Cloning, Secretory Expression and Characterization of a Unique pH-Stable and Cold-Adapted Alginate Lyase
Abstract
:1. Introduction
2. Results
2.1. Vibrio sp. W2 Has the Ability of Alginate Degradation at a Low Temperature
2.2. Bioinformatics Analysis of the Alginate Lyase Alyw201
2.3. Secretory Expression and Purification of Alyw201
2.4. Temperature and pH Properties of Alyw201
2.5. Effects of Ions on the Activity of Alyw201
2.6. Product Analysis of Alyw201
3. Materials and Methods
3.1. Materials, Strains, and Mediums
3.2. Screening Alginate Lyase-Producing Strains at Low Temperature
3.3. Strain Identification
3.4. Bioinformatics Analysis of the Alginate Lyase Alyw201
3.5. Secretory Expression and Purification of Alyw201q
3.6. Effects of Temperature and pH on Alyw201 Activity and Stability
3.7. Effects of Chemical Compounds, Metal Ions, and NaCl on Alyw201 Activity
3.8. Analysis of Alyw201 Reaction Products
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Florez-Fernandez, N.; Torres, M.D.; Gonzalez-Munoz, M.J.; Dominguez, H. Recovery of Bioactive and Gelling Extracts from Edible Brown Seaweed Laminaria ochroleuca by Non-isothermal Autohydrolysis. Food Chem. 2019, 277, 353–361. [Google Scholar]
- Li, S.Y.; He, N.N.; Wang, L.N. Efficiently Anti-Obesity Effects of Unsaturated Alginate Oligosaccharides (UAOS) in High-Fat Diet (HFD)-Fed Mice. Mar. Drugs 2019, 17, 540. [Google Scholar]
- Sharma, H.S.S.; Fleming, C.; Selby, C.; Rao, J.R.; Trevor, M. Plant biostimulants: A Review on the Processing of Macroalgae and Use of Extracts for Crop management to Reduce Abiotic and Biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar]
- Sharma, S.; Horn, S.J. Enzymatic Saccharification of Brown Seaweed for Production of Fermentable Sugars. Bioresour Technol. 2016, 213, 155–161. [Google Scholar] [PubMed]
- Wargacki, A.J.; Leonard, E.; Win, M.N.; Regitsky, D.D.; Santos, C.N.; Kim, P.B.; Cooper, S.R.; Raisner, R.M.; Herman, A.; Sivitz, A.B. An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae. Science 2012, 335, 308–313. [Google Scholar] [PubMed] [Green Version]
- Wong, T.Y.; Preston, L.A.; Schiller, N.L. Alginate lyase: Review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu. Rev. Microbiol. 2000, 54, 289–340. [Google Scholar] [PubMed]
- Li, S.Y.; Wang, Z.P.; Wang, L.N.; Peng, J.X.; Wang, Y.N.; Han, Y.T.; Zhao, S.F. Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica. Bioresour. Technol. 2019, 281, 84–89. [Google Scholar]
- Xu, X.; Yoshiko, I.; Yoshie, K.; Tatsuya, O.; Tsuyoshi, M. Root Growth-promoting Activity of Unsaturated Oligomeric Uronates from Alginate on Carrot and Rice Plants. Biosci. Biotechnol. Biochem. 2003, 67, 2022–2025. [Google Scholar]
- Zhang, Y.; Yin, H.; Zhao, X.; Wang, W.; Du, Y.; He, A.; Sun, K. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Carbohydr. Polym. 2014, 113, 446–454. [Google Scholar]
- Chen, X.; Dong, S.; Xu, F.; Dong, F.; Li, P.; Zhang, X.; Zhou, B.; Zhang, Y.; Xie, B. Characterization of a new cold-adapted and salt-activated polysaccharide lyase family 7 alginate lyase from pseudoalteromonas sp. SM0524. Front Microbiol. 2016, 7, 1120. [Google Scholar]
- Inoue, A.; Anraku, M.; Nakagawa, S.; Ojima, T. Discovery of a novel alginate lyase from nitratiruptor sp. SB155-2 thriving at deep-sea hydrothermal vents and identification of the residues responsible for its heat stability. J. Biol. Chem. 2016, 291, 15551–15563. [Google Scholar] [PubMed] [Green Version]
