New Trisulfated Steroids from the Vietnamese Marine Sponge Halichondria vansoesti and Their PSA Expression and Glucose Uptake Inhibitory Activities
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Procedures
3.2. Animal Material
3.3. Extraction and Isolation
3.4. Compound Characterization Data
3.5. Methylation of 3
3.6. Desulfation of 3
3.7. Bioactivity Assay
3.7.1. Reagents
3.7.2. Cell Lines and Culture Conditions
3.7.3. In Vitro MTT- and MTS-Based Drug Sensitivity Assay
3.7.4. Western Blotting
3.7.5. Glucose Uptake Assay
3.7.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fusetani, N.; Matsunaga, S.; Konosu, S. Bioactive marine metabolites II. Halistanol sulfate, an antimicrobial novel steroid sulfate from the marine sponge Halichondria cf. moorei Bergquist. Tetrahedron Lett. 1981, 22, 1985–1988. [Google Scholar] [CrossRef]
- Makarieva, T.N.; Shubina, L.K.; Kalinovsky, A.I.; Stonik, V.A.; Elyakov, G.B. Steroids in porifera. II. Steroid derivatives from two sponges of the family Halichondriidae. Sokotrasterol sulfate, a marine steroid with a new pattern of side chain alkylation. Steroids 1983, 42, 267–281. [Google Scholar] [CrossRef]
- Kanazawa, S.; Fusetani, N.; Matsunaga, S. Halistanol sulfates A-E, new steroid sulfates, from a marine sponge, Epipolasis sp. Tetrahedron 1992, 48, 5467–5472. [Google Scholar] [CrossRef]
- Umeyama, A.; Adachi, K.; Ito, S.; Arihara, S. New 24-Isopropylcholesterol and 24-Isopropenylcholesterol sulfate from the marine sponge Epipolasis Species. J. Nat. Prod. 2000, 63, 1175–1177. [Google Scholar] [CrossRef] [PubMed]
- Bifulco, G.; Bruno, I.; Minale, L.; Riccio, R. Novel HIV-inhibitory halistanol sulfates F-H from a marine sponge, Pseudoaxinissa digitata. J. Nat. Prod. 1994, 57, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, F.; Kudo, N.; Tomachi, Y.; Nakata, A.; Takemoto, M.; Ito, A.; Tabei, H.; Arai, D.; de Voogd, N.; Yoshida, M.; et al. Halistanol sulfates I and J, new SIRT1–3 inhibitory steroid sulfates from a marine sponge of the genus Halichondria. J. Antibiot. 2018, 71, 273–278. [Google Scholar] [CrossRef]
- Gunasekera, S.P.; Sennett, S.H.; Kelly-Borges, M.; Bryant, R.W. Ophirapstanol trisulfate, a new biologically active steroid sulfate from the deep water marine sponge Topsentia ophiraphidites. J. Nat. Prod. 1994, 57, 1751–1754. [Google Scholar] [CrossRef]
- Makarieva, T.N.; Stonik, V.A.; Dmitrenok, A.S.; Krasokhin, V.B.; Svetashev, V.I.; Vysotskii, M.V. New polar steroids from the sponges Trachyopsis halichondroides and Cymbastela coralliophila. Steroids 1995, 60, 316–320. [Google Scholar] [CrossRef]
