New Cytotoxic Natural Products from the Red Sea Sponge Stylissa carteri
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation of the Isolated Compounds
2.2. Metabolomic Profiling
2.3. Evaluation of the Antitumor Activity In Vitro
2.4. In Silico Studies
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Sponge Material
3.3. Extraction and Isolation
3.4. Ceramide Hydrolysis
3.5. Identification of the Sugar Moiety in Compound 2
3.6. Determination of the Configuration of the Sugar Moiety in 2
3.7. Metabolomic Profiling
3.8. Cytotoxicity Assays
3.9. In Silico Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, Y.; Luo, J.; Qin, J.; Yang, M. Screening techniques for the identification of bioactive compounds in natural products. J. Pharm. Biomed. Anal. 2019, 168, 189–200. [Google Scholar] [CrossRef]
- Abdelhameed, R.F.; Ibrahim, A.K.; Temraz, T.A.; Yamada, K.; Ahmed, S.A. Chemical and biological investigation of the Red Sea sponge Echinoclathria species. Int. J. Pharm. Sci. Res. 2017, 9, 1324–1328. [Google Scholar]
- Liu, M.; El-Hossary, E.M.; Oelschlaeger, T.A.; Donia, M.S.; Quinn, R.J.; Abdelmohsen, U.R. Potential of marine natural products against drug-resistant bacterial infections. Lancet Infect. Dis. 2019, 19, 237–245. [Google Scholar] [CrossRef]
- Hifnawy, M.S.; Aboseada, M.A.; Hassan, H.M.; Tohamy, A.F.; Abdel-Kawi, S.H.; Rateb, M.E.; El Naggar, E.B.; Quinn, R.J.; Abdelmohsen, U.R. Testicular caspase-3 and β-Catenin regulators predicted via comparative metabolomics and docking studies. Metabolites 2020, 10, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelmohsen, U.R.; Balasubramanian, S.; Oelschlaeger, T.A.; Grkovic, T.; Pham, N.B.; Quinn, R.J.; Hentschel, U. Potential of marine natural products against drug-resistant pathogens. Lancet Infect. Dis. 2017, 17, 30–40. [Google Scholar] [CrossRef]
- Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.E.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; et al. Marine natural products: A source of novel anticancer drugs. Mar. Drugs 2019, 17, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anjum, K.; Abbas, S.Q.; Shah, S.A.; Akhter, N.; Batool, S.; Shams ul-Hassan, S. Marine sponges as a drug treasure. Biomol Ther. 2016, 24, 347–362. [Google Scholar] [CrossRef] [Green Version]
- Sayed, A.M.; Alhadrami, H.A.; El-Hawary, S.S.; Mohammed, R.; Hassan, H.M.; Rateb, M.; Abdelmohsen, U.R.; Bakeer, W. Discovery of two brominated oxindole alkaloids as Staphylococcal DNA gyrase and pyruvate kinase inhibitors via inverse virtual screening. Microorganisms 2020, 8, 293. [Google Scholar] [CrossRef] [Green Version]
- El-Hawary, S.S.; Sayed, A.M.; Mohammed, M.; Hassan, H.M.; Rateb, M.E.; Amin, E.; Mohammed, T.A.; El-Mesery, M.; Abdullatif Bin Muhsinah, A.; Alsayari, A.; et al. Bioactive brominated oxindole alkaloids from the Red Sea sponge Callyspongia siphonella. Mar. Drugs 2019, 17, 465. [Google Scholar] [CrossRef] [Green Version]
- Eltahawy, N.A.; Ibrahim, A.K.; Radwan, M.M.; Zayton, S.; Gomaa, M.; ElSohly, M.A.; Hassanean, H.A.; Ahmed, S.A. Mechanism of action of antiepileptic ceramide from Red Sea soft coral Sarcophyton auritum. Bioorg. Med. Chem. Lett. 2015, 25, 5819–5824. [Google Scholar] [CrossRef]
- Hannun, Y.A.; Obeid, L.M. Principles of bioactive lipid signaling: Lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008, 9, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Eltahawy, N.A.; Ibrahim, A.K.; Gomaa, M.S.; Zaitone, S.A.; Radwan, M.M.; Hassanean, H.A.; ElSohly, M.A.; Ahmed, S.A. Anxiolytic and anticonvulsant activity followed by molecular docking study of ceramides from the Red Sea sponge Negombata sp. Med. Chem. Res. 2019, 28, 1818–1827. [Google Scholar] [CrossRef]