- Li, S.; Wang, L.; Jung, S.; Lee, B.S.; He, N.; Lee, M. Biochemical Characterization of a New Oligoalginate Lyase and Its Biotechnological Application in Laminaria japonica Degradation. Front Microbiol. 2020, 11, 316. [Google Scholar] [PubMed]
- Schiller, N.; Monday, S.; Boyd, C.; Keen, N.; Ohman, D. Characterization of the Pseudomonas aeruginosa alginate lyase gene (algL): cloning, sequencing, and expression in Escherichia coli. J. Bacteriol. 1993, 175, 4780–4789. [Google Scholar]
- Thomas, F.; Lundqvist, L.; Jam, M.; Jeudy, A.; Barbeyron, T.; Sandström, C.; Michel, G.; Czjzek, M. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J. Biol. Chem. 2013, 288, 23021–23037. [Google Scholar] [PubMed] [Green Version]
- Zhang, Z.; Tang, L.; Bao, M.; Liu, Z.; Yu, W.; Han, F. Functional Characterization of Carbohydrate-Binding Modules in a New Alginate Lyase, TsAly7B, From Thalassomonas Sp. LD5. Mar. Drugs 2020, 18, 25. [Google Scholar]
- Gao, S.; Zhang, Z.; Li, S.; Su, H.; Tang, L.; Tan, Y.; Yu, W.; Han, F. Characterization of a new endo-type polysaccharide lyase (PL) family 6 alginate lyase with cold-adapted and metal ions-resisted property. Int. J. Biol. Macromol. 2018, 120, 729–735. [Google Scholar]
- Wang, Y.; Chen, X.; Bi, X.; Ren, Y.; Han, Q.; Zhou, Y.; Han, Y.; Yao, R.; Li, S. Characterization of an Alkaline Alginate Lyase With pH-Stable and Thermo-Tolerance Property. Mar. Drugs 2019, 17, 308. [Google Scholar]
- He, M.; Guo, M.; Zhang, X.; Chen, K.; Yan, J.; Irbis, C. Purification and characterization of alginate lyase from Sphingomonas sp. ZH0. J. Biosci. Bioeng. 2018, 126, 310–316. [Google Scholar]
- Xu, F.; Dong, F.; Wang, P.; Cao, H.Y.; Li, C.Y.; Li, P.Y.; Pang, X.H.; Zhang, Y.Z.; Chen, X.L. Novel molecular insights into the catalytic mechanism of marine bacterial alginate lyase AlyGC from polysaccharide lyase family 6. J. Biol. Chem. 2017, 292, 4457–4468. [Google Scholar]
- Mochizuki, S.; Nishiyama, R.; Inoue, A.; Ojima, T. A Novel Aldo-Keto Reductase, HdRed, From the Pacific Abalone Haliotis Discus Hannai, Which Reduces Alginate-derived 4-Deoxy-l-erythro-5-hexoseulose Uronic Acid to 2-Keto-3-deoxy-d-gluconate. J. Biol. Chem. 2015, 290, 30962–30974. [Google Scholar]
- Li, S.; Yang, X.; Bao, M.; Wu, Y.; Yu, W.; Han, F. Family 13 carbohydrate-binding module of alginate lyase from Agarivorans sp. L11 enhances its catalytic efficiency and thermostability, and alters its substrate preference and product distribution. FEMS Microbiol. Lett. 2015, 362. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.T.; Ko, H.J.; Kim, N.; Kim, D.; Lee, D.; Choi, I.G.; Woo, H.C.; Kim, M.D.; Kim, K.H. Characterization of a recombinant endo-type alginate lyase (Alg7D) from Saccharophagus degradans. Biotechnol. Lett. 2012, 34, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Chen, P.; Zeng, Y.; Men, Y.; Mu, S.; Zhu, Y.; Chen, Y.; Sun, Y. The Characterization and Modification of a Novel Bifunctional and Robust Alginate Lyase Derived from Marinimicrobium Sp. H1. Mar. Drugs 2019, 17, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, B.; Sun, Y.; Ni, F.; Ning, L.; Yao, Z. Characterization of a new endo-type alginate lyase from Vibrio sp. NJU-03. Int. J. Biol. Macromol. 2018, 108, 1140–1147. [Google Scholar] [CrossRef]
