Chitosan Films Incorporated with Exopolysaccharides from Deep Seawater Alteromonas sp.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of Marine Bacterial Exopolysaccharides
2.2. Production of EPS
2.3. Optical Properties
2.4. Barrier and Mechanical Properties
2.5. Physicochemical Properties and Film Morphology
3. Materials and Methods
3.1. Materials
3.2. Screening of EPS-Producing Marine Bacteria
3.3. Bacterial Strains and Growth Conditions
3.4. EPS Isolation from Alteromonas sp. Isolates
3.5. EPS Isolation from Alteromonas sp. Isolates
3.6. Film Preparation
3.7. UV–Vis Spectroscopy
3.8. Color Measurements
3.9. Gloss Measurements
3.10. Water Contact Angle (WCA)
3.11. Water Vapor Permeability (WVP)
3.12. Mechanical Properties
3.13. Fourier Transform Infrared (FTIR) Spectroscopy
3.14. X-Ray Diffraction (XRD)
3.15. Scanning Electron Microscopy (SEM)
3.16. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A.; Yarmand, M.S. Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem. 2011, 127, 1496–1502. [Google Scholar] [CrossRef]
- Negm, N.A.; Hefni, H.H.H.; Abd-Elaal, A.A.A.; Badr, E.A.; Kana, M.T.H.A. Advancement on modification of chitosan biopolymer and its potential applications. Int. J. Biol. Macromol. 2020, 152, 681–702. [Google Scholar] [CrossRef] [PubMed]
- Riezk, A.; Raynes, J.G.; Yardley, V.; Murdan, S.; Croft, S.L. Activity of chitosan and its derivatives against Leishmania major and Leishmania mexicana in vitro. Antimicrob. Agents Chemother. 2020, 64, e01772-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Gänzle, M.G. Challenges and opportunities related to the use of chitosan as a food preservative. J. Appl. Microbiol. 2018, 126, 1318–1331. [Google Scholar] [CrossRef] [Green Version]
- Ways, T.M.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 2018, 10, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andonegi, M.; Las Heras, K.; Santos-Vizcaíno, E.; Igartua, M.; Hernandez, R.M.; de la Caba, K.; Guerrero, P. Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydr. Polym. 2020, 237, 116159. [Google Scholar] [CrossRef]
- Ruiz-Navajas, Y.; Viuda-Martos, M.; Sendra, E.; Perez-Alvarez, J.A.; Fernández-López, J. In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 2013, 30, 386–392. [Google Scholar] [CrossRef]
- Di Filippo, M.F.; Panzavolta, S.; Albertini, B.; Bonvicini, F.; Gentilomi, G.A.; Orlacchio, R.R.; Passerini, N.; Bigi, A.; Dolci, L.S. Functional properties of chitosan films modified by snail mucus extract. Int. J. Biol. Macromol. 2020, 143, 126–135. [Google Scholar] [CrossRef]
- Garcia-Orue, I.; Santos-Vizcaino, E.; Etxabide, A.; Uranga, J.; Bayat, A.; Guerrero, P.; Igartua, M.; de la Caba, K.; Hernandez, R.M. Development of bioinspired gelatin and gelatin/chitosan bilayer hydrofilms for wound healing. Pharmaceutics 2019, 11, 314. [Google Scholar] [CrossRef] [Green Version]
- Delbarre-Ladrat, C.; Sinquin, C.; Lebellenger, L.; Zykwinska, A.; Colliec-Jouault, S. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front. Chem. 2014, 2, 85. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, S.S.; Amer, S.K.; Selim, M.S.; Rifaat, H.M. Characterization and applications of exopolysaccharide produced by marine Bacillus altitudinis MSH2014 from Ras Mohamed, Sinai, Egypt. Egypt J. Basic Appl. Sci. 2018, 5, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Jiang, J.; Du, R.; Guo, S.; Ping, W.; Ling, H.; Ge, J. Purification and characterization of an exopolysaccharide from Leuconostoc lactis L2. Int. J. Biol. Macromol. 2019, 139, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Selim, M.S.; Amer, S.K.; Mohamed, S.S.; Mounier, M.M.; Rifaat, H.M. Production and characterisation of exopolysaccharide from Streptomyces carpaticus isolated from marine sediments in Egypt and its effect on breast and colon cell lines. J. Genet. Eng. Biotechnol. 2018, 16, 23–28. [Google Scholar] [CrossRef]