- Morinaka, B.I.; Masuno, M.N.; Pawlik, J.R.; Molinski, T.F. Amaranzole A, a new N-imidazolyl steroid from Phorbasam aranthus. Org. Lett. 2007, 9, 5219–5222. [Google Scholar] [CrossRef]
- Morinaka, B.I.; Pawlik, J.R.; Molinski, T.F. Amaranzoles B-F, imidazole-2-carboxy steroids from the marine sponge Phorbasam aranthus. C24-N- and C24-O-analogues from a divergent oxidative biosynthesis. J. Org. Chem. 2010, 75, 2453–2460. [Google Scholar] [CrossRef]
- Dai, J.; Sorribas, A.; Yoshida, W.Y.; Kelly, M.; Williams, P.G. Topsentinols, 24-isopropyl steroids from the marine sponge Topsentia sp. J. Nat. Prod. 2010, 73, 1597–1600. [Google Scholar] [CrossRef] [PubMed]
- McKee, T.C.; Cardellinaii, J.H.; Tischler, M.; Snader, K.M.; Boyd, M.R. Ibisterol sulfate, a novel HIV-inhibitory sulfated sterol from the deep water sponge Topsentia sp. Tetrahedron Lett. 1993, 34, 389–392. [Google Scholar] [CrossRef]
- Lerch, M.L.; Faulkner, D.J. Unusual polyoxygenated sterols from a Philippines sponge Xestospongia sp. Tetrahedron 2001, 57, 4091–4094. [Google Scholar] [CrossRef]
- Aoki, S.; Naka, Y.; Itoh, T.; Furukawa, T.; Rachmat, R.; Akiyama, S.; Kobayashi, M. Lembehsterols A and B, novel sulfated sterols inhibiting thymidine phosphorylase, from the marine sponge Petrosia strongylata. Chem. Pharm. Bull. 2002, 50, 827–830. [Google Scholar] [CrossRef] [PubMed]
- Fusetani, N.; Takahashi, M.; Matsunaga, S. Topsentiasterol sulfates, antimicrobial sterol sulfates possessing novel side chains, from a marine sponge, Topsentia sp. Tetrahedron 1994, 50, 7765–7770. [Google Scholar] [CrossRef]
- Yang, S.W.; Chan, T.M.; Pomponi, S.A.; Chen, G.; Loebenberg, D.; Wright, A.; Patel, M.; Gullo, V.; Pramanik, B.; Chu, M. Structure elucidation of a new antifungal sterol sulfate, Sch 575867, from a deep-water marine sponge (Family: Astroscleridae). J. Antibiot. 2003, 56, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Whitson, E.L.; Bugni, T.S.; Chockalingam, P.S.; Concepcion, G.P.; Harper, M.K.; He, M.; Hooper, J.N.A.; Mangalindan, G.C.; Ritacco, F.; Ireland, C.M. Spheciosterol sulfates, PKCζ inhibitors from a Philippine sponge Spheciospongia sp. J. Nat. Prod. 2008, 71, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Guzii, A.G.; Makarieva, T.N.; Denisenko, V.A.; Dmitrenok, P.S.; Burtseva, Y.V.; Krasokhin, V.B.; Stonik, V.A. Topsentiasterol sulfates with novel iodinated and chlorinated side chains from the marine sponge Topsentia sp. Tetrahedron Lett. 2008, 49, 7191–7193. [Google Scholar] [CrossRef]
- Carvalhal, F.; Correia-da-Silva, M.; Sousa, E.; Pinto, M.; Kijjoa, A. Sources and biological activities of marine sulfated steroids. J. Mol. Endocrinol. 2018, 61, 211–231. [Google Scholar] [CrossRef]
