Fucoidan and Lung Function: Value in Viral Infection
Abstract
:1. Introduction
2. Viral Infection of the Lung
3. Nonpathogenic Lung Diseases
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weibel, E.R. Lung morphometry: The link between structure and function. Cell Tissue Res. 2017, 367, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Critchley, A.T. The COVID 19 novel coronavirus pandemic 2020: Seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? J. Appl. Phycol. 2020, 32, 1875–1877. [Google Scholar] [CrossRef] [PubMed]
- Pozharitskaya, O.N.; Obluchinskaya, E.D.; Shikov, A.N. Mechanisms of Bioactivities of Fucoidan from the Brown Seaweed Fucus vesiculosus L. of the Barents Sea. Mar. Drugs 2020, 18, 275. [Google Scholar] [CrossRef]
- Pan, H.; Peto, R.; Karim, Q.A.; Alejandria, M.; Henao-Restrepo, A.M.; García, C.H.; Kieny, M.-P.; Malekzadeh, R.; Murthy, S.; Preziosi, M.-P.; et al. Repurposed antiviral drugs for COVID-19—Interim WHO SOLIDARITY trial results. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Moller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020, 181, 1036–1045.e9. [Google Scholar] [CrossRef]
- Zabetakis, I.; Lordan, R.; Norton, C.; Tsoupras, A. COVID-19: The Inflammation Link and the Role of Nutrition in Potential Mitigation. Nutrients 2020, 12, 1466. [Google Scholar] [CrossRef]
- Kuznetsova, T.A.; Smolina, T.P.; Makarenkova, I.D.; Ivanushko, L.A.; Persiyanova, E.V.; Ermakova, S.; Silchenko, A.; Zaporozhets, T.S.; Besednova, N.N.; Fedyanina, L.N.; et al. Immunoadjuvant Activity of Fucoidans from the Brown Alga Fucus evanescens. Mar. Drugs 2020, 18, 155. [Google Scholar] [CrossRef] [Green Version]
- Cox, A.J.; Cripps, A.W.; Taylor, P.A.; Fitton, J.H.; West, N.P. Fucoidan supplementation restores faecal lysozyme concentrations in high performance athletes. Mar. Drugs 2020, 18, 412. [Google Scholar] [CrossRef]
- Fitton, J.H.; Stringer, D.N.; Karpiniec, S. Therapies from Fucoidan: An Update. Mar. Drugs 2015, 13, 5920–5946. [Google Scholar] [CrossRef] [Green Version]
- Fitton, J.H.; Stringer, D.N.; Karpiniec, S.S.; Park, A.Y. The Manufacture, Characterization, and Uses of Fucoidans from Macroalgae, 8 April 2019 ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 47–60. [Google Scholar]
- Pozharitskaya, O.N.; Shikov, A.N.; Faustova, N.M.; Obluchinskaya, E.; Kosman, V.M.; Vuorela, H.; Makarov, V.G. Pharmacokinetic and Tissue Distribution of Fucoidan from Fucus vesiculosus after Oral Administration to Rats. Mar. Drugs 2018, 16, 132. [Google Scholar] [CrossRef] [Green Version]
- Kadena, K.; Tomori, M.; Iha, M.; Nagamine, T. Absorption Study of Mozuku Fucoidan in Japanese Volunteers. Mar. Drugs 2018, 16, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itzhaki, R.F. Antivirals against SARS-CoV2: Relevance to the Treatment of Alzheimer’s Disease. J. Alzheimers Dis. 2020, 78, 905–906. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.-R.; Li, Y.-J.; Chen, J.; Lu, C.-L. A review for natural polysaccharides with anti-pulmonary fibrosis properties, which may benefit to patients infected by 2019-nCoV. Carbohydr. Polym. 2020, 247, 116740. [Google Scholar] [CrossRef] [PubMed]
- Tandon, R.; Sharp, J.S.; Zhang, F.; Pomin, V.H.; Ashpole, N.M.; Mitra, D.; Jin, W.; Liu, H.; Sharma, P.; Linhardt, R.J. Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives. J. Virol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kwon, P.S.; Oh, H.; Kwon, S.J.; Jin, W.; Zhang, F.; Fraser, K.; Hong, J.J.; Linhardt, R.J.; Dordick, J.S. Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro. Cell Discov. 2020, 6, 50. [Google Scholar] [CrossRef] [PubMed]
- Fitton, J.H.; Park, A.Y.; Stringer, D.S.; Karpiniec, S.K. Unpublished research. 2020. [Google Scholar]
