Synthesis and Biological Evaluation of Analogues of Butyrolactone I as PTP1B Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biology
3. Materials and Methods
3.1. Reagents
3.2. Synthesis Methods
3.2.1. Synthesis of (Z)-2-Hydroxy-3-(4-Hydroxyphenyl) Acrylic Acid (S1)
3.2.2. Synthesis of Methyl (2Z)-2-Hydroxy-3-(4-Hydroxyphenyl) Acrylate (S2)
3.2.3. Synthesis of 4-((3-Methylbut-2-en-1-yl) Oxy) Benzaldehyde (1a) and 4-Hydroxy-3-(3-Methylbut-2-en-1-yl) Benzaldehyde (1b)
3.2.4. Synthesis of 2,2-Dimethyl-2H-Chromene-6-Carbaldehyde (1c)
3.2.5. Synthesis of 3-(3-Methylbut-2-en-1-yl)-4-((Tetrahydro-2H-Pyran-2-yl) Oxy) Benzaldehyde (1d)
3.2.6. Synthesis of 4-(Benzyloxy)-3-(3-Methylbut-2-en-1-yl) Benzaldehyde (1e)
3.2.7. Synthesis of 2-Hydroxy-2-(4-Hydroxyphenyl) Acetic Acid (2b)
3.2.8. Synthesis of Methyl 2-Hydroxy-2-(4-Hydroxyphenyl) Acetate (2c)
3.2.9. Synthesis of Methyl 2-(4-(Benzyloxy) Phenyl)-2-Oxoacetate (2d)
3.2.10. Synthesis of 4-(2-Hydroxyethyl)-2-(3-Methylbut-2-en-1-yl) Phenol (3b)
3.2.11. Synthesis of 2-(4-(Benzyloxy)-3-(3-Methylbut-2-en-1-yl) Phenyl) Ethan-1-ol (3c) and 2-(4-(Benzyloxy) Phenyl) Ethan-1-ol (3d)
3.2.12. Synthesis of 2-(4-(Benzyloxy)-3-(3-Methylbut-2-en-1-yl) Phenyl) Acetaldehyde (3e) and 2-(4-(Benzyloxy) Phenyl) Acetaldehyde (3f)
3.2.13. Synthesis of the 4,5-Diaryl-3-Hydroxy-2(5H) Furanones BL-1–BL-6: General Procedure
3.2.14. Chiral Resolution of BL-3 and BL-5
3.2.15. Determination of Absolute Configuration of BL-3 and BL-5
3.2.16. Nuclear Magnetic Resonance (NMR) Spectroscopy and Mass Spectrometry (MS) for BLs
3.3. Biological Evaluation
3.3.1. PTP1B Inhibitory Assay
3.3.2. Establishment of HepG2 Cell Insulin Resistance Model and Evaluation of BLs
3.3.3. Cell Proliferation Assay
3.3.4. Molecular Docking Simulations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BSA | bovine serum albumin |
CCK-8 | Cell Counting Kit 8 |
CD | circular dichroism |
CDK | cyclin-dependent kinase |
DBU | 1,8-diazabicyclo[5.4.0]undec-7-ene |
DDQ | 2,3-dichloro-5,6-dicyano-1,4-benzoquinone |
DMEM | Dulbecco’s Modified Eagle’ Medium |
DMF | N, N-dimethylformamide |
DMSO | dimethyl sulfoxide |
EA | ethyl acetate |
ECD | electronic circular dichroism |
FBS | fetal bovine serum |
HRMS | high resolution mass spectrometry |
IC50 50% | percentage inhibition concentration |
IR | insulin resistant |
MS | mass spectrometry |
NMR | nuclear magnetic resonance |
PE | petroleum ether |
pNPP | p-nitrophenyl phosphate |
PTP1B | protein tyrosine phosphatase 1B |
Ros | rosiglitazone |
T2DM | type 2 diabetes mellitus |
TEMPO | 2,2,6,6-tetramethylpiperidine-1-oxyl |
THP | tetrahydropyran |
TLC | thin layer chromatography |
TMCS | trimethyl chlorosilane |
TMS | tetramethylsilane |
References
- Kumar, V.; Fausto, N.; Abbas, A.K.; Cotran, R.S.; Robbins, S.L. Robbins and Cotran Pathologic Basis of Disease, 7th ed.; Elsevier Saunders: Philadelphia, PA, USA, 2005; pp. 1194–1195. [Google Scholar]
- Faselis, C.; Katsimardou, A.; Imprialos, K.; Deligkaris, P.; Kallistratos, M.; Dimitriadis, K. Microvascular complications of type 2 diabetes mellitus. Curr. Vasc. Pharmacol. 2020, 18, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Pirola, L. Epigenetics of Diabetic Microvascular Disease. Microvasc. Dis. Diabetes 2020, 45–57. [Google Scholar] [CrossRef]
