New Biscembranoids Sardigitolides A–D and Known Cembranoid-Related Compounds from Sarcophyton digitatum: Isolation, Structure Elucidation, and Bioactivities
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Soft Coral Material
3.3. Extraction and Isolation
3.4. Cytotoxicity Assay
3.5. Anti-Inflammatory Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rodríguez, A.D.; Li, Y.; Dhasmana, H. New marine cembrane diterpenoids isolated from the Caribbean gorgonian Eunicea mammosa. J. Nat. Prod. 1993, 7, 1101–1113. [Google Scholar] [CrossRef]
- Katsuyama, I.; Fahmy, H.; Zjawiony, J.K.; Khalifa, S.I.; Kilada, R.W.; Konoshima, T.; Takasaki, M.; Tokuda, H. Semisynthesis of new sarcophine derivatives with chemopreventive activity. J. Nat. Prod. 2002, 65, 1809–1814. [Google Scholar] [CrossRef]
- Hegazy, M.E.F.; Elshamy, A.I.; Mohamed, T.A.; Hamed, A.R.; Ibrahim, M.A.A.; Ohta, S.; Paré, P.W. Cembrene diterpenoids with ether linkages from Sarcophyton ehrenbergi: An anti-proliferation and molecular-docking assessment. Mar. Drugs 2017, 15, 192. [Google Scholar] [CrossRef]
- Tang, G.H.; Sun, Z.H.; Zou, Y.H.; Yin, S. New cembrane-type diterpenoids from the South China Sea soft coral Sarcophyton ehrenbergi. Molecules 2016, 21, 587. [Google Scholar] [CrossRef]
- Hegazy, M.E.F.; Mohamed, T.A.; Elshamy, A.I.; Hamed, A.R.; Ibrahim, M.A.A.; Ohta, S.; Umeyama, A.; Paré, P.W.; Efferth, T. Sarcoehrenbergilides D–F: Cytotoxic cembrene diterpenoids from the soft coral Sarcophyton ehrenbergi. RSC Adv. 2019, 9, 27183–27189. [Google Scholar] [CrossRef] [Green Version]
- Hassan, H.M.; Rateb, M.E.; Hassan, M.H.; Sayed, A.M.; Shabana, S.; Raslan, M.; Amin, E.; Behery, F.A.; Ahmed, O.M.; Bin Muhsinah, A.; et al. New antiproliferative cembrane diterpenes from the Red Sea Sarcophyton species. Mar. Drugs 2019, 17, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.W.; Ye, F.; Zhu, Z.D.; Huang, H.; Mao, S.C.; Guo, Y.W. Cembrane-type diterpenoids from the South China Sea soft coral Sarcophyton mililatensis. Acta Pharm. Sin. B 2018, 8, 944–955. [Google Scholar] [CrossRef] [PubMed]
- Sala, G.D.; Agriesti, F.; Mazzoccoli, C.; Tataranni, T.; Costantino, V.; Piccoli, C. Clogging the ubiquitin-proteasome machinery with marine natural products: Last decade update. Mar. Drugs 2018, 16, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Li, H.; Zhang, Q.; Yang, M.; Gu, Y.C.; Liang, L.F.; Tang, W.; Guo, Y.W. Rare cembranoids from Chinese soft coral Sarcophyton ehrenbergi: Structural and stereochemical studies. J. Org. Chem. 2019, 84, 5091–5098. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.C.; Huang, C.Y.; Ahmed, A.F.; Hwang, T.L.; Dai, C.F.; Sheu, J.H. New cembranoids and a biscembranoid peroxide from the soft coral Sarcophyton cherbonnieri. Mar. Drugs 2018, 16, 276. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.F.; Chen, Y.W.; Huang, C.Y.; Tseng, Y.J.; Lin, C.C.; Dai, C.F.; Wu, Y.C.; Sheu, J.H. Isolation and structure elucidation of cembranoids from a Dongsha Atoll soft coral Sarcophyton stellatum. Mar. Drugs 2018, 16, 210. [Google Scholar] [CrossRef] [Green Version]
