Domesticated Populations of Codium tomentosum Display Lipid Extracts with Lower Seasonal Shifts than Conspecifics from the Wild—Relevance for Biotechnological Applications of this Green Seaweed
Abstract
:1. Introduction
2. Results
2.1. Seasonal Changes in the Polar Lipidome
2.2. Seasonal Changes in the Fatty Acid Profile
2.3. Seasonal Changes in the Pigment Profile
2.4. Seasonal Changes in the Antioxidant Activity
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Sampling
4.3. Lipid Extraction
4.4. Hydrophilic Interaction Liquid Chromatography–Mass Spectrometry (HILIC–LC–MS)
4.5. Fatty Acid Analysis Using Gas Chromatography-Mass Spectrometry (GC-MS)
4.6. Pigments Analysis Using HPLC
4.7. Antioxidant Assays
4.7.1. 2-Diphenyl-1-Picrylhydrazyl Radical Assay—DPPH Radical Scavenging Activity
4.7.2. 2,20-Azino-bis-3-Ethylbenzothiazoline-6-Sulfonic Acid Radical Cation Assay—ABTS Radical Scavenging Activity
4.8. Data Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stabili, L.; Acquaviva, M.I.; Angilé, F.; Cavallo, R.A.; Cecere, E.; Del Coco, L.; Fanizzi, F.P.; Gerardi, C.; Narracci, M.; Petrocelli, A. Screening of Chaetomorpha linum lipidic extract as a new potential source of bioactive compounds. Mar. Drugs 2019, 17, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, D.; Melo, T.; Meneses, J.; Abreu, M.H.; Pereira, R.; Domingues, P.; Lillebø, A.I.; Calado, R.; Rosário Domingues, M. A new look for the red macroalga Palmaria palmata: A seafood with polar lipids rich in EPA and with antioxidant properties. Mar. Drugs 2019, 17, 533. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.; Peixe, L.; Gomes, N.C.M.; Calado, R. Cnidarians as a source of new marine bioactive compounds - An overview of the last decade and future steps for bioprospecting. Mar. Drugs 2011, 9, 1860–1886. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial action of compounds from marine seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, F.B.; Alves, R.C.; Rodrigues, F.; Oliveira, M.B.P.P. Macroalgae-derived ingredients for cosmetic industry-an update. Cosmetics 2018, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Celikler, S.; Vatan, O.; Yildiz, G.; Bilaloglu, R. Evaluation of anti-oxidative, genotoxic and antigenotoxic potency of Codium tomentosum Stackhouse ethanolic extract in human lymphocytes in vitro. Food Chem. Toxicol. 2009, 47, 796–801. [Google Scholar] [CrossRef] [PubMed]
- El-Masry, M.H.; Mostafa, M.H.; Ibrahim, A.M.; El-Naggar, M.M.A. Marine algae that display anti-tumorigenic activity against Agrobacterium tumefaciens. FEMS Microbiol. Lett. 1995, 128, 151–155. [Google Scholar] [CrossRef]
- Augusto, A.; Simões, T.; Pedrosa, R.; Silva, S.F.J. Evaluation of seaweed extracts functionality as post-harvest treatment for minimally processed Fuji apples. Innov. Food Sci. Emerg. Technol. 2016, 33, 589–595. [Google Scholar] [CrossRef]
- Stabili, L.; Acquaviva, M.I.; Biandolino, F.; Cavallo, R.A.; De Pascali, S.A.; Fanizzi, F.P.; Narracci, M.; Cecere, E.; Petrocelli, A. Biotechnological potential of the seaweed Cladophora rupestris (Chlorophyta, Cladophorales) lipidic extract. New Biotechnol. 2014, 31, 436–444. [Google Scholar] [CrossRef]
- Ganesan, P.; Noda, K.; Manabe, Y.; Ohkubo, T.; Tanaka, Y.; Maoka, T.; Sugawara, T.; Hirata, T. Siphonaxanthin, a marine carotenoid from green algae, effectively induces apoptosis in human leukemia (HL-60) cells. Biochim. Biophys. Acta Gen. Subj. 2011, 1810, 497–503. [Google Scholar] [CrossRef]
