Azaphilones from the Red Sea Fungus Aspergillus falconensis
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation, Extraction, and Isolation
3.4. Crystallographic Analysis of Compound 5
3.5. Triple Negative Breast Cancer Studies
3.5.1. Cell Culture and Chemicals
3.5.2. NF-κB Inhibitory Assay
3.5.3. Cell Viability Assay
3.5.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jimenez, C. Marine natural products in medicinal chemistry. ACS Med. Chem. Lett. 2018, 9, 959–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2018, 35, 8–53. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.T.; Xue, Y.R.; Liu, C.H. A brief review of bioactive metabolites derived from deep-sea fungi. Mar. Drugs 2015, 13, 4594–4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenical, W.; Jensen, P.R.; Cheng, X.C. Halimide, A Cytotoxic Marine Natural Product, and Derivatives Thereof. U.S. Patent No. 6,069,146, 30 May 2000. [Google Scholar]
- Petersen, L.E.; Kellermann, M.Y.; Schupp, P.J. Secondary metabolites of marine microbes: From natural products chemistry to chemical ecology. In YOUMARES 9-The oceans: Our Research, our Future; Jungblut, S., Liebich, V., Bode-Dalby, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 159–180. [Google Scholar]
- Available online: https://www.beyondspringpharma.com/ChannelPage/index.aspx (accessed on 6 November 2019).
- Zhang, Z.; He, X.; Wu, G.; Liu, C.; Lu, C.; Gu, Q.; Che, Q.; Zhu, T.; Zhang, G.; Li, D. Aniline-tetramic acids from the deep-sea-derived fungus Cladosporium sphaerospermum L3P3 cultured with the HDAC inhibitor SAHA. J. Nat. Prod. 2018, 81, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
- Hertweck, C. Hidden biosynthetic treasures brought to light. Nat. Chem. Biol. 2009, 5, 450–452. [Google Scholar] [CrossRef]
- Daletos, G.; Ebrahim, W.; Ancheeva, E.; El-Neketi, M.; Lin, W.; Chaidir, C. Microbial co-culture and OSMAC approach as strategies to induce cryptic fungal biogenetic gene clusters. In Chemical Biology of Natural Products; Grothaus, P., Cragg, G.M., Newman, D.J., Eds.; CRC press: Boca Raton, FL, USA, 2017; pp. 233–284. [Google Scholar]
- Hofs, R.; Walker, M.; Zeeck, A. Hexacyclinic acid, a polyketide from Streptomyces with a novel carbon skeleton. Angew. Chem. Int. Ed. 2000, 39, 3258–3261. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.L.; Fang, Y.C.; Zhu, T.J.; Gu, Q.Q.; Zhu, W.M. Cytotoxic alkaloids and antibiotic nordammarane triterpenoids from the marine-derived fungus Aspergillus sydowi. J. Nat. Prod. 2008, 71, 985–989. [Google Scholar] [CrossRef]
- Saleem, M.; Ali, M.S.; Hussain, S.; Jabbar, A.; Ashraf, M.; Lee, Y.S. Marine natural products of fungal origin. Nat. Prod. Rep. 2007, 24, 1142–1152. [Google Scholar] [CrossRef]
- Ge, H.M.; Yu, Z.G.; Zhang, J.; Wu, J.H.; Tan, R.X. Bioactive alkaloids from endophytic Aspergillus fumigatus. J. Nat. Prod. 2009, 72, 753–755. [Google Scholar] [CrossRef]