- Kamada, T.; Kang, M.C.; Phan, C.S.; Zanil, I.I.; Jeon, Y.J.; Vairappan, C.S. Bioactive cembranoids from the soft coral genus Sinularia sp. in Borneo. Mar. Drugs 2018, 16, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W.Y.; Chen, B.W.; Huang, C.Y.; Wen, Z.H.; Sung, P.J.; Su, J.H.; Dai, C.F.; Sheu, J.H. Bioactive cembranoids, sarcocrassocolides P–R, from the Dongsha Atoll soft coral Sarcophyton crassocaule. Mar. Drugs 2014, 12, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.Y.; Su, J.H.; Wen, Z.H.; Kuo, Y.H.; Sheu, J.H. Cytotoxic and anti-inflammatory cembranoids from the Dongsha Atoll soft coral Sarcophyton crassocaule. Bioorganic Med. Chem. 2010, 18, 1936–1941. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Ahmed, A.F.; Su, J.H.; Chao, C.H.; Wu, Y.C.; Chiang, M.Y.; Sheu, J.H. Crassocolides A−F, Cembranoids with a trans-Fused Lactone from the Soft Coral Sarcophyton crassocaule. J. Nat. Prod. 2006, 69, 1554–1559. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.H.; Li, W.L.; Huang, C.Y.; Ahmed, A.F.; Dai, C.F.; Wu, Y.C.; Lu, M.C.; Liaw, C.C.; Sheu, J.H. Isoprenoids from the soft coral Sarcophyton glaucum. Mar. Drugs 2017, 15, 202. [Google Scholar] [CrossRef] [Green Version]
- Jia, R.; Kurtán, T.; Mándi, A.; Yan, X.H.; Zhang, W.; Guo, Y.W. Biscembranoids formed from an α,β-unsaturated γ-lactone ring as a dienophile: Structure revision and establishment of their absolute configurations using theoretical calculations of electronic circular dichroism spectra. J. Org. Chem. 2013, 78, 3113–3119. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Sung, P.J.; Uvarani, C.; Su, J.H.; Lu, M.C.; Hwang, T.L.; Dai, C.F.; Sheu, J.H. Glaucumolides A and B, biscembranoids with new structural type from a cultured soft coral Sarcophyton glaucum. Sci. Rep. 2015, 5, 15624. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Yu, Q.; Li, J.; Riccio, R.; Lauro, G.; Bifulco, G.; Kurtán, T.; Mándi, A.; Tang, H.; Li, T.J.; et al. Bissubvilides A and B, cembrane–capnosane heterodimers from the soft coral Sarcophyton subviride. J. Nat. Prod. 2016, 79, 2552–2558. [Google Scholar] [CrossRef]
- Sun, P.; Cai, F.Y.; Lauro, G.; Tang, H.; Su, L.; Wang, H.L.; Li, H.H.; Mándi, A.; Kurtán, T.; Riccio, R.; et al. Immunomodulatory biscembranoids and assignment of their relative and absolute configurations: Data set modulation in the density functional theory/nuclear magnetic resonance approach. J. Nat. Prod. 2019, 82, 1264–1273. [Google Scholar] [CrossRef]
- Yan, P.C.; Lv, Y.; van Ofwegen, L.; Proksch, P.; Lin, W.H. Lobophytones A−G, new isobiscembranoids from the soft coral Lobophytum pauciflorum. Org. Lett. 2010, 12, 2484–2487. [Google Scholar] [CrossRef] [PubMed]