- Marinho, P.R.; Simas, N.K.; Kuster, R.M.; Duarte, R.S.; Fracalanzza, S.E.L.; Ferreira, D.F.; Romanos, M.T.V.; Muricy, G.; Giambiagi-DeMarval, M.; Laport, M.S. Antibacterial activity and cytotoxicity analysis of halistanol trisulphate from marine sponge Petromica citrina. J. Antimicrob. Chemother. 2012, 67, 2396–2400. [Google Scholar] [CrossRef]
- Kossuga, M.H.; de Lira, S.P.; Nascimento, A.M.; Gambardella, M.T.P.; Berlinck, R.G.S.; Torres, Y.R.; Nascimento, G.G.F.; Pimenta, E.F.; Silva, M.; Thiemann, O.H.; et al. Isolation and biological activities of secondary metabolites from the sponges Monanchora aff. arbuscula, Aplysina sp. Petromica ciocalyptoides and Topsentia ophiraphidies, from the ascidian Didemnum ligulum and from the octocoral Carijoa riisei. Quim. Nova 2007, 30, 1194–1202. [Google Scholar] [CrossRef]
- Guimaraes, T.; Quiroz, C.G.; Borges, C.R.; Oliveira, S.Q.; Almeida, M.T.; Bianco, E.M.; Moritz, M.I.; Carraro, J.L.; Palermo, J.A.; Cabrera, G.; et al. Anti HSV-1 activity of halistanol sulfate and halistanol sulfate C isolated from Brazilian marine sponge Petromica citrina (Demospongiae). Mar. Drugs 2013, 11, 4176–4192. [Google Scholar] [CrossRef]
- McKee, T.C.; Cardellina, J.H.; Riccio, R.; D’Auria, M.V.; Iorizzi, M.; Minale, L.; Moran, R.A.; Gulakowski, R.J.; McMahon, J.B. HIV-inhibitory natural products. 11. Comparative studies of sulfated sterols from marine invertebrates. J. Med. Chem. 1994, 37, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.W.; Buivich, A.; Chan, T.M.; Smith, M.; Lachowicz, J.; Pomponi, S.A.; Wright, A.E.; Mierzwa, R.; Pate, M.; Gullo, V.; et al. A new sterol sulfate, Sch 572423, from a marine sponge, Topsentia sp. Bioorg. Med. Chem. Lett. 2003, 13, 1791–1794. [Google Scholar] [CrossRef]
- Murphy, S.; Larrivee, B.; Pollet, I.; Craig, K.S.; Williams, D.E.; Huang, X.H.; Abbott, M.; Wong, F.; Curtis, C.; Conrads, T.P.; et al. Identification of sokotrasterol sulfate as a novel proangiogenic steroid. Circ. Res. 2006, 99, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Slate, D.L.; Lee, R.H.; Rodriguez, J.; Crews, P. The marine natural product, halistanol trisulfate, inhibits pp60v-src protein tyrosine kinase activity. Biochem. Biophys. Res. Commun. 1994, 203, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wu, X.D.; Zhao, Q.; Wang, C.Y. Topsensterols A–C, cytotoxic polyhydroxylated sterol derivatives from a marine sponge Topsentia sp. Mar. Drugs 2016, 14, 146. [Google Scholar] [CrossRef]
