [CrossRef]
- Kushlan, D.M.; Faulkner, D.J.; Parkanyi, L.; Clardy, J. Metabolites of the Palauan sponge Dactylospongia sp. Tetrahedron 1989, 45, 3307–3312. [Google Scholar] [CrossRef]
- Capon, R.J.; MacLeod, J.K. Revision of the absolute stereochemistry of ilimaquinone. J. Org. Chem. 1987, 52, 5059–5060. [Google Scholar] [CrossRef]
- Daletos, G.; de Voogd, N.J.; Müller, W.E.G.; Wray, V.; Lin, W.; Feger, D.; Kubbutat, M.; Aly, A.H.; Proksch, P. Cytotoxic and protein kinase inhibiting nakijiquinones and nakijiquinols from the sponge Dactylospongia metachromia. J. Nat. Prod. 2014, 77, 218–226. [Google Scholar] [CrossRef]
- Kobayashi, J.; Madono, T.; Shigemori, H. Nakijiquinones C and D, new sesquiterpenoid quinones with a hydroxy amino acid residue from a marine sponge inhibiting c-erbb-2 kinase. Tetrahedron 1995, 51, 10867–10874. [Google Scholar] [CrossRef]
- Shigemori, H.; Madono, T.; Sasaki, T.; Mikami, Y.; Kobayashi, J. Nakijiquinones A and B, new antifungal sesquiterpenoid quinones with an amino acid residue from an Okinawan marine sponge. Tetrahedron 1994, 50, 8347–8354. [Google Scholar] [CrossRef]
- Hagiwara, K.; Garcia Hernandez, J.E.; Harper, M.K.; Carroll, A.; Motti, C.A.; Awaya, J.; Nguyen, H.Y.; Wright, A.D. Puupehenol, a potent antioxidant antimicrobial meroterpenoid from a Hawaiian deep-water Dactylospongia sp. Sponge. J. Nat. Prod. 2015, 78, 325–329. [Google Scholar] [CrossRef]
- Sladic, D.; Gasic, M. Reactivity and biological activity of the marine sesquiterpene hydroquinone avarol and related compounds from sponges of the order Dictyoceratida. Molecules 2006, 11, 1–33. [Google Scholar] [CrossRef]
- Lu, P.H.; Chueh, S.C.; Kung, F.L.; Pan, S.L.; Shen, Y.C.; Guh, J.H. Ilimaquinone, a marine sponge metabolite, displays anticancer activity via gadd153-mediated pathway. Eur. J. Pharmacol. 2007, 556, 45–54. [Google Scholar] [CrossRef]
- Müller, W.E.G.; Maidhof, A.; Zahn, R.K.; Schröder, H.C.; Gasić, M.J.; Heidemann, D.; Bernd, A.; Kurelec, B.; Eich, E.; Seibert, G. Potent antileukemic activity of the novel cytostatic agent avarone and its analogues in vitro and in vivo. Cancer Res. 1985, 45, 4822–4826. [Google Scholar]
- Loya, S.; Hizi, A. The interaction of illimaquinone, a selective inhibitor of the rnase h activity, with the reverse transcriptases of human immunodeficiency and murine leukemia retroviruses. J. Biol. Chem. 1993, 268, 9323–9328. [Google Scholar]
- Carte, B.; Rose, C.B.; Faulkner, D.J. 5-epi-ilimaquinone, a metabolite of the sponge Fenestraspongia sp. J. Org. Chem. 1985, 50, 2785–2787. [Google Scholar] [CrossRef]
- Kondracki, M.L.; Guyot, M. Biologically active quinone and hydroquinone sesquiterpenoids from the sponge Smenospongia sp. Tetrahedron 1989, 45, 1995–2004. [Google Scholar] [CrossRef]
- Rodríguez, J.; Quiñoá, E.; Riguera, R.; Peters, B.M.; Abrell, L.M.; Crews, P. The structures and stereochemistry of cytotoxic sesquiterpene quinones from Dactylospongia elegans. Tetrahedron 1992, 48, 6667–6680. [Google Scholar] [CrossRef]
- Nakamura, H.; Deng, S.; Kobayashi, J.; Ohizumi, Y.; Hirata, Y. Dictyoceratin-A and -B, novel antimicrobial terpenoids from the Okinawan marine sponge Hipposponqia sp. Tetrahedron 1986, 42, 4197–4201. [Google Scholar] [CrossRef]