- Giles, E.C.; Saenz-Agudelo, P.; Berumen, M.L.; Ravasi, T. Novel polymorphic microsatellite markers developed for a common reef sponge Stylissa carteri. Mar. Biodiv. 2013, 43, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Linington, R.G.; Williams, D.E.; Tahir, A.; Van Soest, R.; Andersen, R.J. Latonduines A and B, new alkaloids isolated from the marine sponge Stylissa carteri: Structure elucidation, synthesis, and biogenetic implications. Org. Lett. 2003, 15, 2735–2738. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Laville, R.; Martin, M.; Tilvi, S.; Moriou, C.; Gallard, J.; Ermolenko, L.; Debitus, C.; Al-Mourabit, A. Unprecedented stylissazoles A–C from Stylissa carteri: Another dimension for marine pyrrole-2-aminoimidazole metabolite diversity. Angew. Chem. Int. Ed. 2010, 49, 4775–4779. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, A.; Kremb, S.; Bader, T.; Helfer, M.; Schmitt-Kopplin, P.; Gerwick, W.; Brack-Werner, R.; Voolstra, C. Alkaloids from the sponge Stylissa carteri present prospective scaffolds for the inhibition of Human Immunodeficiency Virus 1 (HIV-1). Mar. Drugs 2016, 14, 28. [Google Scholar] [CrossRef] [Green Version]
- Inbaneson, S.J.; Ravikumar, S. In vitro antiplasmodial activity of marine sponge Stylissa carteri associated bacteria against Plasmodium falciparum. Asian Pac. J. Trop. Dis. 2012, 2, 370–374. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, Y.; Liu, K.; Hua, H.; Zhu, H.; Pei, Y. Gracilarioside and gracilamides from the red alga Gracilaria asiatica. J. Nat. Prod. 2006, 69, 1488–1491. [Google Scholar] [CrossRef]
- Azuma, H.; Takao, R.; Niiro, H.; Shikata, K.; Tamagaki, S.; Tachibana, T.; Ogino, K. Total syntheses of symbioramide derivatives from L-Serine and their antileukemic activities. J. Org. Chem. 2003, 68, 2790–2797. [Google Scholar] [CrossRef]
- Sandjo, L.; Hannewald, P.; Yemloul, M.; Kirsch, G.; Ngadjui, B. Triumfettamide and Triumfettoside Ic, two ceramides and other secondary metabolites from the stems of wild Triumfetta cordifolia A. Rich. (Tiliaceae). Helv. Chim. Acta. 2008, 91, 1326–1335. [Google Scholar] [CrossRef]
- Natori, T.; Morita, M.; Akimoto, K.; Koezuka, Y. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron Lett. 1994, 50, 2771–2784. [Google Scholar] [CrossRef]
- Natori, T.; Koczuka, Y.; Higa, T. Agelasphins, novel alpha-galactosylceramides from the marine sponge Agelas mauritianus. Tetrahedron Lett. 1993, 34, 5591–5592. [Google Scholar] [CrossRef]
- Kawatake, S.; Nakamura, K.; Inagaki, M.; Higushi, R. Isolation and structural determination of six glucocerebrosides from the starfish Luidia maculata. Chem. Pharm. Bull. 2002, 50, 1091–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wu, Y.; Chen, D. Structure determination and synthesis of a new cerebroside isolated from the traditional Chinese medicine Typhonium giganteum. Engl. Tetrahedron Lett. 2002, 43, 3529–3532. [Google Scholar] [CrossRef]
- Abdelhafez, O.H.; Othman, E.M.; Fahim, J.R.; Desoukey, S.Y.; Pimentel-Elardo, S.M.; Nodwell, J.R.; Schirmeister, T.; Tawfike, A.; Abdelmohsen, U.R. Metabolomics analysis and biological investigation of three Malvaceae plants. Phytochem. Anal. 2019, 31, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Dictionary of Natural Products. Available online: http://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml (accessed on 28 August 2017).
- METLIN. Available online: http://metlin.scripps.edu/index.php (accessed on 15 September 2017).