- Makarieva, T.N.; Tabakmaher, K.M.; Guzii, A.G.; Denisenko, V.A.; Dmitrenok, P.S.; Kuzmich, A.S.; Lee, H.S.; Stonik, V.A. Monanchomycalins A and B, unusual guanidine alkaloids from the sponge Monanchora pulchra. Tetrahedron Lett. 2012, 53, 4228–4231. [Google Scholar] [CrossRef]
- Tabakmakher, K.M.; Guzii, A.G.; Denisenko, V.A.; Dmitrenok, P.S.; Lee, H.S.; Makarieva, T.N. Monanchomycalin C, a new pentacyclic guanidine alkaloid from the Far-Eastern marine sponge Monanchora pulchra. Nat. Prod. Commun. 2013, 8, 1399–1402. [Google Scholar] [CrossRef]
- Tabakmakher, K.M.; Makarieva, T.N.; Denisenko, V.A.; Guzii, A.G.; Dmitrenok, P.S.; Kuzmich, A.S.; Stonik, V.A. Normonanchocidins A, B and D, new pentacyclic guanidine alkaloids from the Far-Eastern marine sponge Monanchora pulchra. Nat. Prod. Commun. 2015, 10, 913–916. [Google Scholar] [CrossRef]
- Tabakmakher, K.M.; Makarieva, T.N.; Denisenko, V.A.; Popov, R.S.; Kuzmich, A.S.; Shubina, L.K.; Lee, H.S.; Lee, Y.J.; Fedorov, S.N. Normonanchocidins G and H, new pentacyclic guanidine alkaloids from the Far-Eastern marine sponge Monanchora pulchra. Nat. Prod. Commun. 2017, 12, 1029–1032. [Google Scholar] [CrossRef]
- Makarieva, T.N.; Dmitrenok, P.S.; Zakharenko, A.M.; Denisenko, V.A.; Guzii, A.G.; Li, R.; Skepper, C.K.; Molinski, T.F.; Stonik, V.A. Rhizochalins C and D from the sponge Rhizochalina incrustata. A rare threo–sphingolipid and a facile method for determination of the carbonyl position in α, ω–bifunctionalized ketosphingolipids. J. Nat. Prod. 2007, 70, 1991–1998. [Google Scholar] [CrossRef] [PubMed]
- Djerassi, C.; Theobald, N.; Kokke, W.C.M.C.; Pak, C.S.; Carlson, R.M.K. Recent progress in the marine sterol field. Pure Appl. Chem. 1979, 51, 1815–1828. [Google Scholar] [CrossRef] [Green Version]
- Dyshlovoy, S.A.; Otte, K.; Tabakmakher, K.M.; Hauschild, J.; Makarieva, T.N.; Shubina, L.K.; Fedorov, S.N.; Bokemeyer, C.; Stonik, V.A.; von Amsberg, G. Synthesis and anticancer activity of the derivatives of marine compound rhizochalin in castration resistant prostate cancer. Oncotarget 2018, 9, 16962–16973. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 2014, 371, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Nelson, P.S. Targeting the androgen receptor in prostate cancer—A resilient foe. N. Engl. J. Med. 2014, 371, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Calvaresi, E.S.; Hergenrother, P.J. Glucose conjugation for the specific targeting and treatment of cancer. Chem. Sci. 2013, 4, 2319–2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsuhashi, K.; Senmaru, T.; Fukuda, T.; Yamazaki, M.; Shinomiya, K.; Ueno, M.; Kinoshita, S.; Kitawaki, J.; Katsuyama, M.; Tsujikawa, M.; et al. Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes. Endocrine 2016, 51, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Dyshlovoy, S.A.; Venz, S.; Hauschild, J.; Tabakmakher, K.M.; Otte, K.; Madanchi, R.; Walther, R.; Guzii, A.G.; Makarieva, T.N.; Shubina, L.K.; et al. Anti-migratory activity of marine alkaloid monanchocidin A-proteomics-based discovery and confirmation. Proteomics 2016, 16, 1590–1603. [Google Scholar] [CrossRef]
- Pelageev, D.N.; Dyshlovoy, S.A.; Pokhilo, N.D.; Denisenko, V.A.; Borisova, K.L.; von Amsberg, G.; Bokemeyer, C.; Fedorov, S.N.; Honecker, F.; Anufriev, V.P. Quinone-carbohydrate nonglucoside conjugates as a new type of cytotoxic agents: Synthesis and determination of in vitro activity. Eur. J. Med. Chem. 2014, 77, 139–144. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Tabakmakher, K.M.; Hauschild, J.; Makarieva, T.N.; Guzii, A.G.; Ogurtsova, E.S.; Otte, K.; Shubina, L.K.; Fedorov, S.N.; Madanchi, R.; et al. Anticancer activity of eight rare guanidine alkaloids isolated from marine sponge Monanchora pulchra. Mar. Drugs 2016, 14, 133. [Google Scholar] [CrossRef] [PubMed]
Position | 1 a (δH, Mult, J in Hz) | 2 a (δH, Mult, J in Hz) | 3 b (δH, Mult, J in Hz) | 4 c (δH, Mult, J in Hz) | 8 c (δH, Mult, J in Hz) | 10 c (δH, Mult, J in Hz) |
---|---|---|---|---|---|---|
1a | 1.84 dd (3.6, 14.5) | 1.84 brd (14.5) | 1.87 dd (3.6, 14.6) | 1.83 dd (3.7, 14.5) | 1.84 brd (14.8) | 1.46 dd (3.6, 14.5) |
1b | 2.39 brd (14.5) | 2.41 brd (14.5) | 2.37 brd (14.6) | 2.40 brd (14.5) | 2.38 brd (14.8) | 2.29 brd (14.5) |
2 | 4.98 m | 4.98 m | 4.96 m | 4.97 m | 4.98 m | 4.87 m |
3 | 4.78 m | 4.77 m | 4.77 m | 4.76 m | 4.80 m | 4.74 m |
4 | 4.49 m | 4.49 m | 4.48 m | 4.49 m | 4.48 m | 4.45 m |
5 | 1.51 dd (2.5, 11.4) | 1.51 dd (2.7, 11.4) | 1.52 dd (2.6, 11.4) | 1.51 dd (2.9, 11.3) | 1.50 dd (2.5, 11.5) | 1.48 m |
6 | 4.83 dt (4.5, 11.4) | 4.83 dt (4.5, 11.4) | 4.83 dt (4.4, 11.4) | 4.83 dt (4.4, 11.3) | 4.83 dt (4.5, 11.5) | 4.60 dt (4.5, 11.3) |
7a | 1.58 q (11.9) | 1.58 q (11.9) | 1.57 dt (11.4, 12.9) | 1.57 m | 1.57 m | 1.11 m |
7b | 2.23 dt (4.6, 11.9) | 2.23 dt (4.6, 11.9) | 2.22 dt (4.4, 11.8) | 2.21 dt (5.0, 12.0) | 2.23 dt (4.5, 11.5) | 2.32 dt (4.2, 12.1) |
8 | 2.51 m | 2.51 m | 2.48 m | 2.49 m | 2.50 m | 1.58 m |
9 | 0.71 m | |||||
11a | 5.35 brd (5.6) | 5.35 | 5.33 brd (5.8) | 5.35 dt (2.0, 6.2) | 5.35 dt (2.0, 6.2) | 1.50 m |
11b | 1.34 m | |||||
12a | 2.13 brd (17.6) | 2.13 brd (17.3) | 2.10 brd (17.1) | 2.11 brd (17.5) | 2.12 brd (17.5) | 1.14 m |
12b | 1,97 dd (5.5, 17.6) | 1.97 dd (5.9, 17.3) | 1.95 dd (5.9, 17.1) | 1.95 ddd (1.5, 6.1, 17.5) | 1.95 dd (6.0, 17.5) | 2.01 dt (12.5, 3.4) |