- Gentile, D.; Patamia, V.; Scala, A.; Sciortino, M.T.; Piperno, A.; Rescifina, A. Putative Inhibitors of SARS-CoV-2 Main Protease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study. Mar. Drugs 2020, 18, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besednova, N.; Zaporozhets, T.; Kuznetsova, T.; Makarenkova, I.; Fedyanina, L.; Kryzhanovsky, S.; Malyarenko, O.; Ermakova, S. Metabolites of Seaweeds as Potential Agents for the Prevention and Therapy of Influenza Infection. Mar. Drugs 2019, 17, 373. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Lee, J.-B.; Nakano, T.; Hayashi, T. Anti-influenza A virus characteristics of a fucoidan from sporophyll of Undaria pinnatifida in mice with normal and compromised immunity. Microbes Infect. 2013, 15, 302–309. [Google Scholar] [CrossRef]
- Synytsya, A.; Bleha, R.; Synytsya, A.; Pohl, R.; Hayashi, K.; Yoshinaga, K.; Nakano, T.; Hayashi, T. Mekabu fucoidan: Structural complexity and defensive effects against avian influenza A viruses. Carbohydr. Polym. 2014, 111, 633–644. [Google Scholar] [CrossRef]
- Negishi, H.; Mori, M.; Mori, H.; Yamori, Y. Supplementation of Elderly Japanese Men and Women with Fucoidan from Seaweed Increases Immune Responses to Seasonal Influenza Vaccination. J. Nutr. 2013, 143, 1794–1798. [Google Scholar] [CrossRef]
- Richards, C.; Williams, N.A.; Fitton, J.H.; Stringer, D.N.; Karpiniec, S.; Park, A.Y. Oral Fucoidan Attenuates Lung Pathology and Clinical Signs in a Severe Influenza A Mouse Model. Mar. Drugs 2020, 18, 246. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, K.; Mahanty, S. Respiratory Virus Infections: Understanding COVID-19. Immunity 2020, 52, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Painter, C.D.; Thacker, B.E.; Glass, C.A.; Narayanan, A.; Majowicz, S.A.; Zhang, Y.; et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020, 183, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Rostami, M.R.; Leopold, P.L.; Mezey, J.G.; O’Beirne, S.L.; Strulovici-Barel, Y.; Crystal, R.G. Expression of the SARS-CoV-2 ACE2 Receptor in the Human Airway Epithelium. Am. J. Respir. Crit. Care Med. 2020, 202, 219–229. [Google Scholar] [CrossRef]
- Triana, S.; Metz Zumaran, C.; Ramirez, C.; Kee, C.; Doldan, P.; Shahraz, M.; Schraivogel, D.; Gschwind, A.R.; Steinmetz, L.M.; Herrmann, C.; et al. Single-cell analyses reveal SARS-CoV-2 interference with intrinsic immune response in the human gut. bioRxiv 2020. [Google Scholar] [CrossRef]
- Wang, W.; Wu, J.; Zhang, X.; Hao, C.; Zhao, X.; Jiao, G.; Shan, X.; Tai, W.; Yu, G. Inhibition of Influenza A Virus Infection by Fucoidan Targeting Viral Neuraminidase and Cellular EGFR Pathway. Sci. Rep. 2017, 7, 40760. [Google Scholar] [CrossRef]
- Hasan, S.S.; Radford, S.; Kow, C.S.; Zaidi, S.T.R. Venous thromboembolism in critically ill COVID-19 patients receiving prophylactic or therapeutic anticoagulation: A systematic review and meta-analysis. J. Thromb. Thrombolysis 2020, 50, 814–821. [Google Scholar] [CrossRef]
- Song, S.; Peng, H.; Wang, Q.; Liu, Z.; Dong, X.; Wen, C.; Ai, C.; Zhang, Y.; Wang, Z.; Zhu, B. Inhibitory activities of marine sulfated polysaccharides against SARS-CoV-2. Food Funct. 2020, 11, 7415–7420. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, W.; Mitra, D.; McCandless, M.G.; Sharma, P.; Tandon, R.; Zhang, F.; Linhardt, R.J. The structure-activity relationship of the interactions of SARS-CoV-2 spike glycoproteins with glucuronomannan and sulfated galactofucan from Saccharina japonica. Int. J. Biol. Macromol. 2020, 163, 1649–1658. [Google Scholar] [CrossRef]
- Pokharel, Y.R.; Yoon, S.Y.; Kim, S.K.; Li, J.-D.; Kang, K.-W. Inhibition of acrolein-stimulated MUC5AC production by fucoidan in human bronchial epithelial cells. Die Pharm. 2008, 63, 757–759. [Google Scholar]