- Kwak, J.H.; Schmitz, F.J.; Kelly, M. Sesquiterpene quinols/quinones from the Micronesian sponge Petrosaspongia metachromia. J. Nat. Prod. 2000, 63, 1153–1156. [Google Scholar] [CrossRef]
- McAlpine, J.B.; Chen, S.N.; Kutateladze, A.; MacMillan, J.B.; Appendino, G.; Barison, A.; Beniddir, M.A.; Biavatti, M.W.; Bluml, S.; Boufridi, A.; et al. The value of universally available raw nmr data for transparency, reproducibility, and integrity in natural product research. Nat. Prod. Rep. 2019, 36, 35–107. [Google Scholar] [CrossRef]
- Harada, K.i.; Fujii, K.; Mayumi, T.; Hibino, Y.; Suzuki, M.; Ikai, Y.; Oka, H. A method using LCMS for determination of absolute configuration of constituent amino acids in peptide—Advanced Marfey’s method. Tetrahedron Lett. 1995, 36, 1515–1518. [Google Scholar] [CrossRef]
- Marfey, P. Determination of D-amino acids. Ii. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res. Commun. 1984, 49, 591. [Google Scholar] [CrossRef]
- Fujii, K.; Ikai, Y.; Oka, H.; Suzuki, M.; Harada, K. A nonempirical method using lc/ms for determination of the absolute configuration of constituent amino acids in a peptide: Combination of Marfey’s method with mass spectrometry and its practical application. Anal. Chem. 1997, 69, 5146–5151. [Google Scholar] [CrossRef]
- Dale, J.A.; Mosher, H.S. Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, o-methylmandelate, and methoxy-trifluoromethylphenylacetate (MTPA) esters. J. Am. Chem. Soc. 1973, 95, 512–519. [Google Scholar] [CrossRef]
- Yabuuchi, T.; Kusumi, T. Phenylglycine methyl ester, a useful tool for absolute configuration determination of various chiral carboxylic acids. J. Org. Chem. 2000, 65, 397–404. [Google Scholar] [CrossRef]
- Willoughby, P.H.; Jansma, M.J.; Hoye, T.R. A guide to small-molecule structure assignment through computation of (1H and 13C) NMR chemical shifts. Nat. Protocols 2014, 9, 643–660. [Google Scholar] [CrossRef]
- Dong, L.B.; Wu, Y.N.; Jiang, S.Z.; Wu, X.D.; He, J.; Yang, Y.R.; Zhao, Q.S. Isolation and complete structural assignment of lycopodium alkaloid cernupalhine a: Theoretical prediction and total synthesis validation. Org. Lett. 2014, 16, 2700–2703. [Google Scholar] [CrossRef]
- Paterson, I.; Dalby, S.M.; Roberts, J.C.; Naylor, G.J.; Guzman, E.A.; Isbrucker, R.; Pitts, T.P.; Linley, P.; Divlianska, D.; Reed, J.K.; et al. Leiodermatolide, a potent antimitotic macrolide from the marine sponge Leiodermatium sp. Angew. Chem. Int. Ed. Engl. 2011, 50, 3219–3223. [Google Scholar] [CrossRef]
- Rodríguez, I.; Genta-Jouve, G.; Alfonso, C.; Calabro, K.; Alonso, E.; Sánchez, J.A.; Alfonso, A.; Thomas, O.P.; Botana, L.M. Gambierone, a ladder-shaped polyether from the dinoflagellate Gambierdiscus belizeanus. Org. Lett. 2015, 17, 2392–2395. [Google Scholar] [CrossRef]
- Lodewyk, M.W.; Tantillo, D.J. Prediction of the structure of nobilisitine a using computed NMR chemical shifts. J. Nat. Prod. 2011, 74, 1339–1343. [Google Scholar] [CrossRef]
- Willwacher, J.; Heggen, B.; Wirtz, C.; Thiel, W.; Fürstner, A. Total synthesis, stereochemical revision, and biological reassessment of mandelalide a: Chemical mimicry of intrafamily relationships. Chem. Eur. J. 2015, 21, 10416–10430. [Google Scholar] [CrossRef]