- Vardaro, R.R.; Matzo, V.D.; Crispino, A.; Cimino, G. Cyercenes, novel polypropionate pyrones from the autotomizing Mediterranean mollusc Cyerce cristallina. Tetrahedron Lett. 1991, 41, 5569–5576. [Google Scholar] [CrossRef]
- Gochfeld, D.J.; Hamann, M.T. Isolation and biological evaluation of filiformin, plakortide F, and plakortone G from the Caribbean sponge Plakortis sp. J. Nat. Prod. 2001, 64, 1477–1479. [Google Scholar] [CrossRef]
- Rao, K.V.; Seshadri, T.R.; Sood, M.S. Isolation and constitution of pedicellic acid: A new dicarboxylic acid from the leaves of Didymocarpus pedicellata. Tetrahedron Lett. 1966, 22, 1495–1498. [Google Scholar] [CrossRef]
- Li, C.; Schmitz, F.J.; Kelly-Borges, M. Six new spongian diterpenes from the sponge Spongia matamata. J. Nat. Prod. 1999, 62, 287–290. [Google Scholar] [CrossRef]
- Martin, D.; Higgs, D.; Faulkner, J. Plakortin, an antibiotic from Plakortis halichondrioides. J. Org. Chem. 1978, 43, 3454–3457. [Google Scholar]
- Gao, J.; Wang, C.; Zhang, A.; Liu, J. A new trihydroxy fatty acid from the ascomycete, Chinese truffle Tuber indicum. Lipids 2001, 36, 1365–1370. [Google Scholar] [CrossRef] [PubMed]
- Pattenden, G.; Wickramasinghe, W.A.; Bandaranayake, W.M. Benzylthiocrellidone, a novel thioether with strong UV A and B absorption from the Great Barrier Reef sponge Crella spinulata (Poecilosclerida: Crellidae). Article 2002, 9, 205–216. [Google Scholar]
- Shiono, Y.; Sugasawa, H.; Kurihara, N.; Nazarova, M.; Murayama, T.; Takahashi, K.; Ikeda, M. Three lanostane triterpenoids from the fruiting bodies of Stropharia aeruginosa. J. Asian Nat. Prod. Res. 2005, 7, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Aknin, M.; Gros, E.; Vacelet, J.; Kashman, Y.; Gauvin-Bialecki, A. Sterols from the Madagascar sponge Fascaplysinopsis sp. Mar. Drugs 2010, 8, 2961–2975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahn, J.M.; Vistica, D.; Warren, J.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Nat. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Chemical Computing Group Inc. Molecular Operating Environment (MOE) 2014.0901; Chemical Computing Group Inc.: Montreal, QC, Canada, 2016. [Google Scholar]
- Muto, S.; Senda, M.; Akai, Y.; Sato, L.; Suzuki, T.; Nagai, R.; Senda, T.; Horikoshi, M. Relationship between the structure of SET/TAF-Iβ/INHAT and its histone chaperone activity. Proc. Natl. Acad. Sci. USA 2007, 104, 4285–4290. [Google Scholar] [CrossRef] [Green Version]
- De Palma, R.M.; Parnham, S.R.; Li, Y.; Oaks, J.J.; Peterson, Y.K.; Szulc, Z.M.; Roth, B.M.; Xing, Y.; Ogretmen, B. The NMR-based characterization of the FTY720-SET complex reveals an alternative mechanism for the attenuation of the inhibitory SET-PP2A interaction. FASEB J. 2019, 33, 7647–7666. [Google Scholar] [CrossRef]
- Liu, J.; Beckman, B.S.; Foroozesh, M. A review of ceramide analogs as potential anticancer agents. Future Med. Chem. 2013, 5, 1405–1421. [Google Scholar] [CrossRef] [Green Version]
- Mullen, T.D.; Obeid, L.M. Ceramide and apoptosis: Exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anticancer. Agents Med. Chem. 2012, 12, 340–363. [Google Scholar] [CrossRef]
- Elsayed, Y.; Refaat, J.; Abdelmohsen, U.R.; Othman, E.M.; Stopper, H.; Fouad, M.A. Metabolomic profiling and biological investigation of the marine sponge-derived bacterium Rhodococcus sp. UA13. Phytochem. Anal. 2018, 29, 543–548. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | ||||
---|---|---|---|---|---|
Position | δH (mult., JHz) | δC | Position | δH (mult., JHz) | δC |