- Dutot, M.; Grassin-Delyle, S.; Salvator, H.; Brollo, M.; Rat, P.; Fagon, R.; Naline, E.; DeVillier, P. A marine-sourced fucoidan solution inhibits Toll-like-receptor-3-induced cytokine release by human bronchial epithelial cells. Int. J. Biol. Macromol. 2019, 130, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xue, D.; Xue, M.; Zhao, J.; Liang, H.; Liu, Y.; Sun, T. Fucoidan inhibits epithelial-to-mesenchymal transition via regulation of the HIF-1α pathway in mammary cancer cells under hypoxia. Oncol. Lett. 2019, 18, 330–338. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, P.; Li, X.; Zhang, Y.; Zhan, Q.; Wang, C. Low-molecular-weight fucoidan attenuates bleomycin-induced pulmonary fibrosis: Possible role in inhibiting TGF-beta1-induced epithelial-mesenchymal transition through ERK pathway. Am. J. Transl. Res. 2019, 11, 2590–2602. [Google Scholar] [PubMed]
- Herath, K.H.I.N.M.; Kim, H.J.; Kim, A.; Sook, C.E.; Lee, B.-Y.; Jee, Y. The Role of Fucoidans Isolated from the Sporophylls of Undaria pinnatifida against Particulate-Matter-Induced Allergic Airway Inflammation: Evidence of the Attenuation of Oxidative Stress and Inflammatory Responses. Molecules 2020, 25, 2869. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Wang, Y.; Lu, Y.; Yuan, Y.; Liu, Y.; Li, X. Protective effects of fucoidan against hyperoxic lung injury via the ERK signaling pathway. Mol. Med. Rep. 2018, 17, 1813–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, D.Z.; Wang, Y.T.; Zhuo, Y.L.; Zhu, K.J.; Wang, X.Z.; Liu, A.J. Fucoidan inhibits LPS-induced acute lung injury in mice through regulating GSK-3beta-Nrf2 signaling pathway. Arch. Pharm. Res. 2020, 43, 646–654. [Google Scholar] [CrossRef] [PubMed]
Fucoidan Type | Study Focus | Description | Dose | Reference |
---|---|---|---|---|
Undaria pinnatifida Unfractionated | H1N1 Deep lung influenza PR8 | Lung damage limited by oral intake of fucoidan in treatment and prevention models. Not correlated to viral titre. | 3.52 or 7.04 mg/day | [23] |
Undaria pinnatifida Discrete fraction 9kDa | H1N1 (A/NWS/33) | Virus yield in the mucosa of immunocompetent and compromised mice was reduced and stimulated mucosal immunoresponse. | IC50- 15 µg/mL, 5 mg/day post infection | [20] |
Undaria pinnatifida Discrete fraction 9 kDa | Avian influenza viruses (H5N3 and H7N2) | Suppressed virus yields and increased antibody production. | 1 mg or 5 mg/day | [21] |
Kjellmaniella crassifolia Unfractionated536 kDa | PR8 (H1D1), Cal09 (H1N1), Minnesota (H2N2) and TXD09 (H1N1) | Inhibits virus replication in vitro and has low risk of inducing drug resistance. | IC50 34 µg/mL 10 or 20 μg/day intranasal | [28] |
Undaria pinnatifida Unfractionated | Response to vaccine containing A/Brisbane/59/2007, A/Uruguay/716/2007, B/Brisbane/60/2008 | Clinical. Enhanced immune responses to seasonal influenza vaccine in the elderly. | 300 mg/day 4 weeks pre and 19 weeks post inoculation | [22] |
Compounds | Study Focus | Description | Inhibition IC50 | Reference |
---|---|---|---|---|
Fucoidan from Fucus vesiculosus and Undaria pinnatifida Unfractionated | Inhibition of SARS-CoV-2 | Neither polysaccharide inhibits viral infection in vitro Vero 76 cells. | >100 µg/ml | [17] |
Iota carrageenan(IC), chondroitin sulfate C(CS), sea cucumber polysaccharide (SCPS), fucoidan (species not stated) | Inhibition of SARS-CoV-2 in vitro | All three polysaccharides inhibit SARS-CoV-2 in vitro. SCPS can bind to S glycoprotein. | iC ≥ 125 μg/mL CS nil SCPS 9.10 μg/mL Fucoidan 15.6 μg/mL | [30] |