- Zhu, B.; Ni, F.; Ning, L.; Sun, Y.; Yao, Z. Cloning and characterization of a new pH-stable alginate lyase with high salt tolerance from marine Vibrio sp. NJ-04. Int. J. Biol. Macromol. 2018, 115, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Uchimura, K.; Miyazaki, M.; Nogi, Y.; Kobayashi, T.; Horikoshi, K. Cloning and sequencing of alginate lyase genes from deep-sea strains of Vibrio and Agarivorans and characterization of a new Vibrio enzyme. Mar. Biotechnol. 2010, 12, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Zhang, K.; Liu, X.; Liu, W.; Lyu, Q.; Ji, A. Characterization of a novel polyM-preferred alginate lyase from Marine Vibrio splendidus OU02. Mar. Drugs 2018, 16, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyamoto, T.; Okano, S.; Kasai, N. Inactivation of Escherichia coli endotoxin by soft hydrothermal processing. Appl. Environ. Microbiol. 2009, 75, 5058–5063. [Google Scholar] [CrossRef] [Green Version]
- Madzak, C. Yarrowia lipolytica: Recent achievements in heterologous protein expression and pathway engineering. Appl. Microbiol. Biotechnol. 2015, 99, 4559–4577. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Z.P.; Sheng, J.; Zheng, Y.; Ji, X.F.; Zhou, H.X.; Liu, X.Y.; Chi, Z.M. High and efficient isomaltulose production using an engineered Yarrowia lipolytica strain. Bioresour. Technol. 2018, 265, 577–580. [Google Scholar] [CrossRef]
- Zhu, B.; Tan, H.; Qin, Y.; Xu, Q.; Du, Y.; Yin, H. Characterization of a new endo-type alginate lyase from Vibrio sp. W13. Int. J. Biol. Macromol. 2015, 75, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Wang, Q.; Lu, M.; Xu, C.; Li, F.; Zhang, R.; Liao, W.; Huang, S. AlgM4: A new salt-activated alginate lyase of the PL7 family with endolytic activity. Mar. Drugs 2018, 16, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, H.M.; Miyakawa, T.; Inoue, A.; Nishiyama, R.; Nakamura, A.; Asano, A.; Ojima, T.; Tanokura, M. Structural basis for controlling the enzymatic properties of polymannuronate preferred alginate lyase FlAlyA from the PL-7 family. Chem. Commun. (Camb) 2018, 54, 555–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | Source | Optimal pH/ Temperature (°C) | Activity at 20 °C | pH-stable Range | Product (DP, Degree of Polymerization) |
---|---|---|---|---|---|
Alyw201 | This study | 8.0/35 | 76.96% | 4–10 | 2–6 |
TsAly6A | Thalassomonas sp. [16] | 8.0/35 | 73.1% | 6.6–8.95 | 2–3 |
TsAly7B | Thalassomonas sp. [15] | 8.0/20 | 100% | 7.3–8.6 | 2–3 |
AlyPM | Pseudoalteromonas sp. [10] | 8.0/35 | 52% | - | 1 |
ZH0-IV | Sphingomonas sp. [18] | 7.5/35 | 75% | 6.0–9.0 | 1 |
AlyGC | Glaciecola chathamensis [19] | 7.0/30 | 62.5% | - | 1 |
Algb | Vibrio sp. W13 [31] | 8.0/30 | 76% | 4–10 | 2–5 |
A9m | Vibrio sp. A9mT [26] | 7.5/30 | - | 7–10 | - |
AlgNJU-03 | Vibrio sp. NJU-03 [24] | 7.0/30 | 62% | 6.0–9.0 | 2–5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-P.; Cao, M.; Li, B.; Ji, X.-F.; Zhang, X.-Y.; Zhang, Y.-Q.; Wang, H.-Y. Cloning, Secretory Expression and Characterization of a Unique pH-Stable and Cold-Adapted Alginate Lyase. Mar. Drugs 2020, 18, 189. https://doi.org/10.3390/md18040189
Wang Z-P, Cao M, Li B, Ji X-F, Zhang X-Y, Zhang Y-Q, Wang H-Y. Cloning, Secretory Expression and Characterization of a Unique pH-Stable and Cold-Adapted Alginate Lyase. Marine Drugs. 2020; 18(4):189. https://doi.org/10.3390/md18040189
Chicago/Turabian StyleWang, Zhi-Peng, Min Cao, Bing Li, Xiao-Feng Ji, Xin-Yue Zhang, Yue-Qi Zhang, and Hai-Ying Wang. 2020. "Cloning, Secretory Expression and Characterization of a Unique pH-Stable and Cold-Adapted Alginate Lyase" Marine Drugs 18, no. 4: 189. https://doi.org/10.3390/md18040189
APA StyleWang, Z. -P., Cao, M., Li, B., Ji, X. -F., Zhang, X. -Y., Zhang, Y. -Q., & Wang, H. -Y. (2020). Cloning, Secretory Expression and Characterization of a Unique pH-Stable and Cold-Adapted Alginate Lyase. Marine Drugs, 18(4), 189. https://doi.org/10.3390/md18040189