Comparative Study of Fucoidan from Saccharina japonica and Its Depolymerized Fragment on Adriamycin-Induced Nephrotic Syndrome in Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Properties
2.2. Evaluation of Rats Weight Alteration
2.3. Urinary Protein Excretion
2.4. Blood Biochemical Indexes
2.5. Lipid Peroxidation
2.6. Effect of Molecular Weight on Adriamycin-Induced Nephrotic Syndrome
3. Materials and Methods
3.1. Materials
3.2. Preparation of Fucoidan and Its Depolymerized Fragment
3.3. Chemical Analysis
3.4. Animals and Experimental Design
3.5. Blood Biochemical Indexes
3.6. Assessment of MDA and SOD Levels
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaneko, Y.; Narita, I. Nephritis and nephrotic syndrome. Nihon Jinzo Gakkai Shi. 2013, 55, 35–41. [Google Scholar]
- Bertani, T.; Poggi, A.; Pozzoni, R.; Delaini, F.; Sacchi, G.; Thoua, Y.; Mecca, G.; Remuzzi, G.; Donati, M.B. Adriamycin-induced nephrotic syndrome inrats: sequenceof pathological events. Lab. Investig. 1982, 46, 16–23. [Google Scholar]
- Faleiros, C.M.; Francescato, H.D.C.; Papoti, M.; Chaves, L.; Silva, C.G.A.; Costa, R.S.; Coimbra, T.M. Effects of previous physical training on adriamycin nephropathy and its relationship with endothelial lesions and angiogenesis in the renal cortex. Life Sci. 2017, 169, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.W.; Harris, D.C. Adriamycin nephropathy: A model of focal segmental glomerulosclerosis. Nephrology 2011, 16, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Pena-Polanco, J.E.; Fried, L.F. Established and emerging strategies in thetreatment of chronic kidney disease. Semin. Nephrol. 2016, 36, 331. [Google Scholar] [CrossRef] [PubMed]
- Cohen, G.; Hörl, W.H. Immune dysfunction in uremia—An update. Toxins 2012, 4, 962–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaudreuil, S.; Lorenzo, H.K.; Elias, M.; Nnang, O.E.; Charpentier, B.; Durrbach, A. Optimal management of primary focal segmental glomerulosclerosis inadults. Int. J. Nephrol. Renovasc. Dis. 2017, 10, 97–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Li, Z.; Xu, Z.; Niu, X.Z.; Zhang, H. Effects of fucoidan on chronic renal failure in rats. Planta Med. 2003, 69, 537–541. [Google Scholar] [PubMed]
- Zhang, Q.; Li, N.; Zhao, T.; Qi, H.; Xu, Z.; Li, Z. Fucoidan inhibits the development of proteinuria in active Heymann nephritis. Phytother. Res. 2005, 19, 50–53. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Li, N.; Zhang, Q.; Zhang, H. The protective effect of fucoidan in rats with streptozotocin-induced diabetic nephropathy. Mar. Drugs 2014, 12, 3292–3306. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Zhang, H.; Zhang, Q. Renoprotective effect of low-molecular-weight sulfated polysaccharide from the seaweed Laminaria japonica onglycerol-induced acute kidney injury in rats. Int. J. Biol. Macromol. 