1 | 4.43, dd (8.0, 4.8) | 61.8 | 1a | 4.32, m | 68.2 |
2 | 5.12, dd (8.0, 4.8) | 52.7 | 1b | 4.59, m | |
3 | 4.29, m | 76.5 | 2 | 5.29, m | 50.4 |
4 | 4.62, m | 72.7 | 3 | 4.39, m | 76.5 |
5 | 1.25, m | 30.2 | 4 | 4.28, m | 72.3 |
6 | 1.25, m | 30.0 | 5 | 1.27, m | 31.9 |
7–14 | 1.25, m | 29.7 | 6 | 1.27, m | 30.2 |
15 | 1.25, m | 29.9 | 7-18 | 1.27, m | 29.9 |
16 | 1.25, m | 22.7 | 19 | 0.85, t (6.8) | 14.2 |
17 | 0.85, t (6.8) | 14.1 | 1′ | - | 175.0 |
1′ | - | 175.0 | 2′ | 4.63, m | 72.4 |
2′ | 4.37, m | 72.2 | 3′ | 2.00, m | 31.9 |
3′ | 2.05, m | 30.2 | 4′ | 1.27, m | 30.2 |
4′ | 1.25, m | 30.0 | 5′–20′ | 1.27, m | 29.9 |
5′13′ | 1.25, m | 29.7 | 21′ | 0.85, t (6.8) | 14.2 |
14′ | 1.25, m | 22.7 | NH | 8.53, d (8.4) | - |
15′ | 0.85, t (6.8) | 14.1 | 1′′ | 5.61, d (3.4) | 101.2 |
NH | 8.59, d (8.4) | 2′′ | 4.64, m | 70.2 | |
3′′ | 4.50, m | 71.6 | |||
4′′ | 4.54, m | 71.0 | |||
5′′ | 4.50, m | 73.1 | |||
6′′ | 4.33, m | 62.6 |
RT (min) | MZMine ID | Molecular Weight | Name | Source | Reference | |
---|---|---|---|---|---|---|
1 | 5.108521 | 209 | 234.1261 | Cyercene (3) | Mollusca Cyerce cristallina | [28] |
2 | 10.04907 | 57 | 278.2253 | Plakortone G (4) | Porifera Plakortis sp | [29] |
3 | 8.3637 | 13 | 314.2445 | Pedicellic acid (5) | Didymocarpus pedicellate | [30] |
4 | 10.10114 | 263 | 300.2095 | Spongia-13(16),14-dien-19-al (6) | Porifera Spongia officinalis | [31] |
5 | 7.916396 | 12 | 312.2289 | Plakortin (7) | Plakortis halichondrioides, Sponge | [32] |
6 | 8.382825 | 227 | 316.2043 | Spongia-13(16),14-dien-19-oic acid (8) | Porifera Spongia officinalis | [31] |
7 | 6.245154 | 20 | 330.2394 | 9,10,11-Trihydroxy-(12Z)-12-octadecenoic acid (9) | Chinese truffle Tuber indicum | [33] |
8 | 3.509688 | 291 | 412.1711 | Benzylthiocrellidone (10) | Porifera Crella spinulata | [34] |
9 | 13.7787 | 225 | 676.4528 | Methyl aeruginosate C (11) | Stropharia aeruginosa | [35] |
10 | 13.4309 | 228 | 720.3484 | Salarin B (12) | Porifera Fascaplysinopsis sp | [36] |
HepG2 | MCF-7 | |
---|---|---|
IC50 (µM) | ||
1 | 36.8 ± 0.16 | 21.1 ± 0.17 |
2 | 30.5 ± 0.23 | 27.5 ± 0.18 |
Cisplatin | 21.3 ± 0.40 | 15.3 ± 0.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelhameed, R.F.A.; Habib, E.S.; Eltahawy, N.A.; Hassanean, H.A.; Ibrahim, A.K.; Mohammed, A.F.; Fayez, S.; Hayallah, A.M.; Yamada, K.; Behery, F.A.; et al. New Cytotoxic Natural Products from the Red Sea Sponge Stylissa carteri. Mar. Drugs 2020, 18, 241. https://doi.org/10.3390/md18050241
Abdelhameed RFA, Habib ES, Eltahawy NA, Hassanean HA, Ibrahim AK, Mohammed AF, Fayez S, Hayallah AM, Yamada K, Behery FA, et al. New Cytotoxic Natural Products from the Red Sea Sponge Stylissa carteri. Marine Drugs. 2020; 18(5):241. https://doi.org/10.3390/md18050241
Chicago/Turabian StyleAbdelhameed, Reda F. A., Eman S. Habib, Nermeen A. Eltahawy, Hashim A. Hassanean, Amany K. Ibrahim, Anber F. Mohammed, Shaimaa Fayez, Alaa M. Hayallah, Koji Yamada, Fathy A. Behery, and et al. 2020. "New Cytotoxic Natural Products from the Red Sea Sponge Stylissa carteri" Marine Drugs 18, no. 5: 241. https://doi.org/10.3390/md18050241
APA StyleAbdelhameed, R. F. A., Habib, E. S., Eltahawy, N. A., Hassanean, H. A., Ibrahim, A. K., Mohammed, A. F., Fayez, S., Hayallah, A. M., Yamada, K., Behery, F. A., Al-Sanea, M. M., Alzarea, S. I., Bringmann, G., Ahmed, S. A., & Abdelmohsen, U. R. (2020). New Cytotoxic Natural Products from the Red Sea Sponge Stylissa carteri. Marine Drugs, 18(5), 241. https://doi.org/10.3390/md18050241