- Banskota, A.H.; Stefanova, R.; Sperker, S.; Lall, S.; Craigie, J.S.; Hafting, J.T. Lipids isolated from the cultivated red alga Chondrus crispus inhibit nitric oxide production. J. Appl. Phycol. 2014, 26, 1565–1571. [Google Scholar] [CrossRef]
- Banskota, A.H.; Stefanova, R.; Sperker, S.; Lall, S.P.; Craigie, J.S.; Hafting, J.T.; Critchley, A.T. Polar lipids from the marine macroalga Palmaria palmata inhibit lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells. Phytochemistry 2014, 101, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Valentão, P.; Trindade, P.; Gomes, D.; Guedes de Pinho, P.; Mouga, T.; Andrade, P.B. Codium tomentosum and Plocamium cartilagineum: Chemistry and antioxidant potential. Food Chem. 2010, 119, 1359–1368. [Google Scholar] [CrossRef]
- Heavisides, E.; Rouger, C.; Reichel, A.F.; Ulrich, C.; Wenzel-Storjohann, A.; Sebens, S.; Tasdemir, D. Seasonal variations in the metabolome and bioactivity profile of Fucus vesiculosus extracted by an optimised, pressurised liquid extraction protocol. Mar. Drugs 2018, 16, 503. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, E.; Domingues, P.; Melo, T.; Coelho, E.; Pereira, R.; Calado, R.; Abreu, M.H.; Domingues, M.R. Lipidomic signatures reveal seasonal shifts on the relative abundance of high-valued lipids from the brown algae Fucus vesiculosus. Mar. Drugs 2019, 17, 335. [Google Scholar] [CrossRef] [Green Version]
- Horta, A.; Pinteus, S.; Alves, C.; Fino, N.; Silva, J.; Fernandez, S.; Rodrigues, A.; Pedrosa, R. Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria. Mar. Drugs 2014, 12, 1676–1689. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, J.P.; Rey, F.; Melo, T.; Moreira, A.S.P.; Arbona, J.F.; Skjermo, J.; Forbord, S.; Funderud, J.; Raposo, D.; Kerrison, P.D.; et al. The unique lipidomic signatures of Saccharina latissima can be used to pinpoint their geographic origin. Biomolecules 2020, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Mansour, H.A.; Emam, M.M.; Mostafa, N.H. Influence of different habitats on the chemical constituents of Codium tomentosum. Egypt. J. Bot. 2018, 58, 275–285. [Google Scholar]
- Lopes, D.; Moreira, A.S.P.; Rey, F.; da Costa, E.; Melo, T.; Maciel, E.; Rego, A.; Abreu, M.H.; Domingues, P.; Calado, R.; et al. Lipidomic signature of the green macroalgae Ulva rigida farmed in a sustainable integrated multi-trophic aquaculture. J. Appl. Phycol. 2019, 31, 1369–1381. [Google Scholar] [CrossRef] [Green Version]
- Rey, F.; Lopes, D.; Maciel, E.; Monteiro, J.; Skjermo, J.; Funderud, J.; Raposo, D.; Domingues, P.; Calado, R.; Domingues, M.R. Polar lipid profile of Saccharina latissima, a functional food from the sea. Algal Res. 2019, 39, 101473. [Google Scholar] [CrossRef]
- Da Costa, E.; Melo, T.; Moreira, A.S.P.; Alves, E.; Domingues, P.; Calado, R.; Abreu, M.H.; Domingues, M.R.M. Decoding bioactive polar lipid profile of the macroalgae Codium tomentosum from a sustainable IMTA system using a lipidomic approach. Algal Res. 2015, 12, 388–397. [Google Scholar] [CrossRef]
- García, A.G.; Olabarria, C.; Arrontes, J.; Álvarez, Ó.; Viejo, R.M. Spatio-temporal dynamics of Codium populations along the rocky shores of N and NW Spain. Mar. Environ. Res. 2018, 140, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Guiry, M.D.; Guiry, G.M. National University of Ireland Galway. AlgaeBase. Available online: http://www.algaebase.org (accessed on 20 January 2020).