- Frank, M.; Ozkaya, F.C.; Muller, W.E.G.; Hamacher, A.; Kassack, M.U.; Lin, W.; Liu, Z.; Proksch, P. Cryptic secondary metabolites from the sponge-associated fungus Aspergillus ochraceus. Mar. Drugs 2019, 17, 99. [Google Scholar] [CrossRef] [Green Version]
- El-Kashef, D.H.; Daletos, G.; Plenker, M.; Hartmann, R.; Mandi, A.; Kurtan, T.; Weber, H.; Lin, W.; Ancheeva, E.; Proksch, P. Polyketides and a dihydroquinolone alkaloid from a marine-derived strain of the fungus Metarhizium marquandii. J. Nat. Prod. 2019, 82, 2460–2469. [Google Scholar] [CrossRef] [PubMed]
- Kuppers, L.; Ebrahim, W.; El-Neketi, M.; Ozkaya, F.C.; Mandi, A.; Kurtan, T.; Orfali, R.S.; Muller, W.E.G.; Hartmann, R.; Lin, W.H.; et al. Lactones from the sponge-derived fungus Talaromyces rugulosus. Mar. Drugs 2017, 15, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samson, R.A.; Visagie, C.M.; Houbraken, J.; Hong, S.B.; Hubka, V.; Klaassen, C.H.; Perrone, G.; Seifert, K.A.; Susca, A.; Tanney, J.B.; et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 2014, 78, 141–173. [Google Scholar] [CrossRef] [Green Version]
- Itabashi, T.; Nozawa, K.; Miyaji, M.; Udagawa, S.; Nakajima, S.; Kawai, K. Falconensins A, B, C, and D, new compounds related to azaphilone from Emericella falconensis. Chem. Pharm. Bull. 1992, 40, 3142–3144. [Google Scholar] [CrossRef] [Green Version]
- Itabashi, T.; Nozawa, K.; Nakajima, S.; Kawai, K. A new azaphilone, falconensin H, from Emericella falconensis. Chem. Pharm. Bull. 1993, 41, 2040–2041. [Google Scholar] [CrossRef] [Green Version]
- Itabashi, T.; Ogasawara, N.; Nozawa, K.; Kawai, K. Isolation and structures of new azaphilone derivatives, falconensins E−G, from Emericella falconensis and absolute configurations of falconensins A−G. Chem. Pharm. Bull. 1996, 44, 2213–2217. [Google Scholar] [CrossRef] [Green Version]
- Yasukawa, K.; Itabashi, T.; Kawai, K.; Takido, M. Inhibitory effects of falconensins on 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory ear edema in mice. J. Nat. Med. 2008, 62, 384–386. [Google Scholar] [CrossRef]
- Agrawal, A.K.; Pielka, E.; Lipinski, A.; Jelen, M.; Kielan, W.; Agrawal, S. Clinical validation of nuclear factor kappa B expression in invasive breast cancer. Tumour Biol. 2018, 40. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, N.; Kawai, K.I. Hydrogenated azaphilones from Emericella falconensis and E. fruticulosa. Phytochemistry 1998, 47, 1131–1135. [Google Scholar] [CrossRef]
- Gao, J.M.; Yang, S.X.; Qin, J.C. Azaphilones: Chemistry and biology. Chem. Rev. 2013, 113, 4755–4811. [Google Scholar] [CrossRef]
- Huang, H.; Wang, F.; Luo, M.; Chen, Y.; Song, Y.; Zhang, W.; Zhang, S.; Ju, J. Halogenated anthraquinones from the marine-derived fungus Aspergillus sp. SCSIO F063. J. Nat. Prod. 2012, 75, 1346–1352. [Google Scholar] [CrossRef]
- Flack, H.D. On enantiomorph-polarity estimation. Acta Crystallogr. Sect. A 1983, 39, 876–881. [Google Scholar] [CrossRef]