- Tancredi, M.; Rosengren, A.; Svensson, A.-M.; Kosiborod, M.; Pivodic, A.; Gudbjörnsdottir, S.; Wedel, H.; Clements, M.; Dahlqvist, S.; Lind, M. Excess mortality among persons with type 2 diabetes. N. Engl. J. Med. 2015, 373, 1720–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, A.K.; Kontopantelis, E.; Emsley, R.; Buchan, I.; Sattar, N.; Rutter, M.K.; Ashcroft, D.M. Life expectancy and cause-specific mortality in type 2 diabetes: A population-based cohort study quantifying relationships in ethnic subgroups. Diabetes Care 2017, 40, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Magliano, D.J.; Sacre, J.W.; Harding, J.L.; Gregg, E.W.; Zimmet, P.Z.; Shaw, J.E. Young-onset type 2 diabetes mellitus—Implications for morbidity and mortality. Nat. Rev. Endocrinol. 2020, 16, 321–331. [Google Scholar] [CrossRef]
- Figuerola, B.; Angulo-Preckler, C.; Nunez-Pons, L.; Moles, J.; Sala-Comorera, L.; Garcia-Aljaro, C.; Blanch, A.R.; Avila, C. Experimental evidence of chemical defence mechanisms in Antarctic bryozoans. Mar. Environ. Res. 2017, 129, 68–75. [Google Scholar] [CrossRef] [PubMed]
- La Peyre, J.F.; Xue, Q.-G.; Itoh, N.; Li, Y.; Cooper, R.K. Serine protease inhibitor cvSI-1 potential role in the eastern oyster host defense against the protozoan parasite Perkinsus marinus. Dev. Comp. Immunol. 2010, 34, 84–92. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Korzhev, M.; Schroder, H.C.; Link, T.; Tahir, M.N.; Diehl-Seifert, B.; Muller, W.E. Potential biological role of laccase from the sponge Suberites domuncula as an antibacterial defense component. Biochim. Biophys. Acta 2015, 1850, 118–128. [Google Scholar] [CrossRef]
- Ono, K.; Suzuki, T.A.; Toyoshima, Y.; Suzuki, T.; Tsutsui, S.; Odaka, T.; Miyadai, T.; Nakamura, O. SJL-1, a C-type lectin, acts as a surface defense molecule in Japanese sea cucumber, Apostichopus japonicus. Mol. Immunol. 2018, 97, 63–70. [Google Scholar] [CrossRef]
- Xie, J.; Obiefuna, V.; Hodgkinson, J.W.; McAllister, M.; Belosevic, M. Teleost antimicrobial peptide hepcidin contributes to host defense of goldfish (Carassius auratus L.) against Trypanosoma carassii. Dev. Comp. Immunol. 2019, 94, 11–15. [Google Scholar] [CrossRef]
- An, Y.; Zhu, H.; Deng, S.; Huang, S.; Zhang, M.; Li, D.; Wang, C.; Wu, Y.; Ma, X.; Zhang, Y. α-Furanones, secondary metabolites from the fungus Cephalotrichum microsporum and their antibacterial activities. Phytochem. Lett. 2019, 30, 58–61. [Google Scholar] [CrossRef]
- Byczek-Wyrostek, A.; Kitel, R.; Rumak, K.; Skonieczna, M.; Kasprzycka, A.; Walczak, K. Simple 2(5H)-furanone derivatives with selective cytotoxicity towards non-small cell lung cancer cell line A549-Synthesis, structure-activity relationship and biological evaluation. Eur. J. Med. Chem. 2018, 150, 687–697. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, P.C.; Ma, H.M.; Chen, S.Y.; Fu, Y.H.; Liu, Y.Y.; Wang, X.; Yu, G.C.; Huang, T.; Hibbs, D.E.; et al. Design, synthesis and evaluation of halogenated furanone derivatives as quorum sensing inhibitors in Pseudomonas aeruginosa. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2019, 140, 105058. [Google Scholar] [CrossRef] [PubMed]
- Lagoutte, R.; Pastor, M.; Berthet, M.; Winssinger, N. Rapid and scalable synthesis of chiral bromolactones as precursors to α-exo-methylene-γ-butyrolactone-containing sesquiterpene lactones. Tetrahedron 2018, 74, 6012–6021. [Google Scholar] [CrossRef]