Sulfated galactofucan from Saccharina japonica (1, 3-linked α-L-Fucp residues sulfated at C4 and C2/C4 and 1, 3-linked α-L-Fucp residues sulfated at C4 and branched with 1, 6-linked β-d-galacto-biose) | Binding study of SARS CoV-2spike glycoprotein (SGP) with heparin and ACE2 | Sulfated galactofucan inhibited interaction between SARS-CoV-2 SGPs and heparin, but not ACE2. | IC 50 of 27 nM (for inhibition of interaction of SGP and heparin) | [31] |
Heparin (~17 kDa), TriS-heparin (~18 kDa), LMW and HMW fucoidan from Saccharina japonica (structure, see above) | In vitro antiviral properties that target SARS-CoV-2 and binding of S-proteins of SARS-CoV-2 and docking study | Binding efficiency of the compounds correlated anti-viral activities. The most potent was the HMW fucoidan from Saccharina japonica in low nM. | HMWfucoidan 8.3 μg/mL LMWfucoidan16 μg/mL Heparin36 μg/mL Tris-heparin88 μg/mL | [16] |
UFH, enoxaparin, 6-O-desulfated UFH, 6-O-desulfated enoxaparin, sulfated fucan from Lytechnius variegatus and sulfated galactan from Botryocladia occidentalis | Binding study of SGP, transduction efficiency of a third generation lentiviral (pLV) vector | pLV-S particles were neutralized with an IC50 of low ng to high µg/L. | UFH 599 pg/mL L.Var. 3.3 ng/mL B. Occ 5.4 ng/mL Desulf enoxaparin nil | [15] |
Fucoidan Type | Study Focus | Description | Dose | Reference |
---|---|---|---|---|
Undaria pinnatifida | Particulate Matter (PM) induced allergic airway inflammation | Balb/c mice exposed to PM and reduced allergic asthma symptoms by attenuating the airway inflammatory response and mucus hypersecretion. | 100, 400 mg/Kg/day | [36] |
Probably Fucus vesiculosis | Effect on MUC5AC expression in a human bronchial epithelial cell line (NCI-H292) | In vitro fucoidan suppresses MUC5AC expression in human bronchial epithelial cells through deactivation of AP-1. | 30 mg/mL fucoidan completely blocked induction of MUC5AC | [32,34] |
Ascophyllum nodosum | Effects on human bronchial epithelial cells via Toll-like-receptor-3 (TLR3) induced cytokine release | In vitro fucoidan inhibits inflammatory mediators associated with TLR3. | 1 mg/mL solution significantly inhibits cytokine release, PGE2 | [32,33] |
Cladosiphon okamuranus | Protection from high oxygen tension damage | In vivo Balb/c mice peroxia induced inflammation and morphological alterations were significantly attenuated in the mice treated with fucoidan. Atomization inhalation of fucoidan also reduced the hyperoxia induced expression of IL1, IL6 and TNFα, and the phosphorylation of ERK1/2. | 100 μg/mL by atomization inhalation | [33,37] |
Fucus vesiculosus | Inhibition of inflammatory enzymes COX 2, extends clotting times | HMW fucoidan inhibited COX-2 significantly with greater selectivity than synthetic drug indomethacin. It also inhibited hyaluronidase enzyme and dipeptidyl peptidase-IV(DPP-IV). | COX2: 4.3 _g mL Hyaluronidase:2.9 _g mL DPPIV: 1.11 _g mL | [3,37] |
Fucus vesiculosus | LPS induced lung injury | In vivo LPS-induced acute lung injury in mice through regulating GSK-3beta-Nrf2 signaling pathway. | 20, 40, or 80 mg/kg | [3,38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitton, J.H.; Park, A.Y.; Karpiniec, S.S.; Stringer, D.N. Fucoidan and Lung Function: Value in Viral Infection. Mar. Drugs 2021, 19, 4. https://doi.org/10.3390/md19010004
Fitton JH, Park AY, Karpiniec SS, Stringer DN. Fucoidan and Lung Function: Value in Viral Infection. Marine Drugs. 2021; 19(1):4. https://doi.org/10.3390/md19010004
Chicago/Turabian StyleFitton, J. Helen, Ah Young Park, Samuel S. Karpiniec, and Damien N. Stringer. 2021. "Fucoidan and Lung Function: Value in Viral Infection" Marine Drugs 19, no. 1: 4. https://doi.org/10.3390/md19010004
APA StyleFitton, J. H., Park, A. Y., Karpiniec, S. S., & Stringer, D. N. (2021). Fucoidan and Lung Function: Value in Viral Infection. Marine Drugs, 19(1), 4. https://doi.org/10.3390/md19010004