- Zubair, M.S.; Al-Footy, K.O.; Ayyed, S.-E.N.; Al-Lihaibi, S.S.; Alarif, W.M. A review of steroids from Sarcophyton species. Nat. Prod. Res. 2016, 30, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Elkhawas, Y.A.; Elissawy, A.M.; Elnaggar, M.S.; Mostafa, N.M.; Al-Sayed, E.; Bishr, M.M.; Singab, A.N.B.; Salama, O.M. Chemical diversity in species belonging to soft coral genus Sacrophyton and its impact on biological activity: A review. Mar. Drugs 2020, 18, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J.Y.; Yang, R.L.; Zeng, L.M. Sardisterol, a new polyhydroxylated sterol from the soft coral Sarcophyton digitatum moser. Chin. J. Chem. 2001, 19, 515–517. [Google Scholar] [CrossRef]
- Xi, Z.F.; Bie, W.; Chen, W.; Liu, D.; van Ofwegen, L.; Proksch, P.; Lin, W.H. Sarcophytolides G–L, new biscembranoids from the soft coral Sarcophyton elegans. Helv. Chim. Acta. 2013, 96, 2218–2227. [Google Scholar] [CrossRef]
- Yan, X.H.; Gavagnin, M.; Cimino, G.; Guo, Y.W. Two new biscembranes with unprecedented carbon skeleton and their probable biogenetic precursor from the Hainan soft coral Sarcophyton latum. Tetrahedron Lett. 2007, 48, 5313–5316. [Google Scholar] [CrossRef]
- Gross, H.; Wright, A.D.; Beli, W.; König, G.M. Two new bicyclic cembranolides from a new Sarcophyton species and determination of the absolute configuration of sarcoglaucol-16-one. Org. Biomol. Chem. 2004, 2, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Liu, A.; Chen, X.; Cheng, W.; Dirsch, O.; Dahmen, U. The severity of LPS induced inflammatory injury is negatively associated with the functional liver mass after LPS injection in rat model. J. Inflamm. 2018, 15, 21. [Google Scholar] [CrossRef] [Green Version]
- Jia, R.; Guo, Y.W.; Chen, P.; Yang, Y.M.; Mollo, E.; Gavagnin, M.; Cimino, G. Biscembranoids and their probable biogenetic precursor from the Hainan soft coral Sarcophyton tortuosum. J. Nat. Prod. 2007, 70, 1158–1166. [Google Scholar] [CrossRef]
- Kurtán, T.; Jia, R.; Li, Y.; Pescitelli, G.; Guo, Y.W. Absolute configuration of highly flexible natural products by the solid-state ECD/TDDFT method: Ximaolides and sinulaparvalides. Eur. J. Org. Chem. 2012, 34, 6722–6728. [Google Scholar] [CrossRef]
- Dayer, J.M.; Oliviero, F.; Punzi, L. A brief history of IL-1 and IL-1 Ra in rheumatology. Front. Pharmacol. 2017, 8, 293. [Google Scholar] [CrossRef] [PubMed]
- Kay, J.; Calabrese, L. The role of interleukin-1 in the pathogenesis of rheumatoid arthritis. Rheumatology 2004, 43, iii2–iii9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, W.S.; Wei, X.; Mai, C.L.; Murugan, M.; Wu, L.J.; Xin, W.J.; Zhou, L.J.; Liu, X.G. Interleukin-1β overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents. Mol. Pain 2016, 12, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szekely, Y.; Arbel, Y. A review of interleukin-1 in heart disease: Where do we stand today? Cardiol. Ther. 2018, 7, 25–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Costa, M.B.; Gerhardinger, C. IL-1β is upregulated in the diabetic retina and retinal vessels: Cell-specific effect of high glucose and IL-1β autostimulation. PLoS ONE 2012, 7, e36949. [Google Scholar] [CrossRef] [Green Version]