2017, 95, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Berteau, M.; Mulloy, B. Sulfated fucans, fresh perspectives: Structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 2003, 13, 29–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhang, Q.; Zhang, Z.; Zhang, H.; Niu, X. Studies on a novel fucogalacan sulfate extracted from the brown seaweed Laminaria japonica. Int. J. Biol. Macromol. 2010, 47, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Zhang, W.; Wang, J.; Yao, J.; Xie, E.; Liu, D.; Duan, D.; Zhang, Q. A study of neuroprotective and antioxidant activities of heteropolysaccharides from six Sargassum species. Int. J. Biol. Macromol. 2014, 67, 336–342. [Google Scholar] [CrossRef]
- Takahashi, H.; Kawaguchi, M.; Kitamura, K.; Narumiya, S.; Kawamura, M.; Tengan, I.; Nishimoto, S.; Hanamure, Y.; Majima, Y.; Tsubura, S.; et al. An exploratory study on the anti-inflammatory effects of fucoidan in relation to quality of life in advanced cancer patients. Integr. Cancer Ther. 2018, 17, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Zhang, W.; Wang, J.; Zhang, Q. The neuroprotective activities and antioxidant activities of the polysaccharides from Saccharina japonica. Int. J. Biol. Macromol. 2013, 58, 240–244. [Google Scholar] [CrossRef]
- Tran, P.H.L.; Tran, T.T.D. Current designs and developments of fucoidan-based formulations for cancer therapy. Cur. Drug Metab. 2019, 20, 933–941. [Google Scholar] [CrossRef]
- Gouin-Thibault, I.; Pautas, E.; Siguret, V. Safety profile of different low-molecular weight heparins used at therapeutic dose. Drug Saf. 2005, 28, 333–349. [Google Scholar] [CrossRef]
- Boisson-Vidal, C.; Chaubet, F.; Chevolot, L.; Sinquin, C.; Theveniaux, J.; Millet, J.; Sternberg, C.; Mulloy, B.; Fischer, A.M. Relationship between antithrombotic activities of fucans and their structure. Drug Dev. Res. 2000, 51, 216–224. [Google Scholar] [CrossRef]
- Tissot, B.; Montdargent, B.; Chevolot, L.; Varenen, A.; Descroix, S.; Gareil, P.; Daniel, R. Interaction of fucoidan with the proteins of the complement classical pathway. Biochim. Biophys. Acta 2003, 1651, 5–16. [Google Scholar] [CrossRef]
- Fry, S.C. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem. J. 1998, 332, 504–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.; Li, X.; Zhu, C.; Wei, M. Glomerulosclerosis in adriamycin-induced nephrosis is accelerated by a lipid-rich diet. Pediatr. Nephrol. 2000, 15, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Q.; Zhang, Z.; Li, Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 2008, 42, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Inal, M.E.; Kanbak, G.; Sunal, E. Antioxidant enzyme activities and malindialdehyde levels related to aging. Clin. Chim. Acta 2001, 305, 75–80. [Google Scholar] [CrossRef]
- Nishino, T.; Aizu, Y.; Nagumo, T. The influence of sulfate content and molecular weight of a fucan sulfate from the brown seaweed Ecklonia kurome on its antithrombin activity. Thromb. Res. 1991, 64, 723–731. [Google Scholar] [CrossRef]