- Wu, Y.C.; Luo, S.H.; Mei, W.J.; Cao, L.; Wu, H.Q.; Wang, Z.Y. Synthesis and biological evaluation of 4-biphenylamino-5-halo-2(5H)-furanones as potential anticancer agents. Eur. J. Med. Chem. 2017, 139, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Norrie, P.A.; Chia, E.W.; Berridge, M.V.; Maas, E.W.; Page, M.J.; Webb, V.L.; Harper, J.L.; Copp, B.R. E/Z-rubrolide O, an anti-inflammatory halogenated furanone from the New Zealand ascidian Synoicum n. sp. J. Nat. Prod. 2007, 70, 111–113. [Google Scholar]
- Liao, G.; Wu, P.; Xue, J.; Liu, L.; Li, H.; Wei, X. Asperimides A-D, anti-inflammatory aromatic butenolides from a tropical endophytic fungus Aspergillus terreus. Fitoterapia 2018, 131, 50–54. [Google Scholar] [CrossRef]
- Felder, S.; Kehraus, S.; Neu, E.; Bierbaum, G.; Schaberle, T.F.; Konig, G.M. Salimyxins and enhygrolides: Antibiotic, sponge-related metabolites from the obligate marine myxobacterium Enhygromyxa salina. Chembiochem Eur. J. Chem. Biol. 2013, 14, 1363–1371. [Google Scholar] [CrossRef]
- Gao, H.; Guo, W.; Wang, Q.; Zhang, L.; Zhu, M.; Zhu, T.; Gu, Q.; Wang, W.; Li, D. Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorg. Med. Chem. Lett. 2013, 23, 1776–1778. [Google Scholar] [CrossRef]
- Singh, P.; Mittal, A.; Bhardwaj, A.; Kaur, S.; Kumar, S. 1-Toluene-sulfonyl-3-[(3′-hydroxy-5′-substituted)-gamma-butyrolactone]-indoles: Synthesis, COX-2 inhibition and anti-cancer activities. Bioorg. Med. Chem. Lett. 2008, 18, 85–89. [Google Scholar] [CrossRef]
- Le Floch, C.; Le Gall, E.; Sengmany, S.; Renevret, P.; Leonel, E.; Martens, T.; Cresteil, T. Synthesis of 2,3-di- and 2,2,3-trisubstituted-3-methoxycarbonyl-gamma-butyrolactones as potent antitumor agents. Eur. J. Med. Chem. 2015, 89, 654–670. [Google Scholar] [CrossRef] [PubMed]
- Dai, G.F.; Xu, H.W.; Wang, J.F.; Liu, F.W.; Liu, H.M. Studies on the novel alpha-glucosidase inhibitory activity and structure-activity relationships for andrographolide analogues. Bioorg. Med. Chem. Lett. 2006, 16, 2710–2713. [Google Scholar] [CrossRef] [PubMed]
- Haroon, M.H.; Premaratne, S.R.; Choudhry, M.I.; Dharmaratne, H.R. A new beta-glucuronidase inhibiting butyrolactone from the marine endophytic fungus Aspergillus terreus. Nat. Prod. Res. 2013, 27, 1060–1066. [Google Scholar] [CrossRef]
- Eleftheriou, P.; Geronikaki, A.; Petrou, A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Curr. Top Med. Chem. 2019, 19, 246–263. [Google Scholar] [CrossRef]
- Nong, X.-H.; Wang, Y.-F.; Zhang, X.-Y.; Zhou, M.-P.; Xu, X.-Y.; Qi, S.-H. Territrem and butyrolactone derivatives from a marine-derived fungus Aspergillus terreus. Mar. Drugs 2014, 12, 6113–6124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Zhang, Y.; Yao, Y.-B.; Lei, X.-L.; Qian, Z.-J. Butyrolactone-I from coral-derived fungus Aspergillus terreus attenuates neuro-inflammatory response via suppression of NF-κB pathway in BV-2 cells. Mar. Drugs 2018, 16, 202. [Google Scholar] [CrossRef] [Green Version]
- Xiao-Wei, L.; Yun, L.; Yong-Jun, L.; Xue-Feng, Z.; Yong-Hong, L. Peptides and polyketides isolated from the marine sponge-derived fungus Aspergillus terreus SCSIO 41008. Chin. J. Nat. Med. 2019, 17, 149–154. [Google Scholar]
- Kitagawa, M.; Okabe, T.; Ogino, H.; Matsumoto, H.; Suzuki-Takahashi, I.; Kokubo, T.; Higashi, H.; Saitoh, S.; Taya, Y.; Yasuda, H. Butyrolactone I, a selective inhibitor of cdk2 and cdc2 kinase. Oncogene 1993, 8, 2425. [Google Scholar]