- Kowluru, R.A.; Odenbach, S. Role of interleukin-1β in the pathogenesis of diabetic retinopathy. Br. J. Ophthalmol. 2004, 88, 1343–1347. [Google Scholar] [CrossRef] [Green Version]
- Ichige, T.; Okano, Y.; Kanoh, N.; Nakata, M. Total synthesis of methyl sarcophytoate, a marine natural biscembranoid. J. Org. Chem. 2009, 74, 230–243. [Google Scholar] [CrossRef]
- Maloney, K.N.; Botts, R.T.; Davis, T.S.; Okada, B.K.; Maloney, E.M.; Leber, C.A.; Alvarado, O.; Brayton, C.; Caraballo-Rodríguez, A.M.; Chari, J.V.; et al. Cryptic species account for the seemingly idiosyncratic secondary metabolism of Sarcophyton glaucum specimens collected in Palau. J. Nat. Prod. 2020, 83, 693–705. [Google Scholar] [CrossRef]
- Liu, P.J.; Lin, S.M.; Fan, T.Y.; Meng, P.J.; Shao, K.T.; Lin, H.J. Rates of overgrowth by macroalgae and attack by sea anemones are greater for live coral than dead coral under conditions of nutrient enrichment. Limnol. Oceanogr. 2009, 54, 1167–1175. [Google Scholar] [CrossRef]
- Chou, W.C.; Liu, P.J.; Chen, Y.H.; Huang, W.J. Contrasting changes in diel variation of net community calcification support that carbonate dissolution can be more sensitive to ocean acidification than coral calcification. Front. Mar. Sci. 2020, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Cole, S.P.C. Rapid chemosensitivity testing of human lung tumor cells using the MTT assay. Cancer Chemother. Pharmacol. 1986, 17, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lin, S.X.; Agha-Majzoub, R.; Overbergh, L.; Mathieu, C.; Chan, L.S. CCL27 is a critical factor for the development of atopic dermatitis in the keratin-14 IL-4 transgenic mouse model. Int. Immunol. 2006, 18, 1233–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feller, M.; Rudi, A.; Berer, N.; Goldberg, I.; Stein, Z.; Benayahu, Y.; Schleyer, M.; Kashman, Y. Isoprenoids of the soft coral Sarcophyton glaucum: nyalolide, a new biscembranoid, and other terpenoids. J. Nat. Prod. 2004, 67, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.M.; Lan, W.J.; Su, J.Y.; Zhang, G.W.; Feng, X.L.; Liang, Y.J.; Yang, X.P. Two new cytotoxic tetracyclic tetraterpenoids from the Soft coral Sarcophyton tortuosum. J. Nat. Prod. 2004, 67, 1915–1918. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.C.; Deng, Z.W.; van Ofwegen, L.; Proksch, P.; Lin, W.H. Lobophytones O–T, new biscembranoids and cembranoid from soft coral Lobophytum pauciflorum. Mar. Drugs 2010, 8, 2837–2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, P.C.; Deng, Z.W.; van Ofwegen, L.; Proksch, P.; Lin, W.H. Lobophytones U–Z1, biscembranoids from the chinese soft coral Lobophytum pauciflorum. Chem. Biodivers. 2011, 8, 1724–1734. [Google Scholar] [CrossRef] [PubMed]
Position | 1 α | 2 | 3 | 4 b |
---|---|---|---|---|
1 | 50.2 (C) | 48.7 (C) | 49.8 (C) | 49.4 (C) |