- Ortiz, J.; Uquiche, E.; Robert, P.; Romero, N.; Quitral, V.; Llantén, C. Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. Eur. J. Lipid Sci. Technol. 2009, 111, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Augusto, A.; Dias, J.R.; Campos, M.J.; Alves, N.M.; Pedrosa, R.; Silva, S.F.J. Influence of Codium tomentosum extract in the properties of alginate and chitosan edible films. Foods 2018, 7, 53. [Google Scholar] [CrossRef] [Green Version]
- Muha, T.P.; Skukan, R.; Borrell, Y.J.; Rico, J.M.; Garcia de Leaniz, C.; Garcia-Vazquez, E.; Consuegra, S. Contrasting seasonal and spatial distribution of native and invasive Codium seaweed revealed by targeting species-specific eDNA. Ecol. Evol. 2019, 9, 8567–8579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fariman, G.A.; Shastan, S.J.; Zahedi, M.M. Seasonal variation of total lipid, fatty acids, fucoxanthin content, and antioxidant properties of two tropical brown algae (Nizamuddinia zanardinii and Cystoseira indica) from Iran. J. Appl. Phycol. 2016, 28, 1323–1331. [Google Scholar] [CrossRef]
- Schmid, M.; Guihéneuf, F.; Stengel, D.B. Plasticity and remodelling of lipids support acclimation potential in two species of low-intertidal macroalgae, Fucus serratus (Phaeophyceae) and Palmaria palmata (Rhodophyta). Algal Res. 2017, 26, 104–114. [Google Scholar] [CrossRef]
- Li-Beisson, Y.; Thelen, J.J.; Fedosejevs, E.; Harwood, J.L. The lipid biochemistry of eukaryotic algae. Prog. Lipid Res. 2019, 74, 31–68. [Google Scholar] [CrossRef]
- Alves, J.M.R.; Peliz, A.; Caldeira, R.M.A.; Miranda, P.M.A. Atmosphere-ocean feedbacks in a coastal upwelling system. Ocean Model. 2018, 123, 55–65. [Google Scholar] [CrossRef]
- Villegas-Ríos, D.; Álvarez-Salgado, X.; Piedracoba, S.; Rosón, G.; Labarta, U.; Fernández-Reiriz, M.J. Net ecosystem metabolism of a coastal embayment fertilised by upwelling and continental runoff. Cont. Shelf Res. 2011, 31, 400–413. [Google Scholar] [CrossRef] [Green Version]
- Hanisak, M.D. Growth patterns of Codium fragile ssp. tomentosoides in response to temperature, irradiance, salinity, and nitrogen source. Mar. Biol. 1979, 50, 319–332. [Google Scholar] [CrossRef]
- Lesser, M.P.; Farrell, J.H. Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 2004, 23, 367–377. [Google Scholar] [CrossRef]
- Rosset, S.; Koster, G.; Brandsma, J.; Hunt, A.N.; Postle, A.D.; D’Angelo, C. Lipidome analysis of Symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbionts. Coral Reefs 2019, 38, 1241–1253. [Google Scholar] [CrossRef] [Green Version]
- Guschina, I.A.; Harwood, J.L. Algal Lipids and Effect of the Environment on their Biochemistry. In Lipids in Aquatic Ecosystems; Arts, M.T., Brett, M.T., Kainz, M.J., Eds.; Springer: New York, NY, USA, 2009; pp. 1–24. ISBN 978-0-387-88607-7. [Google Scholar]
- Hölzl, G.; Dörmann, P. Structure and function of glycoglycerolipids in plants and bacteria. Prog. Lipid Res. 2007, 46, 225–243. [Google Scholar] [CrossRef]