- Flack, H.D.; Bernardinelli, G. Absolute structure and absolute configuration. Acta Crystallogr. Sect. A 1999, 55, 908–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flack, H.D.; Bernardinelli, G. The use of X-ray crystallography to determine absolute configuration. Chirality 2008, 20, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Flack, H.D.; Sadki, M.; Thompson, A.L.; Watkin, D.J. Practical applications of averages and differences of Friedel opposites. Acta Crystallogr. Sect. A 2011, 67, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Osmanova, N.; Schultze, W.; Ayoub, N. Azaphilones: A class of fungal metabolites with diverse biological activities. Phytochem. Rev. 2010, 9, 315–342. [Google Scholar] [CrossRef]
- Kjer, J.; Debbab, A.; Aly, A.H.; Proksch, P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat. Protoc. 2010, 5, 479–490. [Google Scholar] [CrossRef]
- Bruker. Bruker AXS: Apex2, data collection program for the CCD area-detector system; SAINT, data reduction and frame integration program for the CCD area-detector system; Bruker: Billerica, MA, USA, 2014−2015. [Google Scholar]
- Sheldrick, G.M. SADABS: Area-Detector Absorption Correction; University of Goettingen: Goettingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Brandenburg, K. Diamond (Version 4), Crystal and Molecular Structure Visualization; Crystal Impact−K, Brandenburg & H. Putz Gbr: Bonn, Germany, 2009. [Google Scholar]
No. | 1 a,c | 2 a,c | 7 b | 8 a,c | 9 b |
---|---|---|---|---|---|
1 | 67.8, CH2 | 68.2, CH2 | 68.5, CH2 | 68.4, CH2 | 68.0, CH2 |
3 | 160.2, C | 168.2, C | 160.5, C | 160.2, C | 160.2, C |
4 | 102.4, CH | 100.9, CH | 102.8, CH | 102.6 CH | 102.8, CH |
4a | 149.4, C | 149.2, C | 150.3, C | 149.9, C | 148.9, C |
5 | 116.6, CH | 115.7, CH | 116.6, CH | 116.6, CH | 117.1, CH |
6 | 192.3, C | 192.7, C | 193.8, C | 193.4, C | 193.3, C |
7 | 83.4, C | 83.4, C | 85.6, C | 85.4, C | 82.5, C |
8 | 70.1, CH | 70.4, CH | 69.8, CH | 69.7, CH | 70.7, CH |
8a | 38.1, CH | 38.0, CH | 37.8, CH | 37.5, CH | 38.2, CH |
9 | 17.9, CH3 | 18.2, CH3 | 16.8, CH3 | 16.6, CH3 | 18.2, CH3 |
10 | 124.9, CH | 36.4, CH2 | 125.4, CH | 125.3, CH | 125.2, CH |
11 | 134.1, CH | 20.0, CH2 | 133.9, CH | 133.6, CH | 133.9, CH |
12 | 18.2, CH3 | 13.6, CH3 | 18.4, CH3 | 18.2, CH3 | 18.4, CH3 |
1′ | 164.3, C | 164.4, C | 165.3, C | 164.9, C | 166.2, C |
2′ | 122.2, C | 122.3, C | 117.4, C | 117.2, C | 115.5, C |
3′ | 152.8, C | 152.9, C | 156.2, C | 157.3, C | 159.0, C |
4′ | 112.9, C | 112.8, C | 97.1, CH | 93.8, CH | 96.9, CH |
5′ | 149.2, C | 149.8, C | 154.0, C | 155.8, C | 157.6, C |
6′ | 117.0, C | 117.1, C | 105.3, C | 106.6, C | 109.2, CH |
7′ | 134.3, C | 134.5, C | 137.4, C | 138.1, C | 140.0, C |
8′ | 16.9, CH3 | 17.1, CH3 | 20.2, CH3 | 20.1, CH3 | 19.6, CH3 |
8-OAc | 170.0, C | 170.1, C | 169.7, C | ||
20.5, CH3 | 20.8, CH3 | 20.8, CH3 | |||
3′-OMe | 62.4, CH3 | 62.6, CH3 | 56.5, CH3 | 56.3, d CH3 | 56.0, CH3 |