2 | 46.0 (CH) c | 47.3 (CH) | 45.8 (CH) | 44.0 (CH) |
3 | 202.5 (C) | 203.8 (C) | 210.3 (C) | 201.5 (C) |
4 | 126.0 (CH) | 126.0 (CH) | 51.0 (CH2) | 124.7 (CH) |
5 | 160.9 (C) | 159.8 (C) | 143.2 (C) | 159.4 (C) |
6 | 32.3 (CH2) | 39.8 (CH2) | 36.5 (CH2) | 34.0 (CH2) |
7 | 24.7 (CH2) | 24.1 (CH2) | 25.7 (CH2) | 25.2 (CH2) |
8 | 31.0 (CH2) | 31.1 (CH2) | 33.8 (CH2) | 33.6 (CH2) |
9 | 44.6 (CH) | 45.7 (CH) | 47.7 (CH) | 44.7 (CH) |
10 | 214.2 (C) | 213.3 (C) | 213.6 (C) | 213.6 (C) |
11 | 34.7 (CH2) | 35.1 (CH2) | 34.2 (CH2) | 37.1 (CH2) |
12 | 52.6 (CH) | 52.1 (CH) | 51.1 (CH) | 52.3 (CH) |
13 | 210.0 (C) | 211.2 (C) | 211.6 (C) | 207.6 (C) |
14 | 46.6 (CH2) | 47.7 (CH2) | 46.8 (CH2) | 45.2 (CH2) |
15 | 29.1 (CH) | 29.4 (CH) | 29.2 (CH) | 28.3 (CH) |
16 | 18.3 (CH3) | 17.9 (CH3) | 18.4 (CH3) | 17.3 (CH3) |
17 | 21.1 (CH3) | 20.8 (CH3) | 21.0 (CH3) | 21.0 (CH3) |
18 | 17.2 (CH3) | 16.3 (CH3) | 17.6 (CH3) | 18.3 (CH3) |
19 | 26.6 (CH3) | 20.3 (CH3) | 114.9 (CH2) | 26.4 (CH3) |
20 | 174.9 (C) | 174.4 (C) | 175.0 (C) | 174.1 (C) |
21 | 42.9 (CH) | 40.8 (CH) | 42.5 (CH) | 41.7 (CH) |
22 | 125.2 (CH) | 124.0 (CH) | 124.5 (CH) | 126.8 (CH) |
23 | 138.4 (C) | 140.2 (C) | 139.3 (C) | 134.9 (C) |
24 | 36.7 (CH2) | 38.5 (CH2) | 37.6 (CH2) | 34.9 (CH2) |
25 | 25.8 (CH2) | 26.8 (CH2) | 26.3 (CH2) | 24.4 (CH2) |
26 | 81.7 (CH) | 84.8 (CH) | 82.7 (CH) | 79.8 (CH) |
27 | 70.4 (C) | 70.1 (C) | 70.4 (C) | 69.0 (C) |
28 | 33.6 (CH2) | 32.0 (CH2) | 33.2 (CH2) | 33.6 (CH2) |
29 | 19.5 (CH2) | 19.8 (CH2) | 19.9 (CH2) | 19.2 (CH2) |
30 | 73.8 (CH) | 74.0 (CH) | 73.9 (CH) | 72.8 (CH) |
31 | 73.8 (C) | 74.0 (C) | 73.9 (C) | 72.8 (C) |
32 | 40.2 (CH2) | 41.2 (CH2) | 40.6 (CH2) | 39.8 (CH2) |
33 | 67.8 (CH) | 69.9 (CH) | 68.5 (CH) | 64.9 (CH) |
34 | 131.7 (C) | 131.5 (C) | 132.8 (C) | 132.7 (C) |
35 | 130.6 (C) | 130.2 (C) | 130.1 (C) | 125.2 (C) |
36 | 34.0 (CH2) | 34.0 (CH2) | 34.2 (CH2) | 32.9 (CH2) |
37 | 19.3 (CH3) | 19.8 (CH3) | 19.6 (CH3) | 16.8 (CH3) |
38 | 17.9 (CH3) | 18.9 (CH3) | 18.5 (CH3) | 17.2 (CH3) |
39 | 25.3 (CH3) | 25.4 (CH3) | 25.4 (CH3) | 26.2 (CH3) |
40 | 23.7 (CH3) | 22.9 (CH3) | 23.4 (CH3) | 24.7 (CH3) |
41 | 51.3 (CH3) | 51.6 (CH3) | 51.3 (CH3) | 50.6 (CH3) |
Position | 1 α | 2 | 3 | 4 b |
---|---|---|---|---|
2 | 3.59, m | 3.73, m | 3.74, t (7.6) c | 3.37, m |
4 | 6.44, s | 5.85, s | 3.20, m; 3.64 m | 6.30, s |
6 | 1.68, m; 3.30, m | 1.99, m; 2.21, m | 1.80, m; 2.16 m | 2.11, m |
7 | 1.34, m; 1.52, m | 1.51, m; 1.60, m | 1.27, m | 1.10, m; 1.30, m |
8 | 1.34, m; 1.64, m | 1.49, m | 1.52, m; 1.63 m | 1.23, m; 1.54, m |
9 | 2.71, m | 2.24, m | 2.43, m | 2.73, m |
11 | 2.13, m; 2.76, m | 2.09, m; 2.98, m | 2.04, m; 3.0, m | 2.05, m; 3.01, m |
12 | 2.97, m | 2.82, m | 3.05, m | 2.99, m |
14 | 2.84, m; 3.11, m | 2.58, m; 3.23, m | 3.10, m | 2.58, m; 2.82, m |
15 | 2.19, m | 2.07, m | 2.03, m | 2.03, m |
16 | 0.76, d (6.8) | 0.77, d (6.8) | 0.79, d (6.8) | 0.59, d (7.0) |
17 | 0.95, d (6.8) | 0.94, d (6.8) | 0.95, d (6.4) | 0.90, d (6.5) |