- Sahana, T.G.; Rekha, P.D. A bioactive exopolysaccharide from marine bacteria Alteromonas sp. PRIM-28 and its role in cell proliferation and wound healing in vitro. Int. J. Biol. Macromol. 2019, 131, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Compaoré-Sérémé, D.; Sawadogo-Lingani, H.; Coda, R.; Katina, K.; Maina, N.H. Influence of dextran synthesized in situ on the rheological, technological and nutritional properties of whole grain pearl millet bread. Food Chem. 2019, 285, 221–230. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, J.M.; Amaral, S.A.; Burkert, C.A.V. Rheological, textural and emulsifying properties of an exopolysaccharide produced by Mesorhizobium loti grown on a crude glycerol-based medium. Int. J. Biol. Macromol. 2018, 120, 2180–2187. [Google Scholar] [CrossRef] [PubMed]
- Ale, E.C.; Rojas, M.F.; Reinheimer, J.A.; Binetti, A.G. Lactobacillus fermentum: Could EPS production ability be responsible for functional properties? Food Microbiol. 2020, 90, 103465. [Google Scholar] [CrossRef]
- Tabernero, A.; Cardea, S. Supercritical carbon dioxide techniques for processing microbial exopolysaccharides used in biomedical applications. Mater. Sci. Eng. C 2020, 112, 110940. [Google Scholar] [CrossRef]
- Sahana, T.G.; Rekha, P.D. A novel exopolysaccharide from marine bacterium Pantoea sp. YU16-S3 accelerates cutaneous wound healing through Wnt/β-catenin pathway. Carbohydr. Polym. 2020, 238, 116191. [Google Scholar] [CrossRef]
- Wang, J.; Salem, D.R.; Sani, R.K. Extremophilic exopolysaccharides: A review and new perspectives on engineering strategies and applications. Carbohydr. Polym. 2019, 205, 8–26. [Google Scholar] [CrossRef]
- García-Martínez, J.; Acinas, S.G.; Massana, R.; Rodriguez-Valera, F. Prevalence and microdiversity of Alteromonas macleodii-like microorganisms in different oceanic regions. Environ. Microbiol. 2002, 4, 42–50. [Google Scholar] [CrossRef] [PubMed]
- López-Pérez, M.; Rodriguez-Valera, F. Pangenome evolution in the marine bacerium Alteromonas. Genome Biol. Evol. 2016, 8, 1556–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, P.; Pignet, P.; Talmont, F.; Bozzi, L.; Fournet, B.; Guezennec, J.; Jeanthon, C.; Prieur, D. Production and characterization of an exopolysaccharide excreted by a deep-sea Alvinella pompejana. Appl. Environ. Microbiol. 1994, 60, 4134–4141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Costaouëc, T.; Cérantola, S.; Ropartz, D.; Ratiskol, J.; Sinquin, C.; Colliec-Jouault, S.; Boisset, C. Structural data on a bacterial exopolysaccharide produced by a deep-sea Alteromonas macleodii strain. Carbohydr. Polym. 2012, 90, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Finore, I.; Di Donato, P.; Mastascusa, V.; Nicolaus, B.; Poli, A. Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar. Drugs 2014, 12, 3005–3024. [Google Scholar] [CrossRef] [Green Version]
- Estupiñán, M.; Hernández, I.; Saitua, E.; Bilbao, M.E.; Mendibil, I.; Ferrer, J.; Alonso-Sáez, L. Novel Vibrio spp. strains producing omega-3 fatty acids isolated from coastal seawater. Mar. Drugs 2020, 18, 99. [Google Scholar] [CrossRef] [Green Version]
- Roca, C.; Lehmann, M.; Torres, C.A.V.; Baptista, S.; Gaudêncio, S.P.; Freitas, F.; Reis, M.A.M. Exopolysaccharide production by a marine Pseudoalteromonas sp. strain isolated from Madeira Archipelago ocean sediments. New Biotechnol. 2016, 33, 460–466. [Google Scholar] [CrossRef]