- Hosoi, T.; Uchiyama, M.; Okumura, E.; Saito, T.; Ishiguro, K.; Uchida, T.; Okuyama, A.; Kishimoto, T.; Hisanaga, S.-I. Evidence for cdk5 as a major activity phosphorylating tau protein in porcine brain extract. J. Biochem. 1995, 117, 741–749. [Google Scholar] [CrossRef]
- Dewi, R.T.; Tachibana, S.; Darmawan, A. Antidiabetic and antioxidative activities of butyrolactone I from Aspergillus terreus MC751. World Acad. Sci. Eng. Technol. 2012, 70, 882–887. [Google Scholar]
- Dewi, R.T.; Tachibana, S.; Darmawan, A. Effect on α-glucosidase inhibition and antioxidant activities of butyrolactone derivatives from Aspergillus terreus MC751. Med. Chem. Res. 2014, 23, 454–460. [Google Scholar] [CrossRef]
- Wu, W.; Liu, L.; Zhu, H.; Sun, Y.; Wu, Y.; Liao, H.; Gui, Y.; Li, L.; Liu, L.; Sun, F. Butyrolactone-I, an efficient α-glucosidase inhibitor, improves type 2 diabetes with potent TNF-α–lowering properties through modulating gut microbiota in db/db mice. FASEB J. 2019, 33, 12616–12629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, S.; Jang, D.M.; Park, S.C.; An, S.; Shin, J.; Han, B.W.; Noh, M. Cyclin-Dependent Kinase 5 Inhibitor Butyrolactone I Elicits a Partial Agonist Activity of Peroxisome Proliferator-Activated Receptor γ. Biomolecules 2020, 10, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braña, M.F.; García, M.L.; López, B.; de Pascual-Teresa, B.; Ramos, A.; Pozuelo, J.M.; Domínguez, M.T. Synthesis and biological evaluation of analogues of butyrolactone I and molecular model of its interaction with CDK2. Org. Biomol. Chem. 2004, 2, 1864–1871. [Google Scholar] [CrossRef] [PubMed]
- El-Tombary, A.A.; Abdel-Ghany, Y.S.; Belal, A.S.; El-Dine, S.A.S.; Soliman, F.S. Synthesis of some substituted furan-2 (5H)-ones and derived quinoxalinones as potential anti-microbial and anti-cancer agents. Med. Chem. Res. 2011, 20, 865–876. [Google Scholar] [CrossRef]
- Cazar, M.; Schmeda-Hirschmann, G.; Astudillo, L. Antimicrobial butyrolactone I derivatives from the Ecuadorian soil fungus Aspergillus terreus Thorn. var terreus. World J. Microbiol. Biotechnol. 2005, 21, 1067–1075. [Google Scholar] [CrossRef]
- Fatope, M.O.; Okogun, J.I. A convenient solvent-specific synthesis of 4-[4-acetoxy-3-(3-methylbut-2-enyl)phenyl]butyric acid. J. Chem. Soc. Perkin Trans. 1982, 40, 1601–1603. [Google Scholar] [CrossRef]
- Kishali, N.; Polat, M.F.; Altundas, R.; Kara, Y. A Novel One-Pot Conversion of Allyl Alcohols into Primary Allyl Halides Mediated by Acetyl Halide. Helvetica Chimica Acta 2008, 91, 67–72. [Google Scholar] [CrossRef]
- Yang, Y.-L.; Zhou, H.; Du, G.; Feng, K.-N.; Feng, T.; Fu, X.-L.; Liu, J.-K.; Zeng, Y. A Monooxygenase fromBoreostereum vibransCatalyzes Oxidative Decarboxylation in a Divergent Vibralactone Biosynthesis Pathway. Angew. Chem. Int. Ed. 2016, 55, 5463–5466. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.H.; Kim, S.Y.; Perry, N.A.; Lewin, N.E.; Ayres, J.A.; Blumberg, P.M. 2-Benzyl and 2-phenyl-3-hydroxypropyl pivalates as protein kinase C ligands. Bioorg. Med. Chem. 2006, 14, 2022–2031. [Google Scholar] [CrossRef]
- Miyashita, M.; Yoshikoshi, A.; Grieco, P.A. Pyridinium p-toluenesulfonate. A mild and efficient catalyst for the tetrahydropyranylation of alcohols. J. Org. Chem. 1997, 42, 3772–3774. [Google Scholar] [CrossRef]