- Park, S.; Chun, K.; Kim, J.; Suk, K.; Jung, Y.; Lee, W. The differential effect of high and low-molecular-weight fucoidans on the severity of collagen-induced arthritis in mice. Phytother. Res. 2010, 24, 1384–1391. [Google Scholar] [CrossRef]
- Dische, Z.; Shettles, L.B. A specific color reaction of methylpentose and a spectrophotometric micromethod for their determination. J. Biol. Chem. 1948, 175, 595–603. [Google Scholar]
- Bitter, T.; Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Wang, J.; Shi, X.; Zhang, Z. Analysis of monosaccharide compositions in fucoidan by pre-column derivation HPLC. Chin. J. Oceanol. Liminol. 2009, 27, 578–582. [Google Scholar] [CrossRef]
Samples | Fucose % | Uronic Acid % | Sulfate % | Neutral Monosaccharide (Molar Ratio) | |||||
---|---|---|---|---|---|---|---|---|---|
Fuc | Gal | Man | Glc | Rha | Xyl | ||||
LMWF | 31.60 | 5.69 | 33.58 | 1.000 | 0.303 | 0.088 | 0.072 | 0.035 | 0.053 |
Fucoidan | 29.12 | 6.07 | 32.66 | 1.000 | 0.296 | 0.068 | 0.087 | 0.039 | 0.046 |
Groups | Dosage (mg/kg) | Weeks after Drug Administration | ||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | ||
Normal | - | 344.4 ± 12.2 | 366.3 ± 21.9 | 387.5 ± 23.5 | 401.2 ± 24.8 | 408.8 ± 26.9 |
Model | - | 296.2 ± 26.9 ΔΔ | 293.0 ± 16.7 ΔΔ | 294.4 ± 19.8 ΔΔ | 303.9 ± 19.6 ΔΔ | 309.5 ± 21.8 ΔΔ |
dexamethasone | 0.1 | 293.2 ± 30.8 | 250.0 ± 18.6 ** | 223.3 ± 14.1 ** | 225.9 ± 16.3 ** | 225.4 ± 14.2 ** |
Fucoidan | 100 | 292.8 ± 15.3 | 315.5 ± 24.4 * | 307.7 ± 14.1 | 323.3 ± 11.3 * | 332.9 ± 17.1 * |
LMWF | 100 | 279.8 ± 13.0 | 318.6 ± 29.4 * | 329.3 ± 31.5 * | 332.9 ± 34.1 * | 339.5 ± 35.9 * |
LMWF | 50 | 286.7 ± 21.3 | 309.6 ± 29.7 | 321.5 ± 30.5 * | 315.1 ± 33.2 | 317.3 ± 37.9 |
LMWF | 25 | 285.2 ± 19.3 | 309.5 ± 20.2 | 320.6 ± 24.8 * | 319.9 ± 27.8 | 314.5 ± 28.1 |
Groups | Dosage (mg/kg) | Weeks after Drug Administration | ||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | ||
Normal | - | 26.8 ± 1.3 | 36.1 ± 1.0 | 34.0 ± 0.9 | 37.2 ± 0.3 | 38.1 ± 1.3 |
Model | - | 16.8 ± 0.3 Δ | 23.1 ± 0.1 Δ | 23.9 ± 1.4 Δ | 24.0 ± 0.9 Δ | 23.7 ± 0.4 Δ |
dexamethasone | 0.1 | 16.9 ± 1.6 Δ | 17.4 ± 0.0 * | 19.4 ± 3.4 | 16.6 ± 1.9 | 19.1 ± 2.9 |
Fucoidan | 100 | 17.4 ± 1.4 Δ | 28.2 ± 2.0 * | 29.5 ± 2.1 * | 32.0 ± 2.0 * | 32.7 ± 3.8 * |
LMWF | 100 | 18.3 ± 1.6 Δ | 32.9 ± 2.7 * | 30.5 ± 1.0 * | 31.9 ± 5.0 * | 34.9 ± 2.4 * |
LMWF | 50 | 18.5 ± 0.7 Δ | 23.5 ± 1.6 | 29.3 ± 1.3 | 28.0 ± 5.4 | 28.4 ± 0.9 |
LMWF | 25 | 18.1 ± 1.8 Δ | 22.9 ± 2.4 | 28.2 ± 0.9 | 26.7 ± 4.9 | 24.7 ± 1.8 |
Groups | Dosage (mg/kg) | Weeks after Drug Administration (mg/mL) | ||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | ||
Normal | - | 0.58 ± 0.40 | 0.73 ± 0.51 | 0.73 ± 0.47 | 0.65 ± 0.35 | 0.59 ± 0.36 |
Model | - | 22.42 ± 22.55 ΔΔ | 36.60 ± 14.54 ΔΔ | 43.98 ± 26.64 ΔΔ | 48.41 ± 22.18 ΔΔ | 54.60 ± 31.27 ΔΔ |