- Ji, F.; You, L.; Wang, L.; Liu, Z.; Zhang, Y.; Lv, S. Layer-by-layer assembled chitosan-based antibacterial films with improved stability under alkaline conditions. Ind. Eng. Chem. Res. 2016, 55, 10664–10670. [Google Scholar] [CrossRef]
- Luchese, C.L.; Abdalla, V.F.; Spada, J.C.; Tessaro, I.C. Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocoll. 2018, 82, 209–218. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, L.; Chafer, M.; Chiralt, A.; Gonzalez-Martinez, C. Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydr. Polym. 2010, 82, 277–283. [Google Scholar] [CrossRef]
- Grande-Tovar, C.D.; Serio, A.; Delgado-Ospina, J.; Paparella, A.; Rossi, C.; Chaves-López, C. Chitosan films incorporated with Thymus capitatus essential oil: Mechanical properties and antimicrobial activity against degradative bacterial species isolated from tuna (Thunnus sp.) and swordfish (Xiphias gladius). J. Food Sci. Technol. 2018, 55, 4256–4265. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 1989, 42, 872–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, P.; Fulcher, R. Interaction of some dyes with cereal β-glucans. Cereal Chem. 1978, 55, 952–966. [Google Scholar]
- Rougeaux, H.; Pichon, R.; Kervarec, N.; Raguénès, G.H.C.; Guezennec, J.G. Novel bacterial exopolysaccharides from deep-sea hydrothermal vents. Carbohydr. Polym. 1996, 31, 237–242. [Google Scholar] [CrossRef]
- American Society for Testing and Materials (ASTM). Standard test method for specular gloss, D523-18. In Annual Book of ASTM Standards; American Society for Testing and Materials: Philadelphia, PA, USA, 2018. [Google Scholar]
- American Society for Testing and Materials (ASTM). Standard test methods for water vapor transmission of materials, E96-00. In Annual Book of ASTM Standards; American Society for Testing and Materials: Philadelphia, PA, USA, 2000. [Google Scholar]
- American Society for Testing and Materials (ASTM). Standard test method for tensile properties of plastics, D1708-13. In Annual Book of ASTM Standards; American Society for Testing and Materials: Philadelphia, PA, USA, 2013. [Google Scholar]
Films | L* | a* | b* | ∆E * | Gloss60 (GU) |
---|---|---|---|---|---|
CH | 95.5 ± 0.5 a | −0.08 ± 0.03 a | 2.39 ± 0.06 a | --- | 10 ± 2 a |
CHE805 | 96.8 ± 0.3 a | −0.12 ± 0.03 a | 2.56 ± 0.09 a | 0.67 | 10 ± 2 a |
CHE611 | 96.6 ± 0.5 a | −0.22 ± 0.09 b | 3.04 ± 0.40 b | 0.33 | 5 ± 2 b |
Films | WCA (°) | WVP·109 (g/cm·s·Pa) | TS (MPa) | EAB (%) | EM (MPa) |
---|---|---|---|---|---|
CH | 105 ± 2 a | 1.37 ± 0.07 a | 41.6 ± 1.0 a | 24.7 ± 2.1 a | 1193 ± 24 a |
CHE805 | 109 ± 1 a | 1.51 ± 0.02 a | 42.7 ± 1.5 a | 23.7 ± 1.9 a | 1186 ± 29 a |
CHE611 | 115 ± 3 b | 1.54 ± 0.01 a | 39.5 ± 0.5 b | 16.6 ± 1.3 b | 1008 ± 26 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarandona, I.; Estupiñán, M.; Pérez, C.; Alonso-Sáez, L.; Guerrero, P.; de la Caba, K. Chitosan Films Incorporated with Exopolysaccharides from Deep Seawater Alteromonas sp. Mar. Drugs 2020, 18, 447. https://doi.org/10.3390/md18090447
Zarandona I, Estupiñán M, Pérez C, Alonso-Sáez L, Guerrero P, de la Caba K. Chitosan Films Incorporated with Exopolysaccharides from Deep Seawater Alteromonas sp. Marine Drugs. 2020; 18(9):447. https://doi.org/10.3390/md18090447
Chicago/Turabian StyleZarandona, Iratxe, Mónica Estupiñán, Carla Pérez, Laura Alonso-Sáez, Pedro Guerrero, and Koro de la Caba. 2020. "Chitosan Films Incorporated with Exopolysaccharides from Deep Seawater Alteromonas sp." Marine Drugs 18, no. 9: 447. https://doi.org/10.3390/md18090447
APA StyleZarandona, I., Estupiñán, M., Pérez, C., Alonso-Sáez, L., Guerrero, P., & de la Caba, K. (2020). Chitosan Films Incorporated with Exopolysaccharides from Deep Seawater Alteromonas sp. Marine Drugs, 18(9), 447. https://doi.org/10.3390/md18090447