- Khotimchenko, S.V.; Yakovleva, I.M. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 2005, 66, 73–79. [Google Scholar] [CrossRef]
- Nomura, M.; Kamogawa, H.; Susanto, E.; Kawagoe, C.; Yasui, H.; Saga, N.; Hosokawa, M.; Miyashita, K. Seasonal variations of total lipids, fatty acid composition, and fucoxanthin contents of Sargassum horneri (Turner) and Cystoseira hakodatensis (Yendo) from the northern seashore of Japan. J. Appl. Phycol. 2013, 25, 1159–1169. [Google Scholar] [CrossRef]
- Quigg, A.; Kevekordes, K.; Raven, J.A.; Beardall, J. Limitations on microalgal growth at very low photon fluence rates: The role of energy slippage. Photosynth. Res. 2006, 88, 299–310. [Google Scholar] [CrossRef]
- Schmid, M.; Guihéneuf, F.; Stengel, D.B. Ecological and commercial implications of temporal and spatial variability in the composition of pigments and fatty acids in five Irish macroalgae. Mar. Biol. 2017, 164, 1–18. [Google Scholar] [CrossRef]
- Gerasimenko, N.I.; Skriptsova, A.V.; Busarova, N.G.; Moiseenko, O.P. Effects of the season and growth stage on the contents of lipids and photosynthetic pigments in brown alga Undaria pinnatifida. Russ. J. Plant Physiol. 2011, 58, 885–891. [Google Scholar] [CrossRef]
- Cohen, Z.; Vonshak, A.; Richmond, A. Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: Correlation to growth rate. J. Phycol. 1988, 24, 328–332. [Google Scholar] [CrossRef]
- Nishida, I.; Murata, N. Chilling sensitivity in plants and cyanobacteria: The crucial contribution of membrane lipids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 541–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohde, S.; Hiebenthal, C.; Wahl, M.; Karez, R.; Bischof, K. Decreased depth distribution of Fucus vesiculosus (Phaeophyceae) in the Western Baltic: Effects of light deficiency and epibionts on growth and photosynthesis. Eur. J. Phycol. 2008, 43, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Qin, X.; Sang, M.; Chen, D.; Wang, K.; Lin, R.; Lu, C.; Shen, J.R.; Kuang, T. Spectral and functional studies on siphonaxanthin-type light-harvesting complex of photosystem II from Bryopsis corticulans. Photosynth. Res. 2013, 117, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, P.; Matsubara, K.; Ohkubo, T.; Tanaka, Y.; Noda, K.; Sugawara, T.; Hirata, T. Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile. Phytomedicine 2010, 17, 1140–1144. [Google Scholar] [CrossRef] [Green Version]
- Andrade, P.B.; Barbosa, M.; Matos, R.P.; Lopes, G.; Vinholes, J.; Mouga, T.; Valentão, P. Valuable compounds in macroalgae extracts. Food Chem. 2013, 138, 1819–1828. [Google Scholar] [CrossRef]
- García-Bueno, N.; Decottignies, P.; Turpin, V.; Dumay, J.; Paillard, C.; Stiger-Pouvreau, V.; Kervarec, N.; Pouchus, Y.-F.; Marín-Atucha, A.A.; Fleurence, J. Seasonal antibacterial activity of two red seaweeds, Palmaria palmata and Grateloupia turuturu, on European abalone pathogen Vibrio harveyi. Aquat. Living Resour. 2014, 27, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Hellio, C.; Marechal, J.P.; Véron, B.; Bremer, G.; Clare, A.S.; Le Gal, Y. Seasonal variation of antifouling activities of marine algae from the Brittany Coast (France). Mar. Biotechnol. 2004, 6, 67–82. [Google Scholar] [CrossRef]