- Cativiela, C.; Fraile, J.M.; García, J.I.; Lázaro, B.; Mayoral, J.A.; Pallarés, A. The replacement of mineral acids by sulfonic resins in the synthesis of rac-5-(4-hydroxyphenyl)hydantoin from p-hydroxymandelic acid and urea. Appl. Catal. Gen. 2004, 274, 9–14. [Google Scholar] [CrossRef]
- Wei, G.; Li, J.; Fan, N.; Wu, W.; Xia, C. A Simple and Effective Method for Chemoselective Esterification of Phenolic Acids. Cheminform 2005, 36, 145–152. [Google Scholar]
- Hackbusch, S.; Franz, A.H. Oxidative esterification of primary alcohols with TEMPO/CaCl 2/Oxone under hydrous conditions. Tetrahedron Lett. 2016, 57, 2873–2876. [Google Scholar] [CrossRef]
- Tidwell, T.T. Oxidation of Alcohols by Activated Dimethyl Sulfoxide and Related Reactions: An Update. Synthesis 1990, 1990, 857–870. [Google Scholar] [CrossRef]
- Namiki, T.; Baba, Y.; Suzuki, Y.; Nishikawa, M.; Sawada, K.; Itoh, Y.; Oku, T.; Kitaura, Y.; Hashimoto, M. Synthesis and aldose reductase-inhibitory activities of structural analogues of WF-3681, a novel aldose reductase inhibitor. Chem. Pharm. Bull. 1988, 36, 1404. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Hong, D.; Zhou, Y.; Zhang, Y.; Shen, Q.; Li, J.Y.; Hu, L.H.; Li, J. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim. Biophys. Acta 2006, 1760, 1505–1512. [Google Scholar] [CrossRef]
- Gaussian 09; Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2009.
- Stephens, P.J.; Harada, N. ECD cotton effect approximated by the Gaussian curve and other methods. Chirality Pharmacol. Biol. Chem. Conseq. Mol. Asymmetry 2010, 22, 229–233. [Google Scholar] [CrossRef]
- Ishiyama, M.; Miyazono, Y.; Sasamoto, K.; Ohkura, Y.; Ueno, K. A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta 1997, 44, 1299–1305. [Google Scholar] [CrossRef]
- Tominaga, H.; Ishiyama, M.; Ohseto, F.; Sasamoto, K.; Hamamoto, T.; Suzuki, K.; Watanabe, M. A water-soluble tetrazolium salt useful for colorimetric cell viability assay. Anal. Commun. 1999, 36, 47–50. [Google Scholar] [CrossRef]
- Szczepankiewicz, B.G.; Liu, G.; Hajduk, P.J.; Abad-Zapatero, C.; Pei, Z.; Xin, Z.; Lubben, T.H.; Trevillyan, J.M.; Stashko, M.A.; Ballaron, S.J. Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy. J. Am. Chem. Soc. 2003, 125, 4087–4096. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, B.; He, J.; Fan, C.; Tang, C.; Le, Q.; Bai, K.; Niu, S.; Xiao, M. Synthesis and Biological Evaluation of Analogues of Butyrolactone I as PTP1B Inhibitors. Mar. Drugs 2020, 18, 526. https://doi.org/10.3390/md18110526
Hong B, He J, Fan C, Tang C, Le Q, Bai K, Niu S, Xiao M. Synthesis and Biological Evaluation of Analogues of Butyrolactone I as PTP1B Inhibitors. Marine Drugs. 2020; 18(11):526. https://doi.org/10.3390/md18110526
Chicago/Turabian StyleHong, Bihong, Jianlin He, Chaochun Fan, Chao Tang, Qingqing Le, Kaikai Bai, Siwen Niu, and Meitian Xiao. 2020. "Synthesis and Biological Evaluation of Analogues of Butyrolactone I as PTP1B Inhibitors" Marine Drugs 18, no. 11: 526. https://doi.org/10.3390/md18110526
APA StyleHong, B., He, J., Fan, C., Tang, C., Le, Q., Bai, K., Niu, S., & Xiao, M. (2020). Synthesis and Biological Evaluation of Analogues of Butyrolactone I as PTP1B Inhibitors. Marine Drugs, 18(11), 526. https://doi.org/10.3390/md18110526