18 | 1.08, d (7.2) | 1.13, d (6.8) | 1.13, d (7.2) | 0.96, (7.0) |
19 | 1.89, s | 2.12, s | 4.72, 4.88, brs | 1.84, s |
21 | 3.37, m | 3.73, d (10.8) | 3.50, m | 3.36, m |
22 | 5.06, d (10.0) | 5.25, d (10.8) | 5.17, d (10.4) | 4.99, d (10.5) |
24 | 1.98, m; 2.43, m | 1.94, m; 2.52, m | 1.94, m; 2.50 m | 1.82, m; 2.24, m |
25 | 1.64, m; 1.84, m | 1.61, m; 1.99, m | 1.63, m; 1.94 m | 1.58, m; 1.64, m |
26 | 3.49, m | 3.60, m | 3.54, d (9.6) | 3.28, d (10.5) |
28 | 1.52, m; 1.72, m | 1.52, m; 1.71, m | 1.58, m; 1.72 m | 1.62, m; 2.16, m |
29 | 1.57, m; 1.70, m | 1.70, m; | 1.63, m; 1.71 m | 1.29, m; 1.64, m |
30 | 3.44, dd (4.0; 12.0) | 3.63, m | 3.52, m | 3.15, dd (4.0; 12.0) |
32 | 1.55, m; 2.19 m | 1.71, m; 1.92, m | 1.60, m; 2.03 m | 2.19, m |
33 | 4.86, t (6.4) | 4.80, t (6.4) | 4.83, t (6.4) | 4.78, d (10.5) |
36 | 2.26, m | 2.26 m; 2.56 m | 2.15, m; 2.40, m | 1.92, m |
37 | 1.86, s | 1.91, s | 1.89, s | 1.66, s |
38 | 1.70, s | 1.77, s | 1.75, s | 1.57, s |
39 | 1.13, s | 1.13, s | 1.14, s | 0.96, s |
40 | 1.16, s | 1.14, s | 1.15, s | 1.01, s |
41 | 3.55, s | 3.58, s | 3.58, s | 3.40, s |
Compound | MCF-7 | MDA-MB-231 | HepG2 | HeLa |
---|---|---|---|---|
1 | – a | – | – | – |
2 | 9.6 ± 3.0 | 14.8 ± 4.0 | – | – |
3 | – | – | – | – |
4 | – | – | – | – |
5 | – | – | – | – |
6 | 10.1 ± 3.3 | – | 14.9 ± 3.5 | 17.1 ± 4.5 |
7 | 9.4 ± 3.0 | 17.8 ± 4.5 | 14.9 ± 4.2 | – |
8 | 10.9 ± 4.3 | – | – | – |
Doxorubicin | 0.7 ± 0.1 | 1.3 ± 0.2 | 1.2 ± 0.4 | 0.4 ± 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-Y.; Huang, C.-Y.; Chao, C.-H.; Lin, C.-C.; Dai, C.-F.; Su, J.-H.; Sung, P.-J.; Wu, S.-H.; Sheu, J.-H. New Biscembranoids Sardigitolides A–D and Known Cembranoid-Related Compounds from Sarcophyton digitatum: Isolation, Structure Elucidation, and Bioactivities. Mar. Drugs 2020, 18, 452. https://doi.org/10.3390/md18090452
Huang T-Y, Huang C-Y, Chao C-H, Lin C-C, Dai C-F, Su J-H, Sung P-J, Wu S-H, Sheu J-H. New Biscembranoids Sardigitolides A–D and Known Cembranoid-Related Compounds from Sarcophyton digitatum: Isolation, Structure Elucidation, and Bioactivities. Marine Drugs. 2020; 18(9):452. https://doi.org/10.3390/md18090452
Chicago/Turabian StyleHuang, Tzu-Yin, Chiung-Yao Huang, Chih-Hua Chao, Chi-Chien Lin, Chang-Feng Dai, Jui-Hsin Su, Ping-Jyun Sung, Shih-Hsiung Wu, and Jyh-Horng Sheu. 2020. "New Biscembranoids Sardigitolides A–D and Known Cembranoid-Related Compounds from Sarcophyton digitatum: Isolation, Structure Elucidation, and Bioactivities" Marine Drugs 18, no. 9: 452. https://doi.org/10.3390/md18090452
APA StyleHuang, T. -Y., Huang, C. -Y., Chao, C. -H., Lin, C. -C., Dai, C. -F., Su, J. -H., Sung, P. -J., Wu, S. -H., & Sheu, J. -H. (2020). New Biscembranoids Sardigitolides A–D and Known Cembranoid-Related Compounds from Sarcophyton digitatum: Isolation, Structure Elucidation, and Bioactivities. Marine Drugs, 18(9), 452. https://doi.org/10.3390/md18090452