- Ismail, A.; Ktari, L.; Ben Redjem Romdhane, Y.; Aoun, B.; Sadok, S.; Boudabous, A.; El Bour, M. Antimicrobial fatty acids from green alga Ulva rigida (Chlorophyta). Biomed Res. Int. 2018, 2018, 3069595. [Google Scholar] [CrossRef] [Green Version]
- Amsler, C.D. Algal Chemical Ecology; Amsler, C.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 9783540741800. [Google Scholar]
- Pérez-Pérez, M.E.; Lemaire, S.D.; Crespo, J.L. Reactive oxygen species and autophagy in plants and algae. Plant Physiol. 2012, 160, 156–164. [Google Scholar] [CrossRef] [Green Version]
- de Felício, R.; de Albuquerque, S.; Young, M.C.M.; Yokoya, N.S.; Debonsi, H.M. Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). J. Pharm. Biomed. Anal. 2010, 52, 763–769. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Chao, P.-Y.; Hu, S.-P.; Yang, C.-M. The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food Nutr. Sci. 2013, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Li, L. Carotenoid metabolism: Biosynthesis, regulation, and beyond. J. Integr. Plant Biol. 2008, 50, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Cerón, M.C.; García-Malea, M.C.; Rivas, J.; Acien, F.G.; Fernandez, J.M.; Del Río, E.; Guerrero, M.G.; Molina, E. Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Appl. Microbiol. Biotechnol. 2007, 74, 1112–1119. [Google Scholar] [CrossRef]
- Christa, G.; Cruz, S.; Jahns, P.; de Vries, J.; Cartaxana, P.; Esteves, A.C.; Serôdio, J.; Gould, S.B. Photoprotection in a monophyletic branch of chlorophyte algae is independent of energy-dependent quenching (qE). New Phytol. 2017, 214, 1132–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uragami, C.; Galzerano, D.; Gall, A.; Shigematsu, Y.; Meisterhans, M.; Oka, N.; Iha, M.; Fujii, R.; Robert, B.; Hashimoto, H. Light-dependent conformational change of neoxanthin in a siphonous green alga, Codium intricatum, revealed by Raman spectroscopy. Photosynth. Res. 2014, 121, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Aued-Pimentel, S.; Lago, J.H.G.; Chaves, M.H.; Kumagai, E.E. Evaluation of a methylation procedure to determine cyclopropenoids fatty acids from Sterculia striata St. Hil. Et Nauds seed oil. J. Chromatogr. A 2004, 1054, 235–239. [Google Scholar] [CrossRef]
- Da Costa, E.; Azevedo, V.; Melo, T.; Rego, A.M.; Evtuguin, D.V.; Domingues, P.; Calado, R.; Pereira, R.; Abreu, M.H.; Domingues, M.R. High-resolution lipidomics of the early life stages of the red seaweed Porphyra dioica. Molecules 2018, 23, 187. [Google Scholar] [CrossRef] [Green Version]
- Christie, W.W. The Lipid Web. Available online: http://www.lipidhome.co.uk/ (accessed on 24 March 2020).