- Rychnovsky, S.D. Predicting NMR spectra by computational methods: Structure revision of hexacyclinol. Org. Lett. 2006, 8, 2895–2898. [Google Scholar] [CrossRef]
- Grimblat, N.; Sarotti, A.M. Computational chemistry to the rescue: Modern toolboxes for the assignment of complex molecules by GIAO NMR calculations. Chem. Eur. J. 2016, 22, 12246–12261. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision C.01; Gaussian: Wallingford, CT, USA, 2009. [Google Scholar]
- Smith, S.G.; Goodman, J.M. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: The DP4 probability. J. Am. Chem. Soc. 2010, 132, 12946–12959. [Google Scholar] [CrossRef]
- Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond dp4: An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 2015, 80, 12526–12534. [Google Scholar] [CrossRef]
- Zanardi, M.M.; Suárez, A.G.; Sarotti, A.M. Determination of the relative configuration of terminal and spiroepoxides by computational methods. Advantages of the inclusion of unscaled data. J. Org. Chem. 2017, 82, 1873–1879. [Google Scholar] [CrossRef]
- Edwards, D.J.; Marquez, B.L.; Nogle, L.M.; McPhail, K.; Goeger, D.E.; Roberts, M.A.; Gerwick, W.H. Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem. Biol. 2004, 11, 817–833. [Google Scholar] [CrossRef]
- Engene, N.; Rottacker, E.C.; Kaštovský, J.; Byrum, T.; Choi, H.; Ellisman, M.H.; Komárek, J.; Gerwick, W.H. Moorea producens gen. Nov., sp. Nov. and Moorea bouillonii comb. Nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int. J. Syst. Evol. Microbiol. 2012, 62, 1171–1178. [Google Scholar] [CrossRef]
- Sumimoto, S.; Iwasaki, A.; Ohno, O.; Sueyoshi, K.; Teruya, T.; Suenaga, K. Kanamienamide, an enamide with an enol ether from the marine cyanobacterium Moorea bouillonii. Org. Lett. 2016, 18, 4884–4887. [Google Scholar] [CrossRef]
- Yu, H.B.; Yin, Z.F.; Gu, B.B.; Zhang, J.P.; Wang, S.P.; Yang, F.; Lin, H.W. Cytotoxic meroterpenoids from the marine sponge Dactylospongia elegans. Nat. Prod. Res. 2019, 33, 1–7. [Google Scholar] [CrossRef] [PubMed]
- MacroModel, version 10; Schrodinger Inc.: New York, NY, USA, 2019.
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Chem. Phys. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, z = 11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Naqvi, T.; Lim, A.; Rouhani, R.; Singh, R.; Eglen, R.M. Galactosidase enzyme fragment complementation as a high-throughput screening protease technology. J. Biomol. Screen. 2004, 9, 398–408. [Google Scholar] [CrossRef]
Position | δC, type | δH (J in Hz) | COSY | HMBC a |
---|---|---|---|---|
2 | 171.1, C | |||
3 | 55.7, CH | 5.49, dd (11.5, 4.9) | 15 | 2, 5, 16, 18 |
5 | 177.4, C | |||
6 | 36.0, CH | 3.11, m | ||
7 | 26.5, CH2 | 1.68, m | ||
2.07, m | 6, 8 | 5 | ||
8 | 26.1, CH2 | 2.50, m | ||
1.86, t (12.0) | 9, 10 | |||
9 | 138.9, C | |||
10 | 40.2, CH2 | 2.36, dd (14.5, 4.2) | 11 | 9, 20 |
2.28, dd (14.5, 2.8) | ||||
11 | 73.5, CH | 4.98, m | 2, 10, 13 | |
12 | 34.6, CH2 | 1.52, ddd (15.6, 13.5, 6.9) | 11, 13 | |
1.43, m | ||||
13 | 19.0, CH2 | 1.26, m | ||
14 | 13.8, CH3 | 0.92, t (7.3) | 13 | 12 |
15 | 116.7, CH | 5.83, s | 8, 10 | |
16 | 14.3, CH3 | 1.14, d (6.7) | 6 | 5 |
17 | 30.3, CH3 | 2.84, s | 3, 5 | |
18 | 35.7, CH2 | 1.79, m (14.8, 10.1, 4.9) | ||
1.68, m | 2 | |||
19 | 24.7, CH | 1.58, m | 18, 20, 20’ | |