dexamethasone | 0.1 | 19.98 ± 14.87 ΔΔ | 23.56 ± 10.47 * | 25.25 ± 9.85 * | 26.63 ± 16.98 * | 28.62 ± 19.15 * |
Fucoidan | 100 | 20.45 ± 10.00 ΔΔ | 20.19 ± 12.37 * | 23.21 ± 13.54 * | 26.13 ± 9.63 * | 27.82 ± 12.28 * |
LMWF | 100 | 20.11 ± 10.86 ΔΔ | 19.26 ± 12.12 * | 21.88 ± 13.28 * | 21.71 ± 12.76 ** | 25.31 ± 9.58 * |
LMWF | 50 | 23.28 ± 19.18 ΔΔ | 22.90 ± 12.39 * | 24.40 ± 7.89 * | 29.34 ± 9.67 * | 29.15 ± 8.79 * |
LMWF | 25 | 25.16 ± 20.65 ΔΔ | 33.19 ± 15.96 | 30.42 ± 21.03 | 31.00 ± 14.17 | 36.91 ± 20.51 |
Groups | Dosage (mg/kg) | T-P (g/L) | ALB (g/L) | SCr (µmol/L) | BUN (mmol/L) | TG (mmol/L) | T-CHO (mmol/L) |
---|---|---|---|---|---|---|---|
Normal | - | 68.63 ± 5.77 | 32.71 ± 8.78 | 77.23 ± 5.26 | 7.21 ± 0.92 | 0.48 ± 0.13 | 1.50 ± 0.38 |
Model | - | 50.85 ± 18.50 Δ | 16.14 ± 3.68 ΔΔ | 101.33 ± 20.96 ΔΔ | 16.14 ± 7.60 ΔΔ | 4.99 ± 1.38 ΔΔ | 11.12 ± 3.07 ΔΔ |
dexamethasone | 0.1 | 59.34 ± 16.39 | 18.87 ± 4.95 | 86.37 ± 3.18 | 10.41 ± 2.42 * | 3.80 ± 2.02 | 9.48 ± 3.20 |
Fucoidan | 100 | 64.46 ± 6.94 | 21.40 ± 6.61 * | 85.60 ± 11.42 | 10.52 ± 1.59 * | 2.86 ± 1.29 ** | 8.10 ± 4.01 |
LMWF | 100 | 66.49 ± 11.28 * | 26.26 ± 10.11 * | 79.53 ± 15.50 * | 8.64 ± 2.93 * | 2.39 ± 1.54 ** | 7.23 ± 2.99 ** |
LMWF | 50 | 61.86 ± 4.16 | 22.50 ± 8.27 * | 86.77 ± 10.29 | 10.64 ± 2.28 | 2.90 ± 1.38 ** | 8.01 ± 1.71 ** |
LMWF | 25 | 61.35 ± 4.53 | 19.93 ± 2.85 * | 79.85 ± 4.88 | 9.40 ± 1.55 * | 2.94 ± 1.73 ** | 8.63 ± 2.84 * |
Groups | Dosage (mg/kg) | MDA (nmol/mg prot) | SOD (u/mg prot) |
---|---|---|---|
Normal | - | 1.03 ± 0.35 | 86.31 ± 5.50 |
Model | - | 1.65 ± 0.66 Δ | 72.92 ± 12.66 Δ |
dexamethasone | 0.1 | 1.07 ± 0.35 * | 77.48 ± 11.22 |
Fucoidan | 100 | 1.12 ± 0.44 * | 84.45 ± 10.44 * |
LMWF | 100 | 0.94 ± 0.33 ** | 83.72 ± 8.15 * |
LMWF | 50 | 1.16 ± 0.27 * | 82.89 ± 7.27 * |
LMWF | 25 | 1.37 ± 0.22 | 79.68 ± 9.91 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; Wang, J.; Geng, L.; Yue, Y.; Wu, N.; Zhang, Q. Comparative Study of Fucoidan from Saccharina japonica and Its Depolymerized Fragment on Adriamycin-Induced Nephrotic Syndrome in Rats. Mar. Drugs 2020, 18, 137. https://doi.org/10.3390/md18030137
Tan J, Wang J, Geng L, Yue Y, Wu N, Zhang Q. Comparative Study of Fucoidan from Saccharina japonica and Its Depolymerized Fragment on Adriamycin-Induced Nephrotic Syndrome in Rats. Marine Drugs. 2020; 18(3):137. https://doi.org/10.3390/md18030137
Chicago/Turabian StyleTan, Jiaojiao, Jing Wang, Lihua Geng, Yang Yue, Ning Wu, and Quanbin Zhang. 2020. "Comparative Study of Fucoidan from Saccharina japonica and Its Depolymerized Fragment on Adriamycin-Induced Nephrotic Syndrome in Rats" Marine Drugs 18, no. 3: 137. https://doi.org/10.3390/md18030137
APA StyleTan, J., Wang, J., Geng, L., Yue, Y., Wu, N., & Zhang, Q. (2020). Comparative Study of Fucoidan from Saccharina japonica and Its Depolymerized Fragment on Adriamycin-Induced Nephrotic Syndrome in Rats. Marine Drugs, 18(3), 137. https://doi.org/10.3390/md18030137