- Kraay, G.W.; Zapata, M.; Veldhuis, M.J.W. Separation of chlorophylls c1, c2, and c3 of marine phytoplankton by reversed-phase C18 high-performance liquid chromatography. J. Phycol. 1992, 28, 708–712. [Google Scholar] [CrossRef]
- Magalhães, L.M.; Segundo, M.A.; Reis, S.; Lima, J.L.F.C. Automatic method for determination of total antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl assay. Anal. Chim. Acta 2006, 558, 310–318. [Google Scholar] [CrossRef]
- Magalhães, L.M.; Barreiros, L.; Maia, M.A.; Reis, S.; Segundo, M.A. Rapid assessment of endpoint antioxidant capacity of red wines through microchemical methods using a kinetic matching approach. Talanta 2012, 97, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1- picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 2015, 43, W251–W257. [Google Scholar] [CrossRef] [Green Version]
Aguda–A | Aguda–S | Barra–A | Barra–S | IMTA–A | IMTA–S | |
---|---|---|---|---|---|---|
12:0 | 0.31 ± 0.04 | 0.22 ± 0.02 | 0.33 ± 0.05 | 0.22 ± 0.02 | 0.26 ± 0.01 | 0.24 ± 0.02 |
14:0 | 0.35 ± 0.03 | 0.28 ± 0.03 | 0.42 ± 0.05 | 0.26 ± 0.03 | 0.33 ± 0.01 | 0.29 ± 0.03 |
15:0 | 0.15 ± 0.02 | 0.11 ± 0.01 | 0.17 ± 0.03 | 0.11 ± 0.01 | 0.13 ± 0.01 | 0.12 ± 0.01 |
16:0 | 3.54 ± 0.10 | 2.86 ± 0.45 | 4.30 ± 1.09 | 2.41 ± 0.52 | 3.63 ± 0.28 | 2.90 ± 0.50 |
18:0 | 0.49 ± 0.07 | 0.38 ± 0.11 | 0.78 ± 0.21 | 0.41 ± 0.11 | 0.46 ± 0.09 | 0.48 ± 0.16 |
20:0 | 0.20 ± 0.02 | 0.14 ± 0.01 | 0.24 ± 0.04 | 0.14 ± 0.01 | 0.17 ± 0.01 | 0.17 ± 0.01 |
22:0 | 0.36 ± 0.02 | 0.23 ± 0.04 | 0.33 ± 0.07 | 0.24 ± 0.02 | 0.25 ± 0.02 | 0.27 ± 0.02 |
24:0 | 0.25 ± 0.02 | 0.17 ± 0.02 | 0.25 ± 0.05 | 0.18 ± 0.01 | 0.21 ± 0.01 | 0.22 ± 0.01 |
∑ SFA | 5.66 ± 0.06 | 4.39 ± 0.42 | 6.82 ± 1.26 | 3.97 ± 0.65 | 5.44 ± 0.39 | 4.69 ± 0.69 |
16:1 n-9 | 0.19 ± 0.01 | 0.14 ± 0.01 | 0.19 ± 0.02 | 0.14 ± 0.01 | 0.18 ± 0.01 | 0.14 ± 0.01 |
16:1 n-7 | 0.25 ± 0.01 | 0.32 ± 0.05 | 0.27 ± 0.04 | 0.22 ± 0.03 | 0.25 ± 0.01 | 0.20 ± 0.03 |
16:1 | 0.28 ± 0.02 | 0.19 ± 0.02 | 0.26 ± 0.03 | 0.15 ± 0.02 | 0.16 ± 0.01 | 0.18 ± 0.02 |
18:1 n-9 | 1.46 ± 0.07 | 1.19 ± 0.16 | 1.46 ± 0.18 | 1.03 ± 0.13 | 1.59 ± 0.09 | 1.04 ± 0.15 |
18:1 | 0.32 ± 0.03 | 0.28 ± 0.02 | 0.33 ± 0.05 | 0.25 ± 0.01 | 0.30 ± 0.01 | 0.24 ± 0.00 |
∑ MUFA | 2.50 ± 0.09 | 2.13 ± 0.26 | 2.52 ± 0.30 | 1.78 ± 0.19 | 2.48 ± 0.12 | 1.80 ± 0.20 |
16:2 n-6 | 0.20 ± 0.01 | 0.14 ± 0.02 | 0.18 ± 0.03 | 0.13 ± 0.02 | 0.27 ± 0.01 | 0.14 ± 0.02 |
16:3 n-4 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.12 ± 0.02 | 0.08 ± 0.01 | 0.10 ± 0.00 | 0.09 ± 0.01 |
16:3 n-3 | 1.68 ± 0.10 | 1.15 ± 0.24 | 1.79 ± 0.42 | 0.87 ± 0.17 | 1.42 ± 0.10 | 1.29 ± 0.25 |
16:4 n-1 | 0.09 ± 0.01 | 0.11 ± 0.01 | 0.12 ± 0.02 | 0.08 ± 0.01 | 0.09 ± 0.00 | 0.08 ± 0.01 |
18:2 n-6 | 0.70 ± 0.04 | 0.48 ± 0.07 | 0.70 ± 0.10 | 0.42 ± 0.06 | 0.78 ± 0.05 | 0.56 ± 0.08 |
18:3 n-6 | 0.46 ± 0.03 | 0.36 ± 0.05 | 0.47 ± 0.06 | 0.34 ± 0.05 | 0.40 ± 0.02 | 0.35 ± 0.05 |
18:3 n-3 | 2.46 ± 0.16 | 1.54 ± 0.24 | 2.53 ± 0.40 | 1.24 ± 0.18 | 1.97 ± 0.13 | 1.95 ± 0.33 |
18:4 n-3 | 0.34 ± 0.02 | 0.32 ± 0.05 | 0.39 ± 0.05 | 0.25 ± 0.03 | 0.29 ± 0.01 | 0.29 ± 0.04 |