20/20’ | 23.3, CH3 | 0.97, d (6.7) | 18 | |
20’/20 | 21.1, CH3 | 0.95, d (6.7) | 18 |
Computed | Computed | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H | Experimental | SRR | SSR | SRS | SSS | C | Experimental | SRR | SSR | SRS | SSS |
3 | 5.49 | 3.42 | 4.20 | 4.38 | 5.36 | 2 | 171.1 | 170.4 | 170.7 | 172.0 | 171.4 |
6 | 3.11 | 2.78 | 2.15 | 2.72 | 3.07 | 3 | 55.7 | 60.1 | 57.0 | 56.6 | 52.9 |
7a | 2.07 | 1.74 | 1.88 | 1.91 | 2.12 | 5 | 177.4 | 174.8 | 174.8 | 173.1 | 174.3 |
7b | 1.68 | 1.54 | 1.50 | 1.54 | 1.67 | 6 | 36.0 | 38.1 | 37.0 | 37.5 | 37.1 |
8a | 1.86 | 2.12 | 1.82 | 1.81 | 1.98 | 7 | 26.5 | 32.1 | 31.6 | 29.8 | 26.2 |
8b | 2.50 | 2.68 | 2.77 | 2.73 | 2.52 | 8 | 26.1 | 26.7 | 28.7 | 29.3 | 26.9 |
10a | 2.36 | 1.98 | 2.10 | 2.19 | 2.43 | 9 | 138.9 | 145.1 | 142.0 | 145.2 | 144.1 |
10b | 2.28 | 2.79 | 2.59 | 2.39 | 2.18 | 11 | 73.5 | 68.0 | 69.4 | 74.4 | 69.9 |
11 | 4.98 | 5.13 | 5.31 | 4.60 | 4.82 | 10 | 40.2 | 39.1 | 39.3 | 42.4 | 42.2 |
15 | 5.83 | 5.73 | 6.04 | 5.94 | 5.86 | 15 | 116.7 | 116.5 | 121.2 | 119.5 | 119.3 |
16 | 1.14 | 1.01 | 1.14 | 1.13 | 1.09 | 16 | 14.3 | 15.4 | 15.7 | 15.6 | 12.7 |
17 | 2.84 | 3.05 | 3.15 | 2.80 | 2.74 | 17 | 30.3 | 34.6 | 30.8 | 27.4 | 28.8 |
Isomer | MAE, ppm (1H/13C) | DP4 Probability | DP4+ Probability |
---|---|---|---|
(3S,6R,11R)-10t | 0.40/2.9 | 0.00 | 0.00 |
(3S,6S,11R)-10t | 0.36/2.3 | 0.00 | 0.00 |
(3S,6R,11S)-10t | 0.24/2.5 | 0.00 | 0.00 |
(3S,6S,11S)-10t | 0.07/2.1 | 1.00 | 1.00 |
Compound | IC50 (BACE1) a | CC50 (U251MG) | CC50 (Panc-1) |
---|---|---|---|
1 | 65 µM | 19.3 µM | 20.4 µM |
2 | --- b | 19.4 µM | 16.2 µM |
3 | 78 µM | 2.4 µM | --- b |
4 | 19.4 µM | 22.6 µM | |
5 | 4.5 µM | 15.1 µM | |
6 | 4.0 µM | 12.6 µM | |
7 | 2.8 µM | 21.7 µM | |
8 | 8.4 µM | 54.6 µM | |
9 | 4.1 µM | 88.9 µM |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neupane, R.P.; Parrish, S.M.; Bhandari Neupane, J.; Yoshida, W.Y.; Yip, M.L.R.; Turkson, J.; Harper, M.K.; Head, J.D.; Williams, P.G. Cytotoxic Sesquiterpenoid Quinones and Quinols, and an 11-Membered Heterocycle, Kauamide, from the Hawaiian Marine Sponge Dactylospongia elegans. Mar. Drugs 2019, 17, 423. https://doi.org/10.3390/md17070423
Neupane RP, Parrish SM, Bhandari Neupane J, Yoshida WY, Yip MLR, Turkson J, Harper MK, Head JD, Williams PG. Cytotoxic Sesquiterpenoid Quinones and Quinols, and an 11-Membered Heterocycle, Kauamide, from the Hawaiian Marine Sponge Dactylospongia elegans. Marine Drugs. 2019; 17(7):423. https://doi.org/10.3390/md17070423
Chicago/Turabian StyleNeupane, Ram P., Stephen M. Parrish, Jayanti Bhandari Neupane, Wesley Y. Yoshida, M. L. Richard Yip, James Turkson, Mary Kay Harper, John D. Head, and Philip G. Williams. 2019. "Cytotoxic Sesquiterpenoid Quinones and Quinols, and an 11-Membered Heterocycle, Kauamide, from the Hawaiian Marine Sponge Dactylospongia elegans" Marine Drugs 17, no. 7: 423. https://doi.org/10.3390/md17070423
APA StyleNeupane, R. P., Parrish, S. M., Bhandari Neupane, J., Yoshida, W. Y., Yip, M. L. R., Turkson, J., Harper, M. K., Head, J. D., & Williams, P. G. (2019). Cytotoxic Sesquiterpenoid Quinones and Quinols, and an 11-Membered Heterocycle, Kauamide, from the Hawaiian Marine Sponge Dactylospongia elegans. Marine Drugs, 17(7), 423. https://doi.org/10.3390/md17070423