5′-OMe | 56.4, d CH3 |
No. | 1 a | 2 a | 7 b | 8 a | 9 b |
---|---|---|---|---|---|
1 | 4.34, dd (11.0, 5.0); 3.96, dd (13.0, 11.0) | 4.29, dd (11.0, 5.1); 3.93, dd (13.2, 11.0) | 4.77, dd (10.5, 5.1); 3.84, dd (13.0, 10.5) | 4.77, dd (10.6, 5.0); 3.84, dd (13.0, 10.6) | 4.32, dd (10.8, 5.0); 3.93, dd (13.0, 10.8) |
4 | 5.59, s | 5.53, s | 5.56, s | 5.57, s | 5.57, s |
5 | 5.86, d (1.7) | 5.79, d (1.9) | 5.80, d (1.6) | 5.80, d (1.8) | 5.85, d (1.9) |
8 | 6.11, d (10.7) | 6.09, d (10.7) | 4.74, d (10.7) | 4.75, d (10.7) | 6.11, d (10.7) |
8a | 2.98, dddd (13.0, 10.7, 5.0, 1.7) | 2.94, dddd (13.2, 10.7, 5.1, 1.9) | 2.88, dddd (13.0, 10.7, 5.1, 1.6) | 2.88, dddd (13.0, 10.7, 5.0, 1.8) | 2.96, dddd (13.0, 10.7, 5.0, 1.9) |
9 | 1.56, s | 1.56, s | 1.47, s | 1.47, s | 1.54, s |
10 | 5.91, dq (15.4, 1.3) | 2.20, m | 5.90, dq (15.4, 1.4) | 5.90, dd (15.4, 1.5) | 5.90, dd (15.3, 1.6) |
11 | 6.45, dq (15.4, 7.0) | 1.58, m | 6.47, dq (15.4, 7.0) | 6.46, dd (15.4, 7.0) | 6.42, dd (15.3, 7.0) |
12 | 1.88, dd (7.0, 1.3) | 0.94, t (7.4) | 1.87, dd (7.0, 1.4) | 1.88, dd (7.0, 1.5) | 1.87, dd (7.0, 1.6) |
4′ | 6.52, s | 6.38, s | 6.23, s | ||
6′ | 6.22, s | ||||
8′ | 2.50, s | 2.50, s | 2.48, s | 2.51, s | 2.39, s |
8-OAc | 2.17, s | 2.16, s | 2.15, s | ||
3′-OMe | 3.83, s | 3.83, s | 3.83, s | 3.92, c s | 3.74, s |
5′-OH | 6.04, s | 6.04, s | |||
5′-OMe | 3.89, c s |
Compound | NF-κB inhibition | Cell viability inhibition |
---|---|---|
Falconensin O (1) | 15.7 ± 0.7 | > 200 |
Falconensin A (3) | 53.2 ± 21.4 | 89.7 ± 9.1 |
Falconensin M (4) | 56.5 ± 8.3 | > 200 |
Falconensin N (5) | 71.0 ± 7.3 | > 200 |
Falconensin H (6) | 72.0 ± 28.1 | > 400 |
Falconensin Q (7) | 11.9 ± 2.1 | > 200 |
Falconensin R (8) | 14.6 ± 1.7 | 126.8 ± 5.4 |
Falconensin S (9) | 20.1 ± 5.6 | > 200 |
Falconensin I (11) | 19.5 ± 2.5 | > 400 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Kashef, D.H.; Youssef, F.S.; Hartmann, R.; Knedel, T.-O.; Janiak, C.; Lin, W.; Reimche, I.; Teusch, N.; Liu, Z.; Proksch, P. Azaphilones from the Red Sea Fungus Aspergillus falconensis. Mar. Drugs 2020, 18, 204. https://doi.org/10.3390/md18040204
El-Kashef DH, Youssef FS, Hartmann R, Knedel T-O, Janiak C, Lin W, Reimche I, Teusch N, Liu Z, Proksch P. Azaphilones from the Red Sea Fungus Aspergillus falconensis. Marine Drugs. 2020; 18(4):204. https://doi.org/10.3390/md18040204
Chicago/Turabian StyleEl-Kashef, Dina H., Fadia S. Youssef, Rudolf Hartmann, Tim-Oliver Knedel, Christoph Janiak, Wenhan Lin, Irene Reimche, Nicole Teusch, Zhen Liu, and Peter Proksch. 2020. "Azaphilones from the Red Sea Fungus Aspergillus falconensis" Marine Drugs 18, no. 4: 204. https://doi.org/10.3390/md18040204
APA StyleEl-Kashef, D. H., Youssef, F. S., Hartmann, R., Knedel, T. -O., Janiak, C., Lin, W., Reimche, I., Teusch, N., Liu, Z., & Proksch, P. (2020). Azaphilones from the Red Sea Fungus Aspergillus falconensis. Marine Drugs, 18(4), 204. https://doi.org/10.3390/md18040204