14 | 1.11 m | |||||
15a | 1.39 m | 1.39 m | 1.30 m | 1.37 m | 1.38 m | 1.62 m |
15b | 1.47 m | 1.46 m | 1.41 m | 1.45 m | 1.46 m | 1.12 m |
16a | 1.33 m | 1.33 m | 1.30 m | 1.25 m | 1.27 m | 1.28 m |
16b | 1.91 m | 1.91 m | 1.92 m | 1.86 m | 1.87 m | 1.85 m |
17 | 1.66 q (9.4) | 1.66 q (9.4) | 1.64 q (9.3) | 1.63 m | 1.63 m | 1.13 m |
18 | 0.70 s | 0.71 s | 0.68 s | 0.68 s | 0.69 s | 0.69 s |
19 | 1.44 s | 1.45 s | 1.42 s | 1.44 s | 1.45 s | 1.29 s |
20 | 1.42 m | 1.43 m | 1.38 | 1.37 m | 1.45 s | 1.38 m |
21 | 0.92 d (6.5) | 0.92 d (6.5) | 0.90 d (6.5) | 0.90 d (6.5) | 0.90 d (6.5) | 0.93 d (6.6) |
22a | 1.09 m | 1.09 m | 1.08 m | 1.04 m | 1.05 m | 1.01 m |
22b | 1.49 m | 1.43 m | 1.40 m | 1.45 m | 1.46 m | |
23a | 1.51 m | 1.52 m | 1.42 m | 1.38 m | 1.36 m | 1.18 m |
23b | 1.55 m | 1.55 m | 1.46 m | 1.62 m | 1.61 m | |
24a | 2.48 m | 2.48 m | 2.69 m | 2.45 m | 2.55 m | 1.11 m |
24b | 1.12 m | |||||
25 | 1.53 m | |||||
26 | 0.87 d (6.6) | |||||
27 | 6.85 br s | 6.93 br s | 5.92 br s | 6.39 d (2.0) | 6.31 s | 0.87 d (6.6) |
28 | 3.92 br s | 5.91 br s | 7.48 d (2.0) | |||
29 | 1.13 d (6.9) | 1.15 d (6.9) | 1.10 d (7.0) | 1.14 d (7.0) | 1.15 d (6.9) | |
30 | 0.82 s | 0.82 s | 0.82 s | 0.81 s | 0.81 s | |
31a | 3.74 m | |||||
31b | 3.85 m | |||||
32 | 1.24 t (7.1) |
Position | 1 a (δC, Type) | 2 a (δC, Type) | 3 b (δC, Type) | 4 a (δC, Type) | 8 a (δC, Type) | 10 a (δC, Type) |
---|---|---|---|---|---|---|
1 | 37.9, CH2 | 37.8, CH2 | 37.7, CH2 | 37.8, CH2 | 38.0, CH2 | 39.3, CH2 |
2 | 76.4, CH | 76.4, CH | 76.3, CH | 76.4, CH | 76.4, CH | 76.3, CH |
3 | 77.1, CH | 77.2, CH | 76.8, CH | 77.1, CH | 77.2, CH | 77.3, CH |
4 | 69.2, CH | 69.2, CH | 69.0, CH | 69.2, CH | 69.2, CH | 69.0, CH |
5 | 48.7, CH | 48.6, CH | 48.3, CH | 48.6, CH | 48.7, CH | 50.8, CH |
6 | 76.6, CH | 76.4, CH | 76.5, CH | 76.6, CH | 76.6, CH | 76.4, CH |
7 | 36.1, CH2 | 36.1, CH2 | 35.8, CH2 | 36.1, CH2 | 36.1, CH2 | 40.8, CH2 |
8 | 42.0, CH | 42.0, CH | 41.7, CH | 42.0, CH | 42.0, CH | 35.9, CH |
9 | 147.1, C | 147.2, C | 147.1, C | 147.1, C | 147.2, C | 57.1, CH |
10 | 40.1, C | 40.2, C | 40.1, C | 40.2, C | 40.1, C | 37.6, C |
11 | 118.2, CH | 118.2, CH | 118.2, CH | 118.2, CH | 118.2, CH | 22.0, CH2 |
12 | 38.9, CH2 | 38.9, CH2 | 38.7, CH2 | 38.9, CH2 | 38.9, CH2 | 41.7, CH2 |
13 | 46.2, C | 46.2, C | 46.2, C | 46.2, C | 46.2, C | 44.4, C |
14 | 48.7, C | 48.7, C | 48.7, C | 48.7, C | 48.7, C | 58.2, CH |
15 | 35.5, CH2 | 35.5, CH2 | 35.3, CH2 | 35.5, CH2 | 35.4, CH2 | 25.8, CH2 |
16 | 29.5, CH2 | 29.5, CH2 | 29.3, CH2 | 29.4, CH2 | 29.5, CH2 | 29.8, CH2 |
17 | 52.8, CH | 52.8, CH | 52.7, CH | 52.8, CH | 52.8, CH | 58.2, CH |