20:3 n-6 | 0.22 ± 0.03 | 0.12 ± 0.03 | 0.20 ± 0.03 | 0.14 ± 0.04 | 0.22 ± 0.02 | 0.19 ± 0.05 |
20:4 n-6 | 0.52 ± 0.04 | 0.39 ± 0.05 | 0.45 ± 0.05 | 0.36 ± 0.05 | 0.55 ± 0.03 | 0.38 ± 0.06 |
20:4 n-3 | 0.12 ± 0.01 | 0.07 ± 0.00 | 0.13 ± 0.02 | 0.07 ± 0.00 | 0.12 ± 0.00 | 0.09 ± 0.01 |
20:5 n-3 | 0.40 ± 0.03 | 0.47 ± 0.08 | 0.44 ± 0.05 | 0.32 ± 0.04 | 0.37 ± 0.03 | 0.35 ± 0.05 |
∑ PUFA | 7.20 ± 0.36 | 5.16 ± 0.76 | 7.52 ± 1.07 | 4.31 ± 0.58 | 6.58 ± 0.38 | 5.75 ± 0.91 |
∑ n-3 | 5.00 ± 0.28 | 3.55 ± 0.57 | 5.28 ± 0.87 | 2.75 ± 0.39 | 4.16 ± 0.26 | 3.97 ± 0.67 |
∑ n-6 | 2.11 ± 0.09 | 1.50 ± 0.18 | 1.99 ± 0.23 | 1.40 ± 0.18 | 2.23 ± 0.12 | 1.62 ± 0.24 |
TFA | 15.36 ± 0.41 | 11.69 ± 1.38 | 16.86 ± 2.58 | 10.05 ± 1.37 | 14.51 ± 0.87 | 12.24 ± 1.77 |
DPPH ASSAY | ABTS ASSAY | ||||
---|---|---|---|---|---|
IC50 (µg mL−1) | TE (µmol Trolox g−1 Lipid Extract) | IC50 (µg mL−1) | TE (µmol Trolox g−1 Lipid Extract) | ||
AUTUMN | Aguda | 249.90 ± 8.04 | 60.73 ± 1.99 | 26.34 ± 1.05 | 828.26 ± 33.04 |
Barra | 199.55 ± 59.70 | 81.40 ± 27.33 | 41.44 ± 5.39 | 532.22 ± 72.68 | |
IMTA | 209.71 ± 59.63 | 77.08 ± 25.26 | 26.24 ± 4.73 | 850.67 ± 168.96 | |
SPRING | Aguda | 184.16 ± 4.94 | 78.15 ± 2.07 | 27.40 ± 3.44 | 753.93 ± 94.55 |
Barra | 134.22 ± 46.04 | 115.14 ± 35.20 | 31.59 ± 5.47 | 661.65 ± 111.58 | |
IMTA | 139.65 ± 21.93 | 104.80 ± 17.11 | 22.22 ± 2.21 | 927.15 ± 92.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rey, F.; Cartaxana, P.; Melo, T.; Calado, R.; Pereira, R.; Abreu, H.; Domingues, P.; Cruz, S.; Domingues, M.R. Domesticated Populations of Codium tomentosum Display Lipid Extracts with Lower Seasonal Shifts than Conspecifics from the Wild—Relevance for Biotechnological Applications of this Green Seaweed. Mar. Drugs 2020, 18, 188. https://doi.org/10.3390/md18040188
Rey F, Cartaxana P, Melo T, Calado R, Pereira R, Abreu H, Domingues P, Cruz S, Domingues MR. Domesticated Populations of Codium tomentosum Display Lipid Extracts with Lower Seasonal Shifts than Conspecifics from the Wild—Relevance for Biotechnological Applications of this Green Seaweed. Marine Drugs. 2020; 18(4):188. https://doi.org/10.3390/md18040188
Chicago/Turabian StyleRey, Felisa, Paulo Cartaxana, Tânia Melo, Ricardo Calado, Rui Pereira, Helena Abreu, Pedro Domingues, Sónia Cruz, and M. Rosário Domingues. 2020. "Domesticated Populations of Codium tomentosum Display Lipid Extracts with Lower Seasonal Shifts than Conspecifics from the Wild—Relevance for Biotechnological Applications of this Green Seaweed" Marine Drugs 18, no. 4: 188. https://doi.org/10.3390/md18040188
APA StyleRey, F., Cartaxana, P., Melo, T., Calado, R., Pereira, R., Abreu, H., Domingues, P., Cruz, S., & Domingues, M. R. (2020). Domesticated Populations of Codium tomentosum Display Lipid Extracts with Lower Seasonal Shifts than Conspecifics from the Wild—Relevance for Biotechnological Applications of this Green Seaweed. Marine Drugs, 18(4), 188. https://doi.org/10.3390/md18040188