18 | 15.6, CH3 | 15.7, CH3 | 15.6, CH3 | 15.6, CH3 | 15.6, CH3 | 13.1, CH3 |
19 | 26.0, CH3 | 26.0, CH3 | 25.8, CH3 | 26.0, CH3 | 26.0, CH3 | 18.0, CH3 |
20 | 37.9, CH | 37.8, CH | 37.7, CH | 38.0, CH | 38.0, CH | 37.7, CH |
21 | 19.5, CH3 | 19.4, CH3 | 19.4, CH3 | 19.6, CH3 | 19.5, CH3 | 19.8, CH3 |
22 | 35.3, CH2 | 35.2, CH2 | 35.4, CH2 | 35.8, CH2 | 35.7, CH2 | 37.9, CH2 |
23 | 33.8, CH2 | 33.4, CH2 | 34.2, CH2 | 35.4, CH2 | 35.4, CH2 | 25.5, CH2 |
24 | 32.4, CH | 32.5, CH | 39.7, CH | 32.2, CH | 32.5, CH | 41.3, CH2 |
25 | 144.3, C | 144.6, C | 157.9, C | 133.6, C | 129.9, C | 29.7, CH |
26 | 177.6, C | 173.7, C | 171.9, C | 126.4, C | 132.1, C | 23.5, CH3 |
27 | 139.4, CH | 144.4, CH | 125.9, CH | 112.4, CH | 109.6, CH | 23.8, CH3 |
28 | 48.3, CH2 | 104.0, CH | 166.8, C | 146.0, CH | 136.1, C | |
29 | 20.1, CH3 | 19.5, CH3 | 20.5, CH3 | 21.7, CH3 | 21.4, CH3 | |
30 | 19.4, CH3 | 19.4, CH3 | 19.4, CH3 | 19.4, CH3 | 19.4, CH3 | |
31 | 67.1, CH2 | |||||
32 | 16.1, CH3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabakmakher, K.M.; Makarieva, T.N.; Denisenko, V.A.; Popov, R.S.; Dmitrenok, P.S.; Dyshlovoy, S.A.; Grebnev, B.B.; Bokemeyer, C.; von Amsberg, G.; Cuong, N.X. New Trisulfated Steroids from the Vietnamese Marine Sponge Halichondria vansoesti and Their PSA Expression and Glucose Uptake Inhibitory Activities. Mar. Drugs 2019, 17, 445. https://doi.org/10.3390/md17080445
Tabakmakher KM, Makarieva TN, Denisenko VA, Popov RS, Dmitrenok PS, Dyshlovoy SA, Grebnev BB, Bokemeyer C, von Amsberg G, Cuong NX. New Trisulfated Steroids from the Vietnamese Marine Sponge Halichondria vansoesti and Their PSA Expression and Glucose Uptake Inhibitory Activities. Marine Drugs. 2019; 17(8):445. https://doi.org/10.3390/md17080445
Chicago/Turabian StyleTabakmakher, Kseniya M., Tatyana N. Makarieva, Vladimir A. Denisenko, Roman S. Popov, Pavel S. Dmitrenok, Sergey A. Dyshlovoy, Boris B. Grebnev, Carsten Bokemeyer, Gunhild von Amsberg, and Nguyen X. Cuong. 2019. "New Trisulfated Steroids from the Vietnamese Marine Sponge Halichondria vansoesti and Their PSA Expression and Glucose Uptake Inhibitory Activities" Marine Drugs 17, no. 8: 445. https://doi.org/10.3390/md17080445
APA StyleTabakmakher, K. M., Makarieva, T. N., Denisenko, V. A., Popov, R. S., Dmitrenok, P. S., Dyshlovoy, S. A., Grebnev, B. B., Bokemeyer, C., von Amsberg, G., & Cuong, N. X. (2019). New Trisulfated Steroids from the Vietnamese Marine Sponge Halichondria vansoesti and Their PSA Expression and Glucose Uptake Inhibitory Activities. Marine Drugs, 17(8), 445. https://doi.org